Formal Methods in System Design 9, 77-104 (1996)
© 1996 Kluwer Academic Publishers. Manufactured in The Netherlands.

Exploiting Symmetry in Temporal Logic
Model Checking*

E.M. CLARKE
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

R. ENDERS AND T. FILKORN
Siemens AG, Corporate Research and Development, Otto-Hahn-Ring 6, W-8000 Muenchen 83, Germany

S.JHA
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Received July 1993; Accepted January 1994

Abstract. In practice, finite state concurrent systems often exhibit considerable symmetry. We investigate tech-
niques for reducing the complexity of temporal logic model checking in the presence of symmetry. In particular,
we show that symmetry can frequently be used to reduce the size of the state space that must be explored during
model checking. In the past, symmetry has been exploited in computing the set of reachable states of a system
when the transition relation is represented explicitly [14, 11, 19]. However, this research did not consider arbitrary
temporal properties or the complications that arise when BDDs are used in such procedures.

We have formalized what it means for a finite state system to be symmetric and described techniques for reducing
such systems when the transition relation is given explicitly in terms of states or symbolically as a BDD. Moreover,
we have identified an important class of temporal logic formulas that are preserved under this reduction. Our paper
also investigates the complexity of various critical steps, like the computation of the orbit relation, which arise
when symmetry is used in this type of verification. Finally, we have tested our ideas on a simple cache-coherency
protocol based on the JEEE Futurebus + standard.

Keywords: model checking, symmetry, temporal-logic

1. Introduction

Finite state concurrent systems frequently exhibit considerable symmetry. It is possible
to find symmetry in memories, caches, register files, bus protocols, network protocols—
anything that has a lot of replicated structure. Generally, verification techniques do not take
advantage of this fact. This work tries to exploit symmetry to reduce the size of the state
space that must be explored by temporal logic model checking algorithms.

*This research was sponsored in part by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543 under Contract
F33615-90-C-1465, ARPA Order No. 7597 and in part by the National Science Foundation under Grant No.
CCR-8722633 and in part by the Semiconductor Research Corporation under Contract 92-DJ-294.

The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the U.S. government.

78 CLARKE ET AL.

In Temporal Logic Model Checking we determine whether a temporal logic formula is
valid in a finite state system M = (S, R, L), where § is the state space, R is the state
transition relation, and L is a function that labels states with sets of atomic propositions.
Such a structure is usually called a Kripke Model and may have an enormous number of
states. An efficient Model Checking procedure tries to reduce the number of states that are
actually searched. In most cases the state space is expressed symbolically in terms of state
variables, and the transition relation is represented by a birary decision diagram or BDD
[2,3].

Let G be a group of permutations acting on the state space S of the Kripke structure
M. A permutation o € G is said to be a symmetry of M if and only if it preserves the
transition relation R. G is a symmetry group for the Kripke structure M if and only if every
permutation ¢ € G is a symmetry for M. If s is an element of S, then the orbit of s is the
set of states 6(s) obtained from s by applying permutations in G. From each orbit 8 (s) we
pick a representative that we call rep(6(s)).

If M = (S, R, L) is a Kripke Structure and G a symmetry group acting on M, we can
define a quotient model Mg = (S, Rg, Lg) in the following manner:

o The state setis Sg = {6(s) | s € §}, the set of orbits of the states in S

e The transition relation Rg has the property that (6(s;), 8(s2)) € R¢ if an only if there
exists two states s3 and s4 such that 53 € 6(s1), 54 € 8(s2), and (53, 54) € R;

o The labeling function L is given by L (8(s)) = L(rep(6s))).

An atomic proposition is invariant under the action of a symmetry group G, if the set of
states labeled by the proposition is closed under the application of the permutations in G.
We prove that if & is a formula in the temporal logic CTL* and all of the atomic propositions
in # are invariant under the symmetry group G, then & is true in M if and only if it is true in
the quotient model M. This implies that we can determine the correctness of properties
in the original model M by checking them in the quotient model M.

Since the quotient model M¢ contains only one representative from each orbit, the state
space S will, in general, be much smaller than the original state space S. We have developed
techniques that build M without actually building M. We believe that our method will
considerably reduce the state space that must be searched and we have tested our ideas
on a simple cache coherency protocol based on the IEEE Futurebus + standard. Previous
research on verification of cache coherence protocols has made the simplifying assumption
that there is only one cache line in the system [6, 17]. This assumption is necessary because
the BDDs that occur in verifying these protocols grow exponentially in the number of cache
lines. By using symmetry, however, we are able to avoid this assumption and reason about
systems with multiple cache lines. Since different cache lines behave almost independently,
the ordering of the cache lines is relatively unimportant and this results in a small quotient
model. We have obtained are encouraging results. The size of the BDDs that are needed to
represent the model is, in some cases, reduced by an order of magnitude or more.

We also discuss the complexity of exploiting symmetry in model checking algorithms.
The first problem that we consider is computing the orbit relation, i.e., determining whether
two states are in the same orbit or not. This is an important problem because the direct
method of computing the quotient model Mg uses this relation. We prove that this problem

EXPLOITING SYMMETRY IN TEMPORAL LOGIC MODEL CHECKING 79

is at least as hard as the graph isomorphism problem. In addition, we show that a variant
of this problem, called the bounded orbit problem, is NP-complete. We also give lower
bounds on the size of the BDDs needed to encode the orbit relation. Because these bounds
are exponential for some important symmetry groups that occur in practice, we develop a
method of using multiple representatives from each orbit that does not require building the
full orbit relation.

There has been relatively little research on exploiting symmetry in verifying finite state
systems. Most of the work on this problem has been performed by researchers investigating
the reachability problem for Petri nets [11, 19]. However, this work does not consider
general temporal properties nor the complications that are caused by representing the state
space using BDDs. In related research Ip and Dill [14] propose a data type scalarset which
facilitates detection of symmetry in finite state systems. Their technique uses an explicit
state representation rather than BDDs. The research closest to our own is of Emerson and
Sistla [7], but their work does not investigate the complexity that arises while using BDDs.
In [15] an approach to cut down the cost of protocol analysis using quotient structures
induced by automorphism is proposed.

Our paper is organized as follows: The second section describes how symmetry groups
act on Kripke models. The third section gives the syntax and semantics of the logic CTL*
that we use for writing specifications. In the fourth section we show how to construct a
BDD representation for the quotient model from the generators of its symmetry group. We
also prove that a CTL* formula which is invariant under the symmetry group will be true
in the original model if and only if it is true in the quotient model. Section 5 describes how
the orbit relation can be used to reduce the size of the state space that must be searched in
temporal logic model checking. In the next two sections we investigate the complexity of
computing this relation and give lower bounds on the size of the BDDs needed to represent
it. In the next section we show how to avoid constructing the full orbit relation during model
checking. In Section 8 we demonstrate how symmetry can be used to verify a version of the
Futurebus cache coherency protocol with multiple cache lines. In Section 9 we compare
our techniques with bisimulation minimization. The final section contains a discussion of
some directions for future research.

2. Symmetry groups

Let AP be a set of atomic propositions. A Kripke structure over APisatriple M = (S, R, L),
where

e S is afinite set of states,

e R C S x Sis atransition relation, which must be total (i.e., for every state s, there exists
a state s, such that (s;, 5,) € R).

o L:S — 2°F is a labeling function which associates with each state a set of atomic
propositions that are true in the state.

Let G be a permutation group, i.c., bijective mappings acting on the state space S of
the Kripke structure M. A permutation o € G is said to be a symmetry of M if and only

80 CLARKEET AL.

if it preserves the transition relation R. More formally, o should satisfy the following
condition:

(Vs € $H)(Vs, € S)((S],Sz) € R = (osy, os,)€R)

G is a symmetry group for the Kripke structure M if and only if every permutation o € G
is a symmetry of M. Notice that our definition of a symmetry group does not refer to the
labeling function L. Furthermore, since every o € G has an inverse, which is also a sym-
metry, it can be easily proved that a permutation o € G is a symmetry for a Kripke structure
if and only if o satisfies the following condition:

(Vs; € 8)(Vs2 € S)((s1,52) € R & (051,05)€R)

Example 2.1. The transposition o = (S, $,) exchanges the states S; and S, in the Kripke
Structure shown in figure 1. The states Sp and S3 are not affected by the permutation o, so
the successors of all the states remain the same when o is applied. Hence, o is a symmetry
of the Kripke Structure.

