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Abstract. In this paper, we propose Partition min-Hash (PmH), a novel hashing
scheme for discovering partial duplicate images from a large database. Unlike
the standard min-Hash algorithm that assumes a bag of words image representa-
tion, our approach utilizes the fact that duplicate regions among images are often
localized. By theoretical analysis, simulation, and empirical study, we show that
PmH outperforms standard min-Hash in terms of precision and recall, while being
orders of magnitude faster. When combined with the start-of-the-art Geometric
min-Hash algorithm, our approach speeds up hashing by 10 times without losing
precision or recall. When given a fixed time budget, our method achieves much
higher recall than the state-of-the-art.
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1 Introduction

In this paper, we introduce a new method for partial duplicate image discovery in a
large set of images. The goal of partial duplicate image discovery is to find groups
of images in a large dataset that contain the same object, which may not necessarily
occupy the entire image. Figure 1 shows examples of such groups of partial duplicate
images. Partial duplicate image discovery differs from partial duplicate image retrieval
in that there is no particular query image, but instead searches for all groups of duplicate
images from the dataset. Such a task is useful for identifying popular images on the
web so that images can be ranked by their importance, for grouping similar images
returned by a web search so that users can navigate the returned results more easily and
intuitively, or for unsupervised discovery of objects.

Min-hash is a standard hashing scheme for discovering near-duplicate text docu-
ments or web pages [1]. Recently min-hash and its variants have been successfully
applied to discovering near duplicate images [2, 3], image clustering, image retrieval
and object discovery [4]. In the min-hash algorithm, a hash function is applied to all
visual words in an image ignoring the location of visual words, and the visual word
with minimum hash value is selected as a global descriptor of the given image.

Unlike text documents which are usually represented by bag of words, images are
strongly characterized by their 2D structure—objects are often spatially localized in the
image and there exist strong geometric constraints among the visual words in an object.
? This work was done during an internship at Microsoft Research Silicon Valley.
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Fig. 1. Examples of partial duplicate images. The duplicate region occupies a small portion of
each image.

Figure 1 shows some examples where the objects, and therefore the duplicate regions,
are localized in the images. However, standard min-hash treats all visual words inde-
pendently. A straightforward application of min-Hash to images ignores both locality
and geometric constraints.

Geometric min-hash (GmH) [4] improves upon standard min-hash by considering
the dependency among visual words. It first computes a min-hash value in a way similar
to standard min-hash. The rest of the hash values in a sketch are then chosen only within
a certain proximity of the first visual word. However, the locality property is still ignored
in Geometric min-hash (GmH) when computing the first min-hash. If the first min-hash
does not repeat between two matched images, the containing sketch is not repeatable
and becomes useless.

Our ultimate goal is to detect partial-duplicate images from a web scale image
database, where both precision/recall and computational cost are critical for scalability.
In this paper, we aim to exploit locality and geometric constraints to improve preci-
sion/recall and to reduce computational cost. We propose Partition min-Hash (PmH), a
novel hashing scheme to exploit locality, i.e. the fact that duplicate regions are usually
localized in an image. In PmH, an image is first divided into overlapping partitions.
Hashing is then applied independently to the visual words within each partition to com-
pute a min-hash value.

Since the duplicate regions are localized, it is likely that one of the overlapping par-
tition contains the common region among partial-duplicate images. By hashing within
the partition instead of over all of the image, the min-hash is more repeatable among
partial-duplicate images. By theoretical analysis, simulation, and experiments on real
images, we show that PmH not only outperforms standard min-Hash in both precision
and recall, but is also more than ten times faster for hashing, and more than two times
faster overall including image preprocessing (at 1000 sketches/image). We also show
that, when alloted the same amount of time, the proposed method achieves much higher
recall than previous methods.

Partition min-hash and geometric min-hash can be used in conjunction by first par-
titioning images and then applying GmH to each partition. This improves the preci-
sion/recall of GmH, while speeding-up hashing by an order of magnitude.

To further utilize geometric constraints among visual words, we augment PmH by
encoding the geometric structure in the sketches. Specifically, the geometric relation-
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ship among visual words in a sketch is quantized into an ID. This ID is then concate-
nated to the sketch to form the final representation of the image region.

