
Dynamically Formed Heterogeneous Robot Teams Performing
Tightly-Coordinated Tasks

E. G. Jones, T. K. Harris, B. Browning, M. B. Dias, B. Argall, A. Rudnicky, M. Veloso, A. Stentz
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213
Email: {egjones,tkharris,brettb,mbdias,bargall,air,mmv,axs}@cs.cmu.edu

Abstract

As we progress towards a world where robots play an integral
role in society, a critical problem that remains to be solved is
the Pickup Team challenge; that is, dynamically formed het-
erogeneous robot teams executing coordinated tasks where
little information is known a-priori about the tasks, the robots,
and the environments in which they will operate. Successful
solutions to forming pickup teams will enable researchers to
experiment with larger numbers of robots and enable industry
to efficiently and cost-effectively integrate new robot technol-
ogy with existing legacy teams. In this paper, we define the
challenge of pickup teams and propose the treasure hunt do-
main for evaluating the performance of pickup teams. Addi-
tionally, we describe a basic implementation of a pickup team
that can search and discover treasure in a previously unknown
environment. We build on prior approaches in market-based
task allocation and Plays for synchronized task execution, to
allocate roles amongst robots in the pickup team, and to ex-
ecute synchronized team actions to accomplish the treasure
hunt task.

Introduction
The vision that drives this work is that teams of heteroge-
neous robots will dynamically solve complex tasks by ef-
ficiently joining their complementary capabilities. The re-
search challenges in realizing this vision include robust op-
eration across multiple environments, building capabilities
applicable across multiple robot types, and building teams
of robots that improve over time.

Competitions, such as RoboCup, have been effective
in focusing efforts to overcome some of these challenges
(Noda et al. 1998). However, these competitions focus
on part of the overall problem and do not generally address
teams formed in an ad-hoc manner, complex environments
beyond a well-defined soccer field, and the complexities of
heterogeneous teams. The Pickup Team challenge is to dy-
namically form teams of robots (and possibly humans) given
very little a priori information. That is, team members may
have only minimal prior knowledge of each others behavior,
the tasks at hand, and the environments they operate in, but
are able to combine effectively.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

There are several reasons why an increased understand-
ing of pickup teams is needed. First, it is impractical to de-
velop large teams or teams of expensive robots at the same
site, at the same time. This currently hinders multi-robot
research. Successful pickup teams will facilitate further re-
search by allowing separate researchers to easily pool their
robots to create teams for further study. Second, robots may
be needed for emergency tasks where there may be insuf-
ficient time to hand-engineer the coordination mechanisms
before task execution. Pickup teams enable robot teams to
be formed on very short-notice for such tasks. Third, as
robots fail, get lost, or otherwise malfunction, it is often nec-
essary to substitute or add new robots. Successful pickup
teams will allow the integration of new robots into exist-
ing teams, and also enable teams of heterogeneous robots
to perform efficiently under dynamic and uncertain condi-
tions. Thus, the overall research challenge is to provide a
principled methodology for creating pickup teams. This pa-
per presents a first approach to address this challenge.

The reported work focuses on dynamically forming teams
of heterogeneous robots to perform tasks that require tight-
coordination. The robots have limited individual capabil-
ities, can sense different information about their environ-
ment, and can be assigned abstract tasks for execution.
Robots can solve primitive tasks in different ways depend-
ing on the robot capabilities and prevailing environmental
conditions. The implemented approach is demonstrated in a
treasure hunt scenario. Thus, the contribution of this paper
is threefold: defining the pickup team challenge, introducing
the treasure hunt domain, and implementing a basic pickup
team.

The Treasure Hunt Domain
To investigate the conduct of pickup teams, we require a do-
main which will allow for dynamic and heterogeneous team
formation, encourage coordination and tight coupling be-
tween team members, and provide a metric against which to
compare team performances. Our treasure hunt is a domain
which provides for each of these characteristics.

The treasure hunt domain consists of robot teams com-
peting in and exploring an unknown space. The teams are
heterogeneous, where the particular capabilities necessary
to accomplish hunt tasks are distributed throughout the robot
team, often being unique to a single member. The hunt tasks

are executed towards the goal of acquiring specific objects,
the treasure, within an unknown environment. Thus a rep-
resentation of the world must be built as it is explored, and
the treasure must be identified and then localized within the
built representation. Team coordination follows as a direct
necessity, as the abilities required to perform each of these
tasks are distributed throughout the team members.

The ultimate goal with respect pickup team formation is
speed and plasticity. Within this domain, not only are teams
created quickly and on the fly, but each member has no prior
knowledge about the abilities of its potential teammates; a
robot knows of its own capabilities only. Inherent to the defi-
nition of a hunt task are the abilities necessary to accomplish
it. Communication between potential pick-up team mem-
bers is therefore carried out at the time of team formation, to
ensure the satisfaction of all capabilities requirements.

This domain presents an adversarial environment in which
to execute the hunt tasks. Teams currently compete against
the clock, with the intent of collecting as much treasure
as possible within the allotted time. Eventually the teams
will compete against other dynamically formed heteroge-
neous pickup teams. That the environment is adversarial
provides a metric for team performance, for the success
of a pickup team may be measured in the amount of trea-
sure it collected. Additionally, an adversarial environment
encourages enhanced team performance through efficiency,
and thus also tightly-coupled team coordination.