Let {(gi,...,gk) be the smallest permutation group containing all the permutations,
g1, ..., 8 If G = (g,..., g then we say that the group G is generated by the set
{g1, ..., g} Itis easy to see that if every generator of the group G is a symmetry of M,

then the group G is a symmetry group for M.

: S

~

) 53

Figure 1. A Kripke structure.

EXPLOITING SYMMETRY IN TEMPORAL LOGIC MODEL CHECKING 81

3. The temporal logic CTL*

There are two types of formulas in CTL*: state formulas (which are true in a specific state)
and path formulas (which are true along a specific path). Let AP be the a set of atomic
propositions. A state formula is either:

e pif p € AP
e if f and g are state formulas, then — f and f V g are state formulas;
o if f is a path formula, then E(f) is a state formula.

A path formula is either:

e a state formula;
e if f and g are path formulas, then —f, f v g, Xf,and fUg are path formulas;

CTL* is the set of state formulas generated by the above rules.

We define the semantics of CTL* with respect to a Kripke structure M = (S, R, L). A
parhin M is an infinite sequence of states m = sp, 51, . . ., such that, forevery i > 0, (si, Siv1)
€ R. n' denotes the suffix of 7 starting at s;. We use the standard notation to indicate that
a state formula f holds in a structure. M,s = f means that f holds at the state s in the
structure M. Similarly, M, w |= f means that the path formula f is true along the path 7.
Assume that f; and f, are state formulas and g; and g; are path formulas, then the relation
k= is defined inductively as follows:

l.sEp& pel(s)

2.sE=—fHesEN

.sEAVARA®sE hosEfH

4. s = E(g)) ¢ there exists a path 7 starting with s such that 7 = g

S. m = f1 ¢ s is the first state of m and 5 = f)

6. T = —g1 & TH g

T rnEgVaerEgOITER.

. rEXgs en Ea

9. m = g1Ugs & there exists k > 0 such that 7% = grand forall0 < j < k.ol =g

CTL is a subset of CTL* in which we restrict the path formulas to be:

If f and g are state formulas, then X f and fUg are path formulas.
o If f is a path formula, then so is — f.

The basic modalities of CTL are EF f, EG f, and E(fUg), where f and g are again CTL
formulas. The operators AG f, AF f and A(fUg) can be expressed in terms of the basic
modalities described above. Efficient procedures have been developed to determine if a
CTL formula f is true in a Kripke Model M. In [5] a model checking algorithm is given
that is linear in the size of the formula f and the model M. A symbolic model checking
algorithm using BDDs that can handle models with more that 10?° states is discussed in [3].

82 CLARKE ET AL.

4. Quotient models

Let G be a group acting on the set S and let s be an element of S, then the orbit of s is the
set 6(s) = {t| (do € G)(os = t)}. From each orbit 8(s) we pick a representative which
we call rep(8(s)) with the restriction that rep(6(s)) € 6(s).

Definition 4.1. Let M = (S, R, L) be a Kripke structure and let G be a symmetry
group acting on M. We define the quotient structure Mg = (Sg, Rg., L) in the following
manner:

e The state setis Sg = {6(s) | s € S}, the set of orbits of the states in §;
e The transition relation R is given by

Rg = {(0(s1),0(s52)) | (51,52) € R}; (N
o The labeling function L is given by L (6(s)) = L(rep(6(s))).

Next, we definc what it means for a symmetry group G of a Kripke Structure M to be an
invariance group for an atomic proposition p. Intuitively, G is an invariance group for
an atomic proposition p if and only if the set of states labeled by p is closed under the
application of all the permutations of G. More formally, a symmetry group G of a Kripke
Structure M = (S, R, L) is an invariance group for an atomic proposition p if and only if
the following condition holds:

Vo eGYVseS)(peL(s) & pelL(os))

Lemma 4.1. If G is an invariance group for an atomic proposition p and p € L(s), then
p € Lg(8(s)) in the quotient Kripke structure M.

Proof: Lets, = rep(d(s)). By the definition of the orbit s; = os forsome o € G. If
p € L(s), then p € L(os) because G is an invariance group for p. Therefore p € L(s)), and
since Lg(0(s)) = L(s1) we have that p € Ls(0(s)). O

Definition 4.2. Given a Kripke structure M = (S, R, L) and a symmetry group G, let
Mg = (S, Rg. L) be the quotient Kripke structure. Two paths 7 = 59, 51,..., In M
and tg = 6(tg), 0(¢), ..., correspond if and only if Vi(s; € 8(%;)).

Lemma 4.2. For every path starting from sy in M there exists a corresponding path
starting from 6(sg) in Mg, and for every path starting from 6(so) in Mg there exists a
corresponding path starting from sy in M.

Proof:

(=) Let m = s¢,5;,..., be a path in M. The corresponding path in Mg is the path
produced by taking the orbits of the states, or mg = 6(so), 8(s1), Notice that

EXPLOITING SYMMETRY IN TEMPORAL LOGIC MODEL CHECKING 83

7 is a valid path in the quotient structure Mg because (s;, si+1) € R implies that
(B(s:), 0(si41)) € Rg.

(<) Let mg = 0(s0), 0(s1), ..., be a path in Mg. We show how to construct a path
T = to,1,...,in M such that tp = s and ; € 0(s;). We will construct the path
in an inductive manner. Initially, we let fo = so. We will maintain the invariant that
t; € 6(s;). Since (8(sp), 6(s1)) € Rg there exists u € 6(sp) and v € 6(sp) such that
(u, v) € R. Since u € 6(so) there exists a o € G such that so = ou. By the definition
of the symmetry group (cu, ov) € R, or (so, ov) e R. Lett, = ov. Notice that since
v € 6(s)), we have that #; €6(s;). Assume that we have constructed a path = up
to t, such that #, € 8(s;). Using an argument similar to one given above we can find
Iyl € Q(Sk+|) such that (2, tryy) € R.]

Theorem 4.1. Let M = (S, R, L) be a Kripke Structure, G be a symmetry group of M,
and h be a CTL* formula. If G is an invariance group for all the atomic propositions p
occurring in h, then

M,sEh & Mg, 0(s)=h)
where Mg is the quotient structure corresponding to M.
This theorem is a direct consequence of the following lemma.

Lemmad.3. Leth beaeithera state formulaor a path formula such that G is aninvariance
group for all atomic propositions p occurring in h. Let v = 5,51, ..., be a path in M and
g = 6(s),0(t), ..., be a corresponding path in M¢. Then

o M,s =h & Mg,0(s) E hifhis astate formula, and

e M. 7w =h & Mg, ng = hifhisapath formula.

Proof: This proof is similar to the Proof of Lemma 3.2 givenin [1].

Basis: h € AP. We have that G is an invariance group for /. In this case it is easy to see
by Lemma 4.1 and the definition of an invariance group that M, s = h < Mg6(s) = h.

Induction: There are several cases.

e h = —hy, a state formula. By the inductive hypothesis we have that M,s = hy <&
Mc,6(s) = hi. Therefore M, s = h & Mg, 8(s) = h. The same reasoning holds if &
is a path formula.

o h = h, V hy,a state formula.

M,sEh& M,s=horM,s =Eh
f= M(;,H(S) ’=h] OI‘Mg,Q(S) }=h2
o Mg, 0(s)=h

The second step uses the inductive hypothesis. We can also use this argument if £ is a
path formula.

84 CLARKEET AL.

e h = E(hy), a state formula. Suppose M,s k= h. There is a path 7 starting with s
such that M, = h;. By Lemma 4.2 there is a corresponding path 7 in Mg starting
with 6(s). By the inductive hypothesis M, m &= h, & Mg, ns & h;. Therefore,
M,s &= E(hy) = Mg, 0(s) E E(h;). A similar argument holds in the other direction.

e h = hy, where h is a path formula and h, is a state formula. Although the lengths of 4
and h; are the same, we can imagine that & = path(h;), where path is an operator which
converts a state formula into a path formula. Now we can apply the inductive step.

e h = Xh,, a path formula. By the definition of the next time operator M, 7! = k.
Since 7 and 7 correspond, so do 7! and w/,. Therefore, by the inductive hypothesis,
Mg, L = hi,s0 Mg, |= h. A similar argument proves the implication in the other
direction.

e h = h\Uhy, a path formula. Suppose that M, n = h,Uh,. By the definition of the until
operator, there is a k such that M, 7 }= hy and forall 0 < j < k, M, 7/ }= hy. Since
and 7 correspond, so do 7/ and 7/ for any j. Therefore, by inductive hypothesis Mg,
né = hy and Mg, né = h; for all 0 < j < k. Therefore, we have Mg, mg = h. We
can use the same argument in the other direction. 0O

5. Model checking in the presence of symmetry

In this section we describe how to do model checking in the presence of symmetry. First,
we discuss how to find the set of states in a Kripke structure that are reachable from a given
set of initial states using an explicit state representation. In the explicit state case, a breadth-
first or depth-first search starting from the set of initial states is performed. Typically, two
lists, a list of reached states and a list of unexplored states are maintained. At the beginning
of the algorithm, the initial states are put on both the lists. In the exploration step, a state
is removed from the list of unexplored states and all its successors are processed. An
algorithm for exploring the state space of a Kripke structure in the presence of symmetry is
discussed in [14]. The authors introduce a function &(g), which maps a state g to the unique
state representing the orbit of that state. While exploring the state space, only the unique
representatives from the orbits are put on the list of reached and unexplored states. Figure 2
gives the pseudo-code for exploring the state space under the presence of symmetry. This
simple reachability algorithm can be extended to a full CTL model checking algorithm
by using the technique described in [5]. To construct the function £(g) it is important to
compute the orbit relation efficiently. In the next section we will discuss the computational
complexity of finding the orbit relation.