1.1 Related Work

Related work to large scale partial duplicate image discovery is image retrieval, and
there are two popular themes. One theme represents an image as a bag of visual words,
and then applies approaches from the text domain for efficient image indexing and
retrieval [5–8]. Another theme uses hashing schemes to efficiently find similar images
[3, 9–12].

Naive application of image retrieval methods to partial duplicate image discovery
can be done by using every image in the set as query images. Such method has compu-
tational complexity of the retrieval method multiplied by the number of images, which
would become prohibitive as the computational complexity of the retrieval method is
more than O(1). Hashing based methods are more suitable for partial duplicate image
discovery, because all images can be hashed into a hash table and hash collisions can
be retrieved as similar images, which can then be further expanded into more complete
image clusters by image retrieval [4].

In this paper, we focus on designing efficient hashing schemes for scalable partial
duplicate image discovery. Like previous works, we represent an image as a set of visual
words [5], which are obtained by quantizing local SIFT feature descriptors [13, 14].
Min-hash [1] and its variants can then be applied to finding similar sets and therefore
similar images [3, 4]. In particular, we are inspired by geometric min-hash [4].

2 Min-Hash Algorithm

In this section we present some background on the min-hash algorithm. Min-hash is
a Locality Sensitive Hashing scheme [15] that approximates similarity between sets.
When an image is represented as a set of visual words, the similarity between two
images can be defined as the Jaccard similarity between the two corresponding sets of
visual words I1 and I2:

sim(I1, I2) =
|I1 ∩ I2|
|I1 ∪ I2|

,

which is simply the ratio of the intersection to the union of the two sets.
Min-hash is a hash function h : I 7→ v, which maps a set I to some value v.

More specifically, a hash function is applied to each visual word in the set I , and the
visual word that has minimum hashed value is returned as the min-hash h(I). One
way to implement the hash function is by a look-up table, with a random floating-point
value assigned for each visual word in the vocabulary, followed by a min operator. The
computation of the min-hash of a set I involves computing a hash of every element in
the set and the time taken is therefore linear in the size of the set |I|. More details on
min-hash can be found in [1, 3].

Min-hash has the property that the probability of hashing collision of two sets is
equal to their Jaccard similarity:

P (h(I1) = h(I2)) = sim(I1, I2).
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Fig. 2. (a) In standard min-hash, min-hash sketches are extracted from the entire image. (b) In
Partition min-hash, the image is divided into partitions and a min-hash sketch is extracted for each
partition. (c) Overlapping partitions (in thick blue solid/broken line) are more likely to capture
the entire duplicate region and lead to better performance. Sketches can be pre-computed for
each grid element (thin black line) to avoid most of the redundant computation for overlapping
partitions.

Since the output of a min-hash function v is actually a visual word, it carries the position
and scale information of the underlying local feature for geometric verification.

In image retrieval or partial duplicate image discovery, we are interested in finding
images which have similarity greater than some threshold θ. In other words, we would
like the probability of collision to be a step function:

P (h(I1) = h(I2)) =
{
1 if sim(I1, I2) ≥ θ;
0 otherwise.

This step function can be approximated by applying k min-hashes to a set and concate-
nating them into a sketch. Then n sketches can be computed for an image and all of
them can be added to the hash table. Under this setting, two images will collide if they
share one common identical sketch. The probability for two images to collide in the
hash table becomes:

P (h(I1) = h(I2)) = 1−
(
1− sim(I1, I2)k

)n
, (1)

which approximates the step function. The sharpness of the “step” and threshold θ can
be controlled by varying the sketch size k and the number of sketches n.

This scheme of computing n min-hash sketches of size k will be the baseline for
our method, and we denote it as “standard min-hash”.

3 Partition Min-Hash

Based on the observation that duplicate regions among partial-duplicate images are usu-
ally localized, we propose a new method called Partition Min-Hash. It has better pre-
cision and recall and runs orders of magnitude faster than standard min-hash. It is also
very easy to implement and only has partition size and overlap as tuning parameters.
The rest of this section introduces the method and discusses its performance.