In our specific treasure hunt implementation, potential
team members include Pioneer robots and the robotic Seg-
way RMP platform provided by Segway, LLC 1. The Pi-
oneer robot is equipped with a SICK laser and gyroscope,
and is therefore able to both construct a map of an unknown
environment, and localize itself upon that map. The Segway
robot has been outfitted with two cameras, by which it is able
to visually identify both the Pioneer robot and the treasure.
The presented task is to search for and retrieve treasure. To
explore an area while searching for the treasure, the Pio-
neer is able to navigate and build a map, while the Segway
is able to follow the Pioneer and search for treasure. Upon
treasure identification, the robots must return home with the
treasure. By localizing on its created map, the Pioneer is
able to determine the home location; the Segway then fol-
lows the Pioneer as it proceeds home. Team coordination
between the robots during execution is accomplished jointly
via the visual identification of the Pioneer by the Segway,
and by communication between the two robots should this
visual link be lost (in which case the Pioneer is commanded
to pause, until seen by the Segway). Communication addi-
tionally occurs when the Segway informs the Pioneer that
treasure has been found.

The treasure hunt domain satisfies the criterion set for the
study of the performance of pickup teams. It offers a number
of challenging aspects, including robust and efficient oper-
ation in unconstrained environments, and ad-hoc team for-
mation. Efficient execution requires a coordinated search of
the space and the maintenance of an accurate shared knowl-
edge about the space. As such, this domain provides a rich
environment in which to push the boundaries of adaptive,
autonomous robotics.

Figure 1: The left figure shows a Segway robot, while the
right figure shows the pioneer robots.

Component Technologies
In this section we review our current approaches to team-
work – Skills, Tactics, and Plays (STP) for team coordi-
nation in adversarial environments, and TraderBots for ef-
ficient and robust role assignment in multi-robot tasks.

STP: Skills, Tactics, and Plays
Veloso et al. (Bowling, Browning, & Veloso 2004) introduce
a skills, tactics, and plays architecture (STP) for control-
ling autonomous robot teams in adversarial environments.
In STP, teamwork, individual behavior, and low-level con-
trol are decomposed into three separate modules. Relevant
to our implementation are Plays which provide the mecha-
nism for adaptive team coordination. Plays are the central
mechanism for coordinating team actions. Each play con-
sists of the following components: (a) a set of roles for each
team member executing the play, (b) a sequence of actions
for each role to perform, (c) an applicability evaluation func-
tion, (d) a termination evaluation function, (e) a weight to
determine the likelihood of selecting the play.

Each play is a fixed team plan that describes a sequence
of actions for each role in the team towards achieving the
team goal(s). Each of the roles is assigned to a unique team
member during execution. The role assignment is based on
the believed state of the world and is dynamic (e.g. role A
may start with player 1, but may switch to player 3 as execu-
tion progresses). Note that the role assignment mechanism
is independent of the play framework.

The concept of plays was created for domains where tight
synchronization of actions between team members is re-
quired. Therefore, the sequence of tactics to be performed
by each role is executed in lock step with each other role in
the play. Hence, the play forms a fixed team plan whereby
the sequence of activities is synchronized between team
members.

As not all plans are appropriate under all circumstances,
each play has a boolean evaluation function that determines
the applicability of the play. This function is defined on the
team’s belief state, and determines if the play can be exe-
cuted or not. Thus, it is possible to define special purpose

plays that are applicable only under specific conditions as
well as general-purpose plays that can be executed under
much broader conditions. Once executed, there are two con-
ditions under which the play can terminate. The first is that
the team finishes executing the team plan. Each play in-
cludes an evaluation function that determines whether the
play should be terminated. As with applicability, this evalu-
ation function operates over the team’s belief state. Hence,
the second means of ending a play is if the termination eval-
uation function determines that the play should end, either
because it has failed or is successful.

Team strategy consists of a set of plays, called a play-
book, of which the team can execute only one play at any
instant of time. A play can only be selected for execution
if it is applicable. From the set of applicable plays, one
is selected at random with a likelihood that is tied to the
play’s weight. The plays are selected with a likelihood de-
termined by a Gibbs distribution from the weights over the
set of applicable plays. This means the team strategy is in
effect stochastic. This is desirable in adversarial domains
to prevent the team strategy being predictable, and therefore
exploitable by the opponent.

TraderBots

TraderBots, developed by Dias and Stentz (Dias 2004) is a
coordination mechanism, inspired by the contract net pro-
tocol by Smith (Smith 1980), is designed to inherit the ef-
ficacy and flexibility of a market economy, and to exploit
these benefits to enable robust and efficient multirobot coor-
dination in dynamic environments. A brief overview of the
TraderBots approach is presented here to provide context for
the reported experimental results and analysis.

Consider a team of robots assembled to perform a par-
ticular set of tasks. Consider further, that each robot in the
team is modelled as a self-interested agent, and the team of
robots as an economy. The goal of the team is to complete
the tasks successfully while minimizing overall