In the remainder of this section we focus on how to do symbolic model checking in
the presence of symmetries. The straightforward method of computing the quotient model
uses the BDD for the orbit relation ®(x, y) = (x € 8(y)). Given a Kripke structure M =
(S, R, L) and a symmetry group G on M with r generators gi, g2, . .., &, it is possible to
prove that the orbit relation © is the least fixpoint of the equation given below:

Y, == VvAXYx,DAz=g1yVi=8Yy -V I=gY) 3

In the next lemma we prove that the least fixpoint of the Eq. (3) is the orbit relation ©.

EXPLOITING SYMMETRY IN TEMPORAL LOGIC MODEL CHECKING 85

Reached = 0;
Unezplored = 0;
For each initial state s Do
Append £(s) to Reached,;
Append £(s) to Unexplored,
Endforloop
While Unezplored # § Do
Remove a state s from Unezplored,
For each succesor state ¢ of s
If £(q) is not in Reached
Append £(q) to Reached,
Append £(q) to Unezplored,
EndIf
Endforloop
EndWhile

Figure 2. Exploring state space in presence of symmetry.

Lemma 5.1. The least fixpoint of Eq. (3) is the orbit relation © induced by the group G
generated by g1, &2, - -, &r-

Proof: First, we prove that © is a fixpoint of the equation given below:

Y,)= =yv @)X, 2)A(z=8yYVZI=8Yy V2 =gy)))

It is obvious by the transitivity and reflexivity of the orbit relation © that
O,) C=yV@)OKIAE=gyVZ=48y -V I=28Y)

Suppose @ (x, y), then by the definition of the orbit relation there exists ¢ € G such that
x = oy. Let us assume x # y (if x = y, there is nothing to prove). This means there
exists a generator gi, k < r such thatx = oigxy. Setting z = gy, we see that ®(x, z) and
z = gxy. Since x and y are arbitrary boolean vectors we get the following inclusion:

O, Cx=yv@)OKx,2)A(z=8yYVZI=8Yy V2 =g y))

Hence @ is a fixpoint of Eq. (3).

Next, we prove that if T is any fixpoint of the Eq. (3), then ® € T. We prove that
©(x, y) = T(x, y). The definition of the orbit relation ®(x, y) implies that there exists a
o =g 8,8 | <ij <rsuchthatx =oy. Since T is a fixed point of Eq. (3), it can
be proved by induction that for all 1 <[< m, T (g - &,y,y) holds. Using this result
for | = m, we see that T(x, y) holds. Since ®(x,y) = T(x,y), we obtainthat ® < T.
Hence, ® is the least fixpoint. O

86 CLARKEET AL.

If a suitable state encoding is available, this fixpoint equation can be computed using
BDDs [3]. Once we have the orbit relation ®, we need to compute a function £: § — §,
which maps each state s to the unique representative in its orbit. If we view states as vectors
of values associated with the state variables, it is possible to choose the lexicographically
smallest state to be the unique representative of the orbit. Since ® is an equivalence relation,
these unique representatives can be computed using BDDs by the method of Lin [16].

Definition 5.1. Let B = {0, 1}and R € B” x B" be atotal relation. A function F: B” —
B" is compatible with R if it has the following properties:

e For all x € B”, we have (x, F(x)) e R,
e For every u and v in B’, if the possible mappings of u# and v are the same, i.e.,
(Vy € B)((u, y) & (v, y)) then F(u) = F(v);

Lin [16] also defines a compatible projection operator which is a compatible function
that maps x € B" to the least y € B" (with respect to some norm N) such that (x, y) e R.
Formally, the compatible projection is defined as follows:

Definition 5.2. Let R € B” x B" be a binary relation. The projection of R, denoted by
projection (R), is the function F defined as follows:

F={x.»1&xNeRANV)(x,2)eR = N() = Ny}

where the norm N (x) is defined as follows:
n .
Ny =) x2"
i

which is the number whose binary representation is the vector x.

It can be shown that projection (R) is a compatible function of R. This function can
be computed efficiently in a single bottom-up traversal of the BDD representation of the
relation R. Given the orbit relation ®, the function projection (&) maps each state to
the unique representative of its orbit. Notice that projection (®) is exactly the function &
introduced before.

Assuming that we have the BDD representation of the mapping function &, the transition
relation R of the quotient structure can be expressed as follows:

Ro(x,y) = (@) =x) A@y)(R&x, y) Aé(n) =)

The formula & (x) = x expresses the fact that x is the unique representative of its orbit.

6. Complexity of orbit calculations

The behavior of a sequential circuit or protocol is frequently determined by the values of a
set of boolean state variables x;, x», .. ., x,. For example, the behaviour of a bus arbitration

EXPLOITING SYMMETRY IN TEMPORAL LOGIC MODEL CHECKING 87

protocol may be determined by the boolean state variables which encode the command on
the bus and the identity of the master. When we extract a Kripke structure from a circuit or
protocol, we treat these state variables as atomic propositions. The resulting Kripke model
M = (S, R, L) will have the following components:

e S C B", where each state can be thought of as a truth assignment to the n state variables.
e R C S x S, where R is determined by the behavior of the circuit or protocol.
e Thelabeling function L is defined so that x; € L(s) ifand only if the ith component ofsis1.

It is often the case that the symmetry group is also given in terms of the state variables.
For example, in a two bit adder with inputs x;, x; and x3, x4, the permutation (13)(24) is
a symmetry because we can exchange the inputs without affecting the result. If we have
a permutation ¢, which acts on the set {1,2,...,n}, then o acts on vectors in B" in the
following manner:

(X1, X2, -+ 5 Xn) = Ko (1)s Xa@)s - -+ » Xa(n))

Given two vectors x and y in B" and a permutation o, it is easy to see that x 7 y implies
ox # oy. Therefore, a group G acting on the set {1, 2, ..., n} induces a permutation group
G, acting on the set B". In other words, a symmetry on the structure of a circuit induces a
symmetry on the state space of the circuit.

Definition 6.1. Let G be a group acting on the set {1, 2, ..., n}. Assume that G is repre-
sented in terms of a finite set of generators. Given two vectors x € B" and y € B", the orbit
problem asks whether there exists a permutation o € G such that y = ox.

Let G induce the permutation group G acting on B”. The orbit problem asks if x and
y are in the same orbit under the action of the group G;. First, we prove that the orbit
problem is as hard as the Graph Isomorphism problem.

Definition 6.2. Given two graphs G = (Vi, E}) and G, = (V,, E;) such that |Vi| =| Va1,
the Graph Isomorphism problem asks whether there exists a bijection f:V, — V, such
that the following condition holds

(i, DEEI & (f(), fFU) € Er
Theorem 6.1. The orbit problem is as hard as the Graph Isomorphism problem.

Proof: Given two graphs G, = (Vi, Ey) and Gy = (Va, E,) we construct a group G and
two 0 — 1 vectors x and y such that x and y are in the same orbit under the action of the
group G if and only if G; and G, are isomorphic. We assume that |V||=|Va|=n. Let
A = {a;;} and B = {b;;} be the adjacency matrices of the graph G and G, respectively.
Let x € B" be defined as follows:

Xn(i-iy4j =Gij, 1 Si<n 1<j<n

88 CLARKE ET AL.

The vector x € B" is a list of the elements of the matrix A in row order. The vector y € B
is defined in a similar fashion using the adjacency matrix B. Let (ij) be a transposition
acting on the set {1, 2, ..., n}. Intuitively, we can think of this transposition as exchanging
the vertices i and j in the graph G . This corresponds to exchanging the rows i and j and
columns i and j in the adjacency matrix and has exactly the same effect as applying the
permutation o given below to the vector x.