3.1 Method Details

An image is divided into p rectangular regions of equal area, which we call partitions
(Figure 2(b)). Then, instead of extracting min-hash sketches from the entire image, min-
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Algorithm 1 Partition min-hash
Initialize Ns independent min-hash sketch functions hi, where i = 1, · · · , Ns.
Initialize Ns hash tables Ti, which map a min-hash sketch s to image ID k.
for all Images Ik in database do

Divide image Ik into a grid, Ik,j , where j = 1, · · · , Ng

For each partition, determine the grid elements that are associated with the partition.
for i = 1, · · · , Ns do

for j = 1, · · · , Ng do
Extract sketch si ← hi(Ik,j)

for all Partitions do
Look up sketches sj extracted from grids that belong to current partition, and select
true min-hash sketch s∗

Add (s∗, k) to hash table Ti

hash sketches are extracted for each partition independently. The p min-hash sketches,
one extracted from each partition, are inserted into the hash table.

As will be analyzed in the following section, partitions that fully and tightly capture
a duplicate region between images lead to better precision and recall, compared to cases
in which a duplicate region spans several partitions, or where the partitions are much
larger than the duplicate region. With evenly divided partitions, the duplicate is often
split into two or more partitions. To alleviate this, we design partitions to be overlapping
(Figure 2(c)) and multi-scale. This gives us a better likelihood of having at least one
partition that captures the duplicate region completely. This may remind the reader of
the sliding window technique, widely used for object detection. The spirit is, in fact,
similar: we are hoping for one of the subwindows to hit a region of interest, which, in
our case, is an unknown duplicate region.

We can avoid redundant computation on overlapping partitions by precomputing
and reusing min-hashes. An image is divided into a grids, where the grid elements
are the greatest common regions among partitions that cover that region (Figure 2(c)).
Min-hash sketches are precomputed for each grid wi. Then the min-hash sketch for a
partition P is computed by looking up grids {wi} that are associated with that partition
P and picking the true min-hash sketch among the precomputed min-hash sketches on
grids:

h(P ) = min
i
{h(wi)|wi ∈ P}

The entire algorithm is summarized in Algorithm 1.

3.2 Theoretical Analysis on Performance

In this section, we will analyze the speed and performance of partition min-hash and
show that it achieves higher precision and recall in less time than standard min-hash.

For the sake of comparison, we will keep the number of sketches per image equal
for both cases. With the same number of sketches stored in the hash table, the two
methods will use the same amount of memory. For example, if n sketches per image
were computed for standard min-hash, we will compute n/p sketches for each of the p
partitions for partitition min-hash, so that the total number of sketches per image equals
p · n/p = n.
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Speed Processing time can be divided into two components: the time to compute
sketches and the time for other overhead operations, such as reading the image from
disk, extracting visual words, adding sketches to hash tables, etc. The overhead will be
the same for both methods, with a fixed number of images and sketches per image for
both methods, so the difference in time will be in computing sketches.

As mentioned in Section 2, the time to compute a min-hash sketch is linear in the
size of the set. In partition min-hash, each sketch is the result of applying min-hash to
a partition instead of the entire image, so the time it takes to compute each sketch is
reduced by a factor of Mi/M , where Mi is the number of features in partition i and
M is the number of features in image. On average, Mi/M will be roughly equal to the
ratio of the area of the partition and the area of the image, which, in the case of non-
overlapping partitions, is 1/p, where p is the number of partitions. So the overall time to
compute sketches reduces by 1/p. In the case of overlapping partitions, additional time
is required to look up grids associated with each partition, compared to non-overlapping
case, however this is small compared with the time to hash features. The key to this
speedup is that in standard min-hash, each feature participates in all n sketches, so
must be hashed n times. In PmH, each feature only participates in n/p sketches, so the
number of computed hashes is reduced by a factor of p.

Precision and Recall We now show that the sketches created by partition min-
hash have better discriminative power than the sketches created by standard min-hash,
despite the fact that they take less time to compute. We will study precision and recall
by analyzing the collision probability of true matching image pairs and the collision
probability of false matching image pairs. The collision probability of true matching
pairs is equal to recall, defined as the number of retrieved positives divided by the
number of true positives. The collision probability of false matching pairs is related
to (but not equal to) precision, defined as the number of retrieved positives divided
by the number of retrieved images. We have derived in Section 2, Equation (1) that
the collision probability of standard min-hash is equal to P (h(I1) = h(I2)) = 1 −(
1− sim(I1, I2)k

)n
. We will show that partition min-hash achieves higher collision

probability for true matching pairs and lower probability for false matching pairs, thus
achieving higher precision and recall.