Oow = (i =D+ 1La(j =D+ 1D (i =D +nn(j—1D+n)
Ocol = (4, j) - ((n = Dn+i,(n—Dn+ j)

0 = OrowOcol

Each permutation acting on the set of size n =| V; | corresponds to a bijection f: V; — V,.
We assume that the vertices are labeled by integers. If the bijection corresponding to the
permutation (i) is an isomorphism between G| and G, then exchanging rows { and j and
columns i and j in the adjacency matrix A gives B. This implies that y = ox because x and
y are just encodings of the adjacency matrix A and B respectively. Similarly, if y = o x, then
the bijection corresponding to the permutation (i) is an isomorphism between the graph
G and G. Therefore, y = ox if and only if the bijection corresponding to the permutation
(i7) is an isomorphism between G, and G,. Every bijection f : V| ~ V; corresponds to
some permutation in the full symmetric group S,. Since the groups S, acting on the set
{1,2,..., n}is generated by the transpositions (12), (13), ..., and (1n) we have the result.
We just have to code all these transpositions in the context of the 0 — 1 vectors x and y. O

Example 6.1. Consider the two graphs G and G, given in the figure 3. The vectors x
and y given below encode the adjacency matrices of the graphs G and G, respectively:

x = (011 100 100)
y = (010 101 010)

The permutations are defined as follows:

Orow = (l y 4)(2, 5)(3v 6)
oea = (1,2)(4,5)(7,8)

0 = OrowOcol

Gy Gy

Figure 3. Two isomorphic graphs.

EXPLOITING SYMMETRY IN TEMPORAL LOGIC MODEL CHECKING 89

Notice that y = ox and the bijection corresponding to the permutation (1, 2) is an iso-
morphism between G and G,. The permutation Geow corresponds to exchanging rows 1
and 2.

A modified version of the orbit problem called the bounded orbit problem is defined as
follows:

Definition 6.3. Given a group G generated by r permutations gi, 2, - -, & (the permu-
tations act on the set {1, 2, . .., n}), two vectors x, y € B", and an integer k, does there exist
a permutation o obtained by at most & applications of the generators such that x = ¢ y?
Formally, ¢ is of the following form o = g, g, - . - &, m < k.

Intuitively, in the bounded orbit problem we bound how many times we can apply the
generators. Although the graph isomorphism problem is not known to be NP-hard, the
bounded orbit problem can be shown to be NP-complete. The reduction is form EXACT
COVER BY 3-SETS [10].

Definition 6.4. The EXACT COVER BY 3-SETS (X3C) is defined as follows:
INSTANCE: Set X with | X |= 3¢ and a collection C of 3-element subsets of X.

QUESTION: Does C contain an exact cover for X, i.e., a subcollection C’ € C such that
every element of X occurs in exactly one member of C”.

Theorem 6.2. The bounded orbit problem is NP-complete.

Proof: The reduction will be from the X3C problem. Consider an instance of X3C, where
we are given a specific set X with | X| =3g and a collection C of 3-element subsets of X. We
construct a group G acting on the set {1,2, ..., 6g}. Let n = 3g. With an clement x; € X
we associate the permutation (i, n), 1 <i < n. Witheach 3-element setin the collection
C we associate a permutation which is the product of the permutation corresponding to its
clements. For example, if we have the set {x;, x;, x¢} € C, then the permutation associated
with it is (i, n+i)(j, n+ j)(k, n + k). Let C, be the set of permutations corresponding
to the collection C. The group G is the group generated by the set of permutations C.
Consider two 0 — 1 vectors x and y of length 6g defined as follows: x has 1’s in first 3g
positions and 0’s in last 3¢ positions, and y has 0’s in first 3g positions and 1’s in last
3q positions. We will show that there exists a permutation o, which is the product of ¢
generators from the set Cy, such that y = ox if and only if the instance of X3C has a cover
C' for the set X.

Notice that since we are dealing with 3-element subsets and X has 3q elements we have
to use exactly g 3-element sets to cover X. Suppose there is a collection C’ of g sets such
that is covers X. Consider the permutation o which is the product of all the permutations
corresponding to the sets in the cover C'. Since C”isacover for X, the transposition (i, n + i)
for each element x; occurs in the permutation o. Hence, it is obvious that y = o x.

Suppose, on the other hand, there exists a permutation o', which is the product of less than
or equal to g generators from the set C, such that y = ox. Letus assume thato = gy --- g

90 CLARKE ET AL.

where r <gandg, eCyforl <i <r.Sincex; = 1land y,1y =1 (for1 <i < 3¢q), the
permutation ¢ has to include each transposition of the form (i, n +i) for 1 <i < 3q. Since
we need at least 3¢ transpositions of the form (i, n + i) to transform the vector x to y, we
will have to use exactly g generators. Moreover, the g generators have to be disjoint. It
follows that the collection formed by the 3-element sets corresponding to the g generators
which form o is a cover for X. So the instance of the bounded orbit problem with the set
of generators C,, 0 — 1 vectors x and y, and the integer bound ¢ has a solution if and only
if the instance of X3C has solution.

The bounded orbit problem is obviously in NP because we can guess the string of k (the
given integer) generators which generates the permutation o such that y = ox, were x and
y are the specified 0 — | vectors. O

Example 6.2. Consider the following instance of X3C with ¢ = 2. The various sets in
this instance of X3C are defined as follows:

X = {x1, x2, X3, X4, X5, X¢}

C = {{x1, x3, x5}, {x2, x4, X6}, {x1, X2, X6}}

Now we define the instance of the bounded orbit problem. With each elementx;, 1 <i <6
we associate the permutation (i, 6 + {). With the collection C we associate the following
set C, of permutations:

Co={(1,64+1)(3,6+3)(5,6+5),(2,6+2)(4,6+ 4)(6,6+ 6),
(1,6 + 1)(2,6 +2)(6,6+ 6)}

For example, the permutation (1, 6+ 1)(3, 6+ 3)(5, 6 + 5) corresponds to the set {x1, x3,
x5}. Consider the following vectors x and y in B'%.

x = (111111000000)
y = (000000111111)

Notice that {{x, x3, x5}, {x2, X4, x¢}} is a cover for x, and the permutation o which is the
product of the permutations corresponding to these sets satisfies the equation: y = ox.

At first glance, the bounded orbit problem might seem much weaker than the general
orbit problem, but given a permutation group G with an arbitrary set of generators, we can
always find a set of generators such that every permutation o € G is the product of at most
n of the new generators, where # is the size of the set on which G acts. This result follows
immediately using an algorithm described in [9]. Given a group G acting on a set of size
n and generated by g, ..., g, the paper shows how to construct a table 7 with n rows
(labeled 0 to n — 1) and n columns (labeled 1 to n), of permutations with the following
property: o € G if and only if o can be expressed as apa; - - - a,, were a; is a member of
the ith row. Using the permutations in the table T, the general orbit problem on G can be
converted into an instance of the bounded orbit problem (with the bound n).

EXPLOITING SYMMETRY IN TEMPORAL LOGIC MODEL CHECKING 91

7. Complexity of the BDD for the orbit relation

We prove lower bounds on the BDD sizes for the orbit relation of transitive groups. The
group of all permutations acting on the set [n] = {1,2,...,n}is called the full symmetric
group and is denoted by S,. The group acting on [n] which is generated by (1,2, ..., n) is
called the rotation group. Transitive groups occur frequently in practice, €.g., both the full
symmetric and the rotation group are transitive.

Definition 7.1. A group of G permutations acting on a set S is called transitive, if there
exists an element i in the set S, such that for all elements j € S there exists an element
gi.; € G that maps i into j.

As a simple consequence for all j, ke S thereisa gjx€C that maps j into k as we
can define g;; = g,-fjlg,',k. LetG;; = {g.,,€G | &) mapsiinto j}, then |G; ;| =1G1 1]
as G;; = gi1G1181,) and |G|=|S|1G1.1] as G = |J, .5 G1,; and of course all G, ; are
mutuaily disjoint.

A special case of the above situation is the following: the set S = B"™ (i.e., a system
composed of n components ecach with m state variables) and the group G of permutations

is S is induced by a group G’ of permutations acting on the set {1, ..., n} in the following
way:
GUXI s oo s Xy oy XL ey Xnm)) = (XD 1n - o X oy Xgi(m) 1o oo s X' (ny,m)

with g € G and g’ € G'. Intuitively, the group G’ tells us how to permute blocks where each
block has m variables. Ring structures, where the components are ordered in a ring and
can be rotated any number of steps, occur frequently in practice. The token ring protocol
used in the solution to the distributed mutual exclusion problem uses this topology. In
the terminology given above the symmetry group for the ring structure is induced by the
rotational group. In star or bus topologies components are unordered and can be exchanged
arbitrarily. Such situations occur, for example, in systems where components communicate
via a common bus (e.g., multiprocessor systems), or in systems with broadcast and star-like
communication structures. The symmetry group of these systems is induced by the full
symmetric group, i.e., G' = S,.

Definition 7.2. The orbit relation ® of G is the set of pairs {(s,) | t €0(s)}. The orbit
relation induced by G' is the orbit relation of group G. If § = B™ the orbit relation can
be represented by a characteristic boolean function ©: B"™ x B" — B.

Theorem 7.1. Let S = B"™. For a transitive group G acting on the set {1,2, ..., n} we
can obtain the following lower bound for the BDD representing the induced orbit relation ©:

1©] > 2K with K = min([/n],2"" — 1)

Proof: We use unprimed variables x; ; for representing the first argument of the orbit
relation and primed variables x; i for the second. For the proof we only consider the first

92 CLARKE ET AL.

variable of each component. First we determine a partition (L, R) of the variables—we
go through all the variables in the given variable ordering, until we have K unprimed
variables x; ; or K primed variables x; | in L and put the rest of the variables in R. Notice
that all variables in L precede all the varlables in R with respect to the variable ordering.
Without loss of generality, we assume that L contains K unprimed variables with indices
I ={i,...,ig}and less than K primed variables x] , with indices j € J.

With each pair x; 1, x , i €1, j € J we associate a set of permutations G; ;, i.e., the
set of group elements of G that map the ith component into the jth component. Given a
permutation g € G if there exists i € [and j € J such that g maps the ith component to the
jth component, then g € G, ;. Since | U, ¢/, ,]I < [INJ|G11] < K?|G1]| < |G|,
we can ﬁnd a g € G, such that all primed variables xg(fori € I are in R (otherwise G =
Ui e 1.jes Gij). We construct an a531gnment in the followmg way: fori; € I, the variables

(Xi;20 -+ Xi;.m) and {x! i) g(l).) are instantiated with the binary representation
of the number #jforl < j < K Note that since K has to be representable in m — 1
bits, we need that K < 2”1 — 1. The variables x; ,j and x/ ¢, are instantiated with O

fori ¢ I. Let ® be the BDD obtained from ® by the above instantiation. Instantiating
variables with constant values in a BDD does not increase its size, so |®’| < |®|. The BDD
®' only depends on the variables x; ; and x;(i)‘l for i € I and by our construction the only
valid assignments are those, where the values of x; ; and x;(i)‘l agree. In other words, @' is
the BDD for the following proposition:

. !
/\ Xi L = X

iel

Since all variable x; ; precede all variables x’ the BDD @’ has atleast 2X nodes. O

goi, 1’

The above proof was originally obtained for the special cases of rotation and fully sym-
metric and subsequently generalized to the case of transitive groups of permutations by
W. Biittner. It should be noted that in the above proof we instantiate most of the variables
to get a BDD of exponential size. Therefore, we expect that the actual size is much worse
than the above proved lower bound. For full symmetric groups G’ = §,;, K can be proved
to be the minimum of » and 2™. The BDD of the orbit relation induced by a transitive group
on the components is exponential in the minimum of the number of components and the
number of states in one component. Consequently, exploiting these types of symmetries is
symbolic model checking is restricted to examples with a small number of components or
where each component has only a few states. An approach which avoids the computation
of the orbit relation is described in Section 8.

8. Multiple representatives

Since the BDD for the orbit relation is large for some groups which occur frequently in
practice, it is computationally expensive to use the single representative theory described
earlier. For example, Lin’s algorithm to extract an unique representative from each orbit
would need the BDD for the orbit relation. Therefore, we now develop a scheme to use

EXPLOITING SYMMETRY IN TEMPORAL LOGIC MODEL CHECKING 93

multiple representatives where the BDDs remain more manageable because the orbitrelation
for the symmetry group is never explicitly constructed.

Let Rep be the set of representative. Let £ € Sx Rep be the representative relation.
We are assuming the most general setting where there can be multiple representatives from
one orbit and a state can be related by & to more than one representative from its orbits.
All the basic modalities of CTL (EFp, EGp, and E(qU p)) can be expressed as fix-points
using the modality EX. The fix-point equations are described below and the correctness of
the equations is demonstrated in [5].

EFp = nY - (p v EXY)
EGp =vY - (p A EXY)
E(gUp) = nY - (p Vv (g NEXY))

It is clear from the above equations that it is enough to give the semantics for EX f. Let Img
be the forward image under the representative relation, and ImE1 be the pre-image under
the transition relation of the original structure M = (S, R, L). The set of representatives
satisfying EX f is Img (ImRT] (K)), where K is the set of representatives satisfying the state
formula 7. Let us consider an example. Consider the formula E Fp such that p is an atomic
proposition and G is an invariance group for p. Let Ko € Rep be the set of representatives
such that p labels these representatives. Let K; be the set of representatives at the ith
iteration. The equations given below describe the set of representatives which satisfy the
formula EFp.

Ko = {r|r €Repand p € L(r)}
Kiv1 = Img (Imz' (K))) fori > 0

If K is a set of representatives, then Im; (Im;l (K;)) again is a set of representatives. There-
fore, in this new model checking algorithm we always maintain only subsets of represen-
tatives which can result in substantial savings. This section proves the correctness of this
model checking procedure by placing some restrictions on the representative relation .
These conditions are quite general and we believe that they hold in most practical cases.
There is an implicit assumption that for each orbit #(s) of S under G there exists r € Rep
such that §(s) = 6(r), i.e., every orbit is represented.

Definition 8.1. Let G be a symmetry group for a Kripke structure M = (S,R,L). Let
£ C S x Rep be the representative relation such that (s, r) € § implies that @ (s) = O(r).
Let C € G be a subset of permutations. The set C is called complete for & if and only
if

e The condition (s, r) € £ implies that 3(c € C) such thatos =r.

e For all r e Rep and o € C we have that (or,r) €§.

The intuition for this definition will become clear when we prove Lemma 8.1. It allows
us to translate a path in the quotient model Mg (o a corresponding path in the model M;
which is defined below.

94 CLARKEET AL.

Definition 8.2. Given a Kripke structure M = (S, R, L) and a representative relation
& € S x Rep define M¢ = (Rep, R, L;) as follows:

Ry = {(r1,r2) | A €8)((s,) €& A (s, r2) € R)}
Le(r) = L(r)

Notice that Img, = Img o ImE_] and Im‘;._1 = Im o ImRTl. Therefore, the pre-image of
a set of representatives K in the structure M; is Img (Im;l (K)). Hence, proving that the
model checking procedure described at the beginning of the section is correct is equivalent
to proving that M; and M satisfy the same invariant CTL* formulas. Since we have already
proved the equivalence between M and the quotient model Mg, it suffices to prove the
equivalence between M and M.

Lemma 8.1. If& has a complete set of permutations C C G, then the corresponding path
theorem holds for M¢ and M.

Proof: Letmy = (rp, ry,...) be a path in M;. From the definitions it is easy to see that
(r1,r2) € Re = (©(r1), ©(r2)) € Rg, s0 mg = (O(rg), O(ry), .. .) is a path in Mg.

Now we handle the other direction. Let ms = (O(sp), ©(s1), . ..) be a path in Mg. Let
ro be an arbitrary representative from the orbit ®(sp). Since G is a symmetry group for M
and (O(sp), ©(s))) € Rg, there exists 1; € ©(s)) such that (rg, 1) € R. Let r; € Rep such
that (#;,r1) € &. Since C is a complete set for &, there exists o € C such that ot; = ;.
Since G is asymmetry group, (org, ot;) € R. Since C is acomplete set for &, (orp, rg) € &.
By definition of R¢, (ro, 71) € R¢. Continuing the argument we can show that for every
natural number i there exists #; € Rep such that ©(r;) = O(s;) and (r;, r;11) € Rz. The
path m; = (rg, r1, .. .) is a corresponding path in M. a

Theorem 8.1. Let M = (S, R, L) be a Kripke Structure, G be a symmetry group of M,
and h be a CTL* formula. Let§ € S x Rep be a representative relation and C C G be the
corresponding complete set. If G is an invariance group for all the atomic propositions p
occurring in h, then

Mg,0(s) Eh < M, 0(s) =h 4
where Mg is the quotient structure corresponding to M and M is defined above.