Let us first analyze the collision probability of true matching image pairs. To sim-
plify the analysis, we will consider the case of non-overlapping partitions (Figure 2(b)).
The arrangement of partitions with respect to the region with duplicate content can then
be categorized into three cases, illustrated in Figure 3(a),(b),(c). For the purposes of
analysis, we have assumed that features are spread across the image and each partition
within an image contains the same number of features (including matching and non-
matching background features). Once the simplified analysis on non-overlapping cases
is done, it will be easy to infer that overlapping partitions are more likely to generate
“preferred” partitions.

Case (a): The duplicate region is contained within a single partition in each image.
Since duplicate features are contained in only 1 of the p partitions, the similarity be-
tween the two images sim(I1, I2) must be less than 1/p. Now, the similarity between
the partitions containing duplicate region is p · sim(I1, I2), where p is the number of
partitions. Since n/p sketches are extracted from those partitions, the overall collision
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Fig. 3. (a)(b)(c): Illustration of true matching image pairs. Various symbols in red represent
matching features across images. Lightly colored circles in the background represent non-
matching features and are assumed to be spread out uniformly across partitions. (a): The dupli-
cate region is captured in a single partition in each image. (b): The duplicate region is split across
all partitions. (c): Mix of (a) and (b). (d): Illustration of a false matching image pair. Features
are randomly distributed. (e)(f)(g)(h): Collision probabilities plotted against image similarity for
cases (a)(b)(c)(d), respectively. Red solid curve: Collision probability of partition min-hash. Blue
broken curve: Collision probability of standard min-hash. X axis: Similarity. Y axis: Collision
probability.

probability is equal to

P (h(I1) = h(I2)) = 1−
(
1− (p · sim(I1, I2))

k
)n/p

,

and is plotted in Figure 3(e). Partition min-hash achieves a higher collision probability
than standard min-hash in this case.

It is possible for duplicate regions to lie in between partitions. In such case, it can
be shown that the collision probability is less than what was derived above, but is still
greater than standard min-hash. Moreover, overlapping partitions increases the chance
of having a partition that covers a duplicate region, thus increasing the collision prob-
ability even further. We obtained the collisions probability of overlapping partitions
through simulation. They are reported at the end of this section.

Case (b): The duplicate regions are split up among partitions. The illustration shows
the most extreme case where the duplicate region is split across all p partitions. Since
we are considering an actual duplicate image, each partition from one image will have
a corresponding matching partition in the other image, e.g. partition 1 from image 1
matches with partition 1 from image 2, partition 2 from image 1 matches with partition
2 image 2, and so on. Now for each pair of matching partitions, the similarity between
the pair will be the same as the original similarity sim(I1, I2). For each partition, n/p
sketches are extracted, but the image will be considered as colliding if any one of the p
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pairs collide. So the overall collision probability is equal to

P (h(I1) = h(I2)) = 1−
((

1− (sim(I1, I2))
k
)n/p

)p

= 1−
(
1− sim(I1, I2)k

)n
,

which is the same as the collision probability for standard min-hash, and it is plotted
in Figure 3(f). In practice, the splitting of duplicate regions will typically not be as
extreme as a split across all p partitions and the collision probability will be somewhere
in between case (a) and case (b).

Case (c): The duplicate region is contained in one partition in one image and split
up into p partitions in the other image. The partition which contains the entire duplicate
region has non empty intersection with all p partitions from the other image and has
the probability to have the same min-hash value proportional to their similarity, which
is equal to sim(I1, I2), as on average the number of duplicate features and the number
of non-duplicate features are reduced by the same ratio from the entire image. Again in
this case, the collision probability is equal to

P (h(I1) = h(I2)) = 1−
(
1− sim(I1, I2)k

)n
,

plotted in Figure 3(g), but in practice most images will lie somewhere between cases
(a) and (c). The simulation at the end of the section confirms the above analysis result.