Proof: The proof of theorem is very similar to that of Lemma 4.3 using the lemma proved
above. O

Theorem 8.2. Let G be a permutation group acting on a finite set S. Let H be a sub-group
of G. Let the set of representatives Rep C S be the union of some orbits of S under H.
Given the conditions above these exists a representative relation &€ and a corresponding
complete set C.

EXPLOITING SYMMETRY IN TEMPORAL LOGIC MODEL CHECKING 95

Proof: LetG = H + Hy + - -- + Hy, be the complete right traversal of H in G (each
; is in a different right coset of G\ H). Define C = {e, ¥, w,_l, R 1/ w,"} (e is the
identity permutation). We define the representative relation as follows: (s, r) €& if and
only if there exists 0 € C, r € Rep, and os = r. The first condition for C to be complete
for £ follows from the definition. We now prove that the second condition holds. Consider
or for o € C. Since ¢~! € C, we have that (or, r) €. Hence, C is a complete set for &,
but we have to prove a consistency condition, i.e., for every s € S there exists r € Rep such
that (s, r) € £ and ©(s) = O(r). The condition states that every state is related to some
representative in its orbit.

The way we have defined £ means that proving consistency is equivalent to proving that
for all 5 € S there exists a o € C such that o5 € Rep. Notice that since C € G, forallo € C
the states o s and s are in the same orbit of S under G. Let ©(s) be the orbit of s € § under
G. Since H is asub-group of G, the orbits of S under H are arefinement of orbits of § under
G. Let Oy C ©(s) be an orbit of S under H such that 8y < Rep. Let r € 8y be an arbitrary
representative. Since r and s belong to the same orbit of S under G, there exists o € G such
that os = r. Using the right traversal of H in G we can write o = 0¥, were 07 € H and
WeC.Sinceos =r,Ys = a]_lr. Since al‘l eH, oflr € 0. Therefore s € Rep. 0O

The theorem given above assumes that Rep is the union of some orbits of S under H.
Therefore, if the orbits of H are large, then the set of representatives could be large. In
practice, Rep is provided and then the group H is determined. Suppose the state set S is
given by the assignment to n boolean state variables xi, . .., x,. Let Rep be those states such
that x; = 1. If G is the symmetry group of the underlying structure, then G (the subgroup
of G which fixes the index 1) serves the purpose of H in the theorem given above. This fact
will be shown later. Hence, in some ways the choice of H is fixed by the choice of Rep.

A permutation o acting on the set S is said to stabilize a set Y < S iff the following
condition holds:

Y(yeY)o(y)eY)

Notice that the condition given above is equivalent to the condition o (Y) = Y. Let G bea
permutation group acting on the set S. Given Y C S, the subgroup Gy of G is defined as
follows:

Gy ={ol(@eG)A(a(Y)=TY)}
Now we prove a useful generalization of the theorem given above.

Theorem 8.3. Let M = (S, R, L) be a Kripke structure and G be its symmetry group.
Let Rep C S be the set of representatives. Let H be a subgroup of G such that for all
o € Ho (Rep) = Rep (notice that that this is another way of stating that Rep is the union of
some orbits of S under H), i.e., H stabilizes Rep. Let C C G be a set which satisfies the
Sfollowing conditions

96 CLARKEET AL.

1. For each coset of G\ H we have a permutation v € C which belongs to that coset.
2. The set C is inverse closed, i.e., ¥ € C implies that ¥~ € C.

Let the representative relation & be defined as follows: (s, r) € £ iff s € S, r € Rep and there
exists a ¥ € C such that s = r. Then & is valid representative relation and C is the
corresponding complete set.

Proof: It is exactly same as the Proof of Theorem 8.2. O

In the theorem given below S is the set of states given by assignments to the boolean
variables x;, x3, ..., x,. Each state is a 0 — 1 vector of size n.

Theorem 8.4. Ler the set of representatives Rep be given by the propositional formula
p(x1,x2, ..., x,), l.e.,astates = (y1, ..., yn)isarepresentativeiff p(y1, ..., y») = 1. Let
G be the symmetry group for the Kripke structure M = (S, R, L). Given these assumptions
there exists a representative relation & C S x Rep and a corresponding complete set C.

Proof: Let G, be the invariance group of the propositional formula p. Let H = G, NG.
We prove that if s € S is a representative (this means that p(s) = 1), then ®g(s) C
Rep(®y(s) is the orbit of s under H). Since every permutation o € H is an invariant for
p, p(os) = lforalloc € H. Hence ®4(S) C Rep. Therefore, Rep is the union of orbits of
H. Now we can use Theorem 8.2 to get a representative relation £ and a complete set C. O

We give examples illustrating the utility of the result.

Example 8.1. Let x|, x2, ..., x, be the list of boolean state variables. Let G be a per-
mutation group acting on the set {1, 2, ..., n}. G induces a permutation group B(G) on
the set {0, 1}", but we will work with G. Quite frequently representatives are given by an
assignment to variables whose index is in a certain set Y C {1,2,...,n}. For example,
Y = {1,2}and x; = 0, x, = | might describe the representatives (in this case the proposi-
tion x; A x3 describes the representatives). Let A be the assignment to the variables x; such
that i € Y. The assignment .4 defines the set of representatives Rep. We use A; to denote
the value of the variable x; (i € Y) inthe assignment. LetY; = {i| A= 1}and Yy =Y —Y,.
In this case H (the invariance group of the proposition describing the representatives) is
(Gy,)y,. Intuitively, all variables which are assigned the same value by the assignment 4
can be permuted freely. Now we can use Theorem 8.4 to get a representative relation & and
a corresponding complete set C.

Example 8.2. 'We give an even more concrete example. Take the cache-coherence protocol

with n processes. Each process has & local variables. The variables xg_i)41, .- ., Xk—1)+4
are the local variables corresponding to process i. Let xy;_1)41 correspond to the variable
which indicates whether process i is the master, i.e., xg;_1)+1 = | means process i is the

master. Assume that we can switch the context of processes i and j, which corresponds to
the permutation.

oij = k(i = D)+ 1LKG = 1D+ 1) - k(G — D +k, k(G — 1) + k)

EXPLOITING SYMMETRY IN TEMPORAL LOGIC MODEL CHECKING 97

The symmetry group G of the Kripke structure M is generated by 0y; (2 < i < n). Suppose
we choose the set of representatives as the states where process 1 is the master, i.e., x; = 1.
The invariance group H of the proposition x; is G', where G!' is the subgroup of G
which fixes in index 1. Two permutations o and ¢ are in the same coset of G\G 1 iff
o1(1) = 0,(1). Notice that for k # j 0,; and oy lie in different coset of G\G! because
they map 1 to different positions. Therefore, the complete right traversal of G "in G is
given by the following equation.

G=G +Glop+--+Gloy,

Using Theorem 8.3 we get a representative relation £ and the complete set {e,o12,...,01)
(notice that in this case o;l = 01;)-

The next lemma will be used to prove the correctness of our experiments performed on a
simple version of the Futurebus + cache-coherence protocol. The experimental results are
given in the next section. First, we extend the definition of the orbit of a state to a orbit of
a set of states. Orbitofaset Y C {1,2,...,n}is defined as follows:

) ={r'"|3(c €G)(a(Y) ="}
The group G acts on the set {1,2,...,n}.

Lemma8.2. LetG,Y, Yo, Y be as in Example 8.1. Let C C G be a set which is inverse
closed and such that for every pair of sets Y; € ©(Yp) and Y| € ©(Y)) there existsac € C
such that o (Yy) = Yy and o (Yy) = Y|. Let§ C S X Rep be defined as follows: (s,r) € &
iff there exist o € C such that o (s) = r. In this case & is a valid representative function and
C is the corresponding complete set.

Proof: Let H = (Gy,)y, be as defined in Example 8.1. Two permutations o and o; of
G are in the same coset of H iff 0,(Yy) = 02(¥p) and o1 (Y;) = 02(Y)). Therefore, C has a
permutation from every coset of G\ H (the argument is very similar to the one given in the
example before). Applying Theorem 8.2 we get the result. O

9. Empirical results

To test our ideas we have chosen a simple cache coherence protocol for a single-bus multi-
processor system based on the Futurebus + IEEE standard [13]. The verification of a more
detailed version of the protocol with multiple buses is described in [6]. The system has a bus
over which the processors and the global memory communicate. Each processor contains
a local cache which consists of a fixed number of cache lines (see figure 4).