Case (d): The collision probability of false matching image pairs. We assume that in
a false match, duplicate features among two images are scattered randomly across the
image, as opposed to being localized in some partition. This is illustrated in Figure 3(d).
Partitioning randomly scattered features can be considered as random sampling, and
the expected similarity between one randomly sampled partition and another randomly
sampled partition reduces by a factor of p, i.e., the expected similarity between any
partitions in the two images is equal to sim(I1, I2)/p. As there are p partitions for each
image, there are a total of p2 combinations leading two partitions to collide. Therefore,
the collision probability is equal to

P (h(I1) = h(I2)) = 1−
((

1− (sim(I1, I2/p)k
)n/p

)p2

= 1−
(
1− (sim(I1, I2)/p)k

)np
,

which is lower than standard min-hash, and is plotted in Figure 3(h). In practice, some
partitions will have higher number of duplicate features and have higher similarity than
sim(I1, I2)/p, which leads to an overall collision probability that is higher than what
is derived above. But the chances of having a partition with significantly high number
of duplicate features will be low, and the true collision probability will be close to what
we derived.

Overlapping partitions and simulation verification. So far, the analysis has been
done for non-overlapping partitions where the duplicate region is also within some par-
tition. In practice, the duplicate region may stride over partition boundaries, so we use
overlapping partitions to achieve higher chance of capturing the duplicate region in one
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Fig. 4. Simulated collision probability of partition min-hash with overlapping partitions for four
cases. ‘mh theor’: Theoretical rate of standard min-hash. ‘pmh theor no overlap’: Theoretical rate
of partition min-hash with non-overlapping partitions. ‘pmh simul overlap’: Simulated rate of
partition min-hash with overlapping partitions.

partition. The theoretical collision probability for overlapping partitions is complicated
due to dependence among sketches from overlapping partitions. Instead, we use syn-
thetic examples to simulate the case where the duplicate regions are not aligned with
partitions for the four cases in Fig. 3, and apply partition min-hash with overlapping par-
titions. The simulation was done by synthesizing images with visual words distributed
as described in the four cases and applying partition min-hash to the images. Simulation
is repeated 1000 times and the collision probabilities are reported in Figure 4.

Compared to standard min-hash, we see that the collision probability of partition
min-hash with overlapping partitions is higher in case (a) and similar in case (c). For
case (d), which is a false matching case, the probability of false collision is much lower
than standard min-hash. Compared to ideal non-overlapping case, both (c) and (d) have
similar performance, while (a) is not as good as ideal case. This is expected as we are
using the same number of sketches for both overlapping and non-overlapping cases. As
a result, the number of sketches per partition for overlapping case is lower. This affects
case (b) the most where its collision probability is lower than the standard min-hash.
In practice, most duplicates will occupy a portion of the image and will be in between
case (a) and case (b). Moreover, since we pre-computed min-hash for each grid, we can
get more sketches for each overlapping partitions almost for free.

4 Evaluation of Partition Min-Hash

In this section, we present quantitative evaluations of our method using two datasets,
our own dataset collected from the web and the Oxford buildings dataset [6].

4.1 Experimental setup

In our own dataset, we have collected 778 images from the web and manually catego-
rized them into 19 categories, where the images within each category are partial du-
plicates. There are no exact duplicates among this set of 778 images. The set contains
17595 true matching image pairs (belonging to the same category) out of 778×777/2 =
302253 total pairs. Such a large set of image pairs are adequate for evaluating hashing
schemes. The average Jaccard similarity for true pairs is 0.019. The number of features
per image ranges from 200 to 1000, and we have quantized them using a visual word
vocabulary with one million visual words. It takes about 100ms per image to extract
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visual words. Min-hash functions are implemented as lookup tables of random floating
point values assigned per each visual word, followed by a min operation.

The Oxford buildings dataset [6] consists of 5062 images collected from Flickr by
searching for particular Oxford landmarks. The annotation provides whether an image
in the database is a partial duplicate of a query image for 55 queries. As the time that
was taken to extract visual words were not reported in the Oxford buildings set, we
assumed it took 100ms per image in our reported graphs.

We tested the quality of collision pairs that are retrieved by counting the number
of true pairs and false pairs that were retrieved using our proposed method. Recall was
computed as the number of retrieved true pairs divided by the total number of true
pairs. Precision was computed as the percentage of true pairs among all retrieved pairs.
This measure differs from the number of images retrieved from a set of partial duplicate
images. F-measure was computed as the harmonic mean of precision and recall.

In order to get the final clustered set of dupilcate images, post-operations, such
as connected components and query expansion, should be performed, since min-hash
based methods only retrieve a subset of pairs of images in a group of duplicate images
probabilistically and does not complete the clustering. We did not include the post-
operations in our evaluation and evaluated only the pairs that it retrieved, as it allows
a more direct comparison of the various min-hash methods themselves, which is the
focus of our study.