In each bus cycle the bus arbiter chooses one processor to be the master. The master
processor selects a cache line address and a command it wants to put on the bus. The other
processors and the memory respond to the bus command and change their local context.

The reaction of the components is described in the protocol standard, which enforces
the coherence of the cache lines among the different processors, i.e., only valid data values

98 CLARKE ET AL.

... Bus
' P1 I P2 I g
' : : : Mem
Do cli,1 : : ci2,1 : mem 1 :
D cat2 | cd22 | mem 2 :)
cl1,K : E ct2,K 5 mem K

Figure 4. System structure.

are read by the processors and no writes are lost. For the verification task the protocol is
formalized, and cache coherence and other important system properties are expressed in
temporal logic.

The behavior of the processors, the bus and the memory can be described by finite state
machines. The state of the processor P; is a combination of the states of each cache line in
the processor cache and the state of the bus interface. The global bus is represented by the
command on the bus, the active cache line address and other bus control signals, e.g., for
bus snooping and arbitration.

There are two obvious symmetries in the system. First, processors are symmetric, i.e.,
we can exchange the context of any two processors in the system. Second, cache lines
are symmetric, i.e., any two cache lines can be exchanged simultaneously in all processors
and the memory. To maintain consistency, along with applying the symmetries mentioned
above all the cache lines and processor addresses in the system must be renamed. Both
symmetries are indicated in figure 4 by arrows.

The complete system is the synchronous composition of all the components and is de-
scribed by a Kripke structure M = (S, R, L). Since domains can be encoded in binary, a
state is just a binary vector, and the transition relation R can be represented by a BDD. We
experimented with two variable ordering which we call “concatenation” and “interleaving”.
The concatenation ordering is simply P; < P, < -.. < Py. The variables of processor i
are ordered before the variables of processor i + 1. In the interleaved ordering the processor
variables are interleaved, i.e., p1; < p21 < -+ < pya < p22,...,wWhere pi1, ..., pix
are the state variables of processor P;. The variables of the bus and the memory are ordered
before all other variables in both orderings. In both orderings, each next state variable is
placed immediately after the corresponding state variable.

Throughout this discussion we use N to denote the total number of processors and M
to denote the total number of cache lines. Let m;; be the permutation which exchanges
the context of processor 1 with processor j. Let i1 be the permutation which exchanges
cache line 1 with cache line k. The symmetry group which uses processor (cache) symmetry
alone is generated by the set of permutations IT = {m; || < j S N} ¥V ={yu |1 =k =
M}). The symmetry group which uses processor and cache symmetry is generated by the

EXPLOITING SYMMETRY IN TEMPORAL LOGIC MODEL CHECKING 99

permutations ITU W. When we used only processor (cache) symmetry, we used as the set
of representatives the states where processor 1 is the master (cache line 1 is active). When
we used both symmetries we used the set of states where processor 1 is the master and
cache line 1 is active as the set of representatives. The representative relation for all the
three cases is given below:

1. In the case of processor symmetry (s, r) € £, iff there exists 7y (1 < j < N) such that

mi(s)=r.
2. In the case of cache symmetry (s, r) € &, iff there exists ¥, (1 < k < M) such that
7'[1]'(_5‘) =7r.

|88

In the case when both symmetries are used (s, 7) € &, iff thereexists 1 < j < N and
1 < k < M such that Y, (m;(s)) =r.

We will prove that the set C = {1, oy |k < M A j < N}iscomplete for the representa-
tive relation &,,.. The cases when we use only cache and processor symmetry are very similar
to Example 2 in the section on multiple representatives. Let master; be the index of the vari-
able which tells that processor / is the master, i.e., Xmaster; = | means processor { is that mas-
ter. Let active, be the index which indicates that cache line j is active. Using the notation of
Lemma 8.2 we have that ¥; = {master,, active, }. The orbit of ¥; is the set of pairs of indices
of the form {master;, active;}. Consider a typical element Y" = {master;, activey} in ©(¥}).
Tt is clear that v, (71 ;(Y1)) = Y'. Therefore, by Lemma 8.2 C is a complete set for & ..
Consider the following properties which can be represented by a propositional formula:

l. Property p is that for all cache lines it is true that if one processor is in EM (exclusive
modified) state, then all other processors are in / (invalid) state.

2. Property g is that for all cache lines it is valid that if memory has valid data, then either
all processors are in SU (shared unmodified) or / (invalid) state or one processor is in
EU (exclusive unmodified) state.

3. Property m asserts that all cache lines in memory are valid.

4. Property c says that the command on the bus is either read-modified or invalidate.

We checked that the initial state doesn’t belong to EF— p and EF—g. These properties could
be checked by doing reachability, but in order to test our theory we check them by computing
EF-p because this involves finding preimages. We also tested that the initial state satisfies
the property AG(m — A(mU c)) which asserts that if memory has valid data then it remains
valid until an appropriate command is issued. This property turned out be false because
there are reachable states where m is true and there exists a path where the command is never
read-modified or invalidate. We also tested that from all the reachable states it is possible to
get to a state where memory has valid data for all the cache lines, i.e., we checked that initial
state satisfies the property AG(EFc). The BDD sizes for the property EF—g were the largest.
We ran the experiments with various system configurations. The results are summarized
below. The BDD sizes in the case of the interleaved ordering were much smaller than
the BDD sizes in the case of the concatenation ordering. Therefore, in the table given
below we have only included the data for the interleaved ordering. The results are listed
in Table 1. Each row jPkC in the table gives the results for a configuration of j processors

100 CLARKEET AL.

Tuble 1. Empirical results.

Trans. Symmetry

relation No symmetry Processors Cache lines Combination
System BDD BDD Time BDD Time BDD Time BDD Time
config. nodes nodes sec. nodes sec. nodes Sec. nodes sec.
2P2C 631 920 2 668 1 518 1 368 I
4P2C 8,534 6,048 il 2,573 4 2,855 1,309 3
2P4C 1,519 6,166 36 3,917 18 1,458 1,178 6
4PAC 22,154 42,595 231 14,626 62 6,831 47 4,266 27
2P8C 3,295 17,446 756 10,837 407 2,618 152 2,338 98
4P8C 49,394 121,475 5,911 40,466 1,400 11,551 678 8,986 424
2P12C 5,071 28,726 5,136 17,757 2,884 3,778 841 3,498 577
4P12C 76,686 - — - — 16,271 3,808 13,706 2,300

and k cache lines. The first column gives the number of BDD nodes for representing
the transition relation. The columns after that gives the results for model checking of the
properties described above. First, no symmetry was used. Next, we give the results for
symmetry between processors and symmetry between cache lines. In the last case, we used
the combination of both symmetries. In each case the size of the largest intermediate BDD
(number of BDD nodes) encountered while checking the four temporal properties and the
cpu time used are listed. All experiments were run on a Sun Sparc10 workstation and the
size of the largest BDD gives a tight bound for the maximal memory usage.

Exploiting the symmetry between processors or cache lines reduces the BDD size by a
factor that is linear in the number of processes or cache lines. The combination of these two
symmetries reduces the size of the largest BDD by the product of the number of processors
and cache lines. This is due to the fact that the two symmetries are independent. So by
exploiting symmetry the memory usage is reduced considerably, e.g., by a factor of 13.5in
the case of 4 processors and 8 cache lines. The cpu times are not reduced by the same factor.
For exploiting the symmetry we need additional time for the mapping of states onto the
representatives after each pre-image step in the model checking procedure. In the future,
we hope to improve the efficiency of the mapping computation.

10. Bisimulation experiments

A relation B C S x S is called a bisimulation relation for a Kripke structure M = (S, R, L)
iff (s, s;) € B implies that:

e for all s such that (s, s") € R there exists a s} such that (s, s;) € R and (s',5]) € B

and an equivalent condition holds for s;.

EXPLOITING SYMMETRY IN TEMPORAL LOGIC MODEL CHECKING 101

Given a symmetry group G for the Kripke structure M = (S, R, L) the orbit relation
induced by G is a bisimulation relation. A natural question is, why we don’t use bisimulation
minimization algorithms to obtain a quotient structure?

Bisimulation minimization algorithms require that a transition graph must be constructed
(partially in “on-the-fly” algorithms), which is then minimized using the fixpoint character-
ization of bisimulation. In contrast symmetry can be already used during the construction of
the transition graph (see Algorithm 2), and therefore even infinite systems can be handled,
if the quotient structure is finite.

The orbit relation corresponding to a symmetry group is not the largest bisimulation,
i.e., two orbits might be bisimular and will be merged by the coarsest bisimulation. So the
quotient structure obtained by symmetry has more states than the one obtained using bisim-
ulation minimization. However when using BDDs the number of states is not the crucial pa-
rameter, but the “structure” of the state space is. For example, using multiple representatives
we increased the number of representatives, but got much better performance when working
with BDDs. Similarly, our experiments described below indicate that we get better reduc-
tions using symmetry (with multiple representatives) instead of bisimulation minimization.

Let R be the transition relation of a Kripke structure and E an equivalence relation on
the set of states. By is the largest bisimulation contained in E and can be computed by the
following fixpoint computation:

Bo(p,q) == E(p,q)
repeat
Biyi(p,q):=Vp : (R(p,p)— 39" : (R(q,q") A Bi(p'. g A
Yq': (R(q,q") — 3p": (R(p, p") A Bi(p',q")))
until B[== BH_]
BE = B,‘

When implementing such an iterative scheme using BDDs the variable ordering is very
important. There are two variable orderings to consider:

e The variable ordering of the p variables (similarly g variables). This ordering was the
interleaved ordering defined in Section 8.
e The variable ordering of g variables with respect to the p variables.

We performed our experiments with three different orderings between p and g: concate-
nated, i.e., all p variables precede all g variables; interleaved, i.e., po, qo, P1, 41, - . -; and
reordered when we used dynamic variable reordering [18, 8] during the iteration.! In Table 2
the column bisim order denotes the used order. Experiments with the interleaved ordering
always behaved much worse with respect to time and space requirements than the concate-
nated ordering. Therefore, we have only included the data for the concatenated ordering
and reordering in the table.

Results for various configurations of the cache-coherence protocol are listed in the fol-
lowing table. The computations were aborted if a specified time bound was exceeded. The
column inv denotes the set used for E. The symbol none means that E = true and inv
means that two states are in E iff they agree on the property conflict, which is true if a cache

102 CLARKEET AL.

Tuble 2. Bisimulation results,

Reach Bisim. Time

Example Inv (sec.) order (sec.) Nodes
2p2c inv no c 54 935
2p2c inv 0.5 c 1.2 506
2p2c inv 0.6 r 35 405
2p2c none no c 0.9 180
2p2c none 0.6 c 1.1 506
2p2c none 0.6 T 35 405
2p4c inv no c —— —
2pdc inv I.4 c 7.7 1986
2pdc inv 1.5 r 21.8 1203
2p4c none no c 4.0 344
2pdc none L5 c 7.8 1986
2pdc none 1.5 T 21.9 1203
4p2c inv no c — —
4p2c inv 22 c — —
4p2c inv 2.0 r — —
4p2c none no c 10.6 528
4p2c none 2.1 c 10.9 1904
4p2c none 2.1 T 40.0 1484

line exists, for which the caches of two different processors are in conflict, e.g., both are
in “exclusive-modified” states. Notice that the property conflict is basically the property
—p where p is defined in Section 8. We experimented with computing the reachable states
in advance and performing bisimulation minimization only for the reachable states. For
these experiments column reach gives the time for reachability computation. If reachability
computation was not done, there is a no in that column. The column time gives the time
for the bisimulation iteration (without reachability) and nodes the number of BDD nodes
for the BDD for the relation Bg. For all larger configurations, like 4p4c, not listed in the
table the time bound was always exceeded.

In summary, we can see from the experiments that in this example bisimulation minimiza-
tion is more complex than performing model checking using multiple representatives. Using
symmetry we showed that model checking can be made more efficient. So we conclude
that in our class of applications exploiting symmetry is superior to performing bisimulation
minimization.

11. Directions for future research

There are a number of directions for future research. Perhaps the most interesting (and
difficult) problem is to determine the exact complexity of the orbit computation. This

EXPLOITING SYMMETRY IN TEMPORAL LOGIC MODEL CHECKING 103

problem seems fundamental with many applications other than verification. It may be
possible to show that the problem has exactly the same complexity as the graph isomorphism
problem or even that it is NP-complete.

It would also be nice to have tight lower bounds on the size of the BDDs needed for the
orbit relation for symmetry groups occurring in practice. This type of information would be
useful in determining if it is feasible to construct the quotient model directly using the orbit
relation or whether it is necessary to develop special techniques (like the approximation
procedure in Section 8) for mapping states onto representatives.

An automatic procedure for identifying symmetries in circuits would definitely be useful.
Techniques based on the Walsh transform have been tried for this purpose in the past [12].
However, we suspect that this will always be a hard problem and that some information
from the designer of the circuit will usually be required.

We also intend to try other hardware examples with more complicated topologies in
addition to cache coherency protocols.

Acknowledgments

We would like to thank David Long and Ken McMillan for their help in writing this paper.
We would also like to thank Manish Pandey for giving us many helpful comments.

Note

. We used window and sifting techniques in the order algorithms.

References

|. M. Browne, E. Clarke, and O. Grumberg, “Characterizing finite Kripke structures in propositional temporal
logic,” Theoretical Comput. Sci., Vol. 59, pp. 115131, 1988.

2. R.E. Bryant, “Graph-based algorithms for boolean function manipulation,” I[EEE Trans. Comput., Vol. C-35,
No. 8, 1986.

3. J.R. Burch, EM. Clarke, K.L. McMillan, D.L. Dill, and J. Hwang, “Symbolic model checking: 10*" states
and beyond,” in Proc. 5th Ann. Symp. on Logic in Comput. Sci., IEEE Comp. Soc. Press, June 1990.

4. L. Claesen (Ed.), Proc. 11th Int. Symp. on Comput. Hardware Description Lang. and their Applications,
North-Holland, Apr. 1993.

5. E.M. Clarke, E.A. Emerson, and A P. Sistla, “Automatic verification of finite-state concurrent systems using
temporal logic specifications,” ACM Trans. Prog. Lang. Syst., Vol. 8, No. 2, pp. 244-263, 1986.

6. E.M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Long, K.L.. McMillan, and L.A. Ness, “Verification of the
Futurebus + cache coherence protocol,” to appear in Proc. 11th Int. Symp. on Comput. Hardware Description
Lang, and their Applications, Apr. 1993.

7. E.A. Emerson and A.P. Sistla, “Symmetry and model checking,” in Proc. Fifth Workshop on Comput.-Aided
Verification, C. Courcabetis (Ed.), June 1993,

8. E. Felt, G. York, R. Brayton, and A.S. Vincentelli, “Dynamic variable reordering for bdd minimiation,” in
Proc. EuroDAC, pp. 130-135, Sept. 1993.

9. M. Furst, J. Hoperoft, and E. Luks, “Polynomial-time algorithms for permutations groups,” in Proc. 21st Ann.
Symp. on Found. of Comput. Sci., 1980.

10. M. Garey and D. Johnson, Computers and Intractibility, W.H. Freeman and Company, 1979.

104 CLARKEET AL.

1.

12.
13.

P. Huber, A. Jensen, L. Jepsen, and K. Jensen, “Towards reachability trees for high-level Petri nets,” in
Advances on Petri Nets, G. Rozenberg (Ed.), pp. 215-233, 1984.

S.L. Hurst, D.M. Miller, and J.C. Muzio, Special Techniques in Digital Logic, Academic Press, Inc., 1985,
IEEE Computer Society, /EEE Standard for Futurebus +—Logical Protocol Specification, Mar. 1992. [EEE
Standard 896.1-1991.

- C. Ip and D. Dill, “Better verification through symmetry,” to appear in Proc. 11th Int. Symp. on Compuct.

Hardware Description Lang. and their Applications, Apr. 1993.

- R.P. Kurshan, “Testing containment of w-regular languages,” Technical Report 1121-861010-33-TM, Bell

Laboratories, 1986.

. B. Lin and A.R. Newton, “Efficient symbolic manipulation of equivalence relations and classes,” in Proc.

1991 Int. Workshop on Format Methods in VLSI Design, Jan. 1991.

- K.L. McMillan and J. Schwalbe, “Formal verification of the Gigamax cache consistency protocol,” in Shared

Memory Multiprocessing, N. Suzuki (Ed.), MIT Press, 1992.

. R. Rudell, “Dynamic variable reordering for ordered binary decision diagrams,” in Proc. IEEE ICCAD, pp.

42-47, Nov. 1993,

. P. Starke, “Reachability analysis of petri nets using symmetries,” Syst. Anal. Model. Simul., Vol. 8, Nos. 4/5,

pp. 293-303, 1991,