Experiments were run on a single 32-bit machine with a 3.2 GHz processor and
4GB memory.

4.2 Results on Our Dataset

We have empirically tested the effect the number of partitions per image and the area
of overlap of neighboring partitions, by varying them from 16 to 144 and 0% to 80%,
respectively. An overlap area of 50% gave the best recall. Recall tends to increase as
the number of partitions increase. The time taken was the least between 64 and 121
partitions. We have chosen 100 partitions per image and 50% overlap for the following
experiments. We have used two hashes per sketch in our experiments.

We have tested and compared four methods: standard min-hash (mH), partition min-
hash (PmH), geometric min-hash (GmH) [4], and the combination of min-hash and
geometric min-hash (PmH+GmH). They were compared under two scenarios: constant
number of sketches per image (Figure 5) and constant runtime (Figure 6). The first
scenario allows us to evaluate how discriminative the sketches are for each method, and
how long it takes to compute a single sketch. The second scenario allows us to evaluate
how our proposed method compares given the same computational resource.

In the first scenario (Figure 5), all hashing schemes have high precision, with PmH
being slightly better than mH. In the mean time, PmH improves the recall by more than
20% when compared to mH. The speed of the hashing process of PmH is 16 times
faster than mH. When our partition scheme is applied to GmH, speed improves by 9
times. When the time for extracting visual words is added, PmH is 2.5 times faster than
mH, and PmH+GmH is 2 times faster than GmH, at 1000 sketches/image. At 1000
sketches/image and 2 min-hash/sketch and assuming 1000 features per image, min-
hash requires about two million table look up operations, which is a significant amount
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Fig. 5. Performance on our dataset with fixed number of sketches per image. F-measure is the
harmonic mean of precision and recall. Time scale starts around the time it took for extracting
visual words from images, denoted by “VW extraction.”
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Fig. 6. Performance on our dataset with fixed time budget.

of computation. Partition min-hash reduces this number of look up operations by a
factor proportional to the number of partitions. Furthermore, the overall improvement
in speed becomes more significant when more sketches per image (n) and more min-
hashes per sketch (k) are used and min-hash operation contributes more to the overall
execution time. It is beneficial to use greater number sketches and min-hashes, because
it approximates the ideal step function better, which was discussed in Section 2, and
leads to better performance. The constraint that prevents from using large number of
sketches and min-hashes is the computation time, and partition min-hash alleviates this
constraint.

In the second scenario (Figure 6), PmH and PmH+GmH have much higher recall
than mH and GmH. When allowed to run for 5 seconds, our PmH has 9.1 times higher
recall than mH, and PmH+GmH has 9.2 times higher recall than mH, while GmH has
1.7 times higher recall than mH (mH: 3.0%, PmH: 27.2%, GmH: 5.0%, PmH+GmH:
27.6%). All of the hashing schemes have high precision (mH: 100%, PmH: 98.9%,
GmH: 99.7%, PmH+GmH: 99.2%). As we can see, given a fixed time budget in real
applications, the speed up of our partition min-hash leads to significant improvement in
recall.

Figure 9 shows a sample set of images having min-hash sketch collisions using
PmH+ GmH with 500 sketches and 100 partitions per image with 50% overlap. In a
typical application these collisions are used as seeds to complete the image clusters
using query expansion [4].

4.3 Results on Oxford Buildings Dataset

We have performed the same experiments on the Oxford building dataset. Figure 7
shows results with fixed number of sketches per image. On this dataset, the perfor-
mance of min-hash is low, with a particularly low precision of about 20%. With such
low precision, the improvement made by Partition min-hash is more pronounced—the
precision improvement over mH is 200%. The speed improvement is also significant,
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Fig. 7. Performance on Oxford buildings dataset with fixed number of sketches per image. Time
scale starts around the time it took for extracting visual words from images, denoted by “VW
extraction.” (100ms per image was assumed)
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Fig. 8. Performance on Oxford buildings dataset with fixed time budget.

consistent with our own dataset. For hashing, PmH runs 17 times faster than mH, and
PmH+GmH runs 11 times faster than mH. Our approach also speeds up GmH by 7
times for hashing, without losing precision or recall. When time for extracting visual
words is added, PmH is 3.3 times faster than mH, and PmH+GmH is 2.4 times faster
than GmH, at 1000 sketches/image.

Figure 8 shows results with fixed runtime. With the same amount of computational
resource, PmH and PmH+GmH achieves significant improvement in recall (mH:0.6%,
PmH: 7.4%, GmH: 2.3%, PmH+GmH: 8.5%, Time: 100sec).

4.4 Scalability On Six Million Images

To demonstrate the scalability of our method, we applied PmH+GmH to search for all
partial-duplicate matches in a dataset of six million images collected from the web. The
method took 131 minutes to run on a single 3.2GHz machine with 4GB memory, with
the following parameters: 16 partitions per image with 50% overlap and 16 sketches per
image. Our method was able to retrieve many partial duplicate images, however, since
we have no ground-truth available for this image corpus, we do not present quantitative
results other than timing information.

5 Geometry Sensitive Hash

A typical application of minHash is to use the collisions as cluster seeds that will be
expanded (by image retrieval) into complete clusters of partial-duplicate images [4]. In
doing so, it is important to reduce false positives in these seeds before they are verified
by full geometric verification [4], especially for large scale data set where the number
of false positives tends to increase.

The local geometric structure of features in duplicate regions is usually preserved
across images. For example, in Figure 1, the top of the Eiffel tower is always above the
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Fig. 9. Example images with sketch collisions. Left: Our dataset. Right: Oxford buildings dataset

base, and the word “Starbucks” is always above the word “coffee”. Instead of verifying
these local geometric relationships after sketch collisions are retrieved, we encode such
local geometric structure into the sketches, so that they can be checked at an earlier
stage. This reduces the number of false positive collisions, and therefore reduces the
number of full geometric verifications that need to be performed after expansion by
image retrieval, saving computational expense.

We encode geometric structure into the sketches by hashing the geometric relation-
ship between features. This is achieved by creating an integer ID which encodes their
relative geometric configuration 1 among visual words in a sketch, and concatenating it
to the min-hash sketch. We call this Geometry Sensitive Hashing. There are many ways
to hash the local geometric structure using the relative location and scale of features.
We use a simple hash function to quantize the geometric structure into 32 IDs, 16 for
the relative position of two features (2 along the radial direction (near, far), and 8 along
the tangential direction), and 2 for relative scale (Fig. 10(a)). When there are more than
two features in a sketch, hashes for all combination of pairs are concatenated.

Evaluation of Geometry-Sensitive Hashing Figure 10(b) shows the number of
true/false positives when applying Geometry-Sensitive Hashing(GSH), given 500 sketches
per image. It shows that GSH decreases the number of false positives for all 4 hashing
schemes with a negligible computational overhead. We have also observed that GSH is
more effective for PmH than for GmH in reducing the number of false positives.

6 Conclusion

We have proposed two novel improvements to min-hash for discovering partial dupli-
cate images in a large set of images: partition min-hash and geometry-sensitive hash.
They are improved hashing functions which make use of the geometric configuration

1 The scale and dominant orientation output by feature detectors can be used to normalize the
coordinate system at each point to derive the relative configuration.
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Standard 3132 40 56.0 2731 9 55.8 
PmH 3963 30 3.4 3617 9 3.5 
GmH 5065 46 48.8 4778 32 48.9 

PmH+GmH 5066 38 5.4 4744 26 5.5 
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Fig. 10. (a) Geometry sensitive hashing (sketch size = 2): a grid is defined centered at the first
visual word in the sketch. The second visual word * has a grid id of 9, which is used as part of
the hash key. (b) Evaluation of GSH. TP/FP: number of retrieved true/false positive pairs.

information available in images, and take advantage of the fact that duplicate regions
are localized in an image and that geometric configurations are preserved across dupli-
cate regions. The methods are easy to implement, with few tuning parameters. We have
shown that the proposed hashing method achieves higher precision and recall and runs
orders of magnitude faster than the current state-of-the-art. We have also shown that
the speed-up allows us to afford a larger number of sketches, which in turn improves
the hashing performance, given the same amount of computational resource. Although
we have shown the effectiveness of partition min-hash in the domain of images, this
method may be applicable to other domains where min-hash is used, such as duplicate
document detection, if similar locality properties exist in those domains.
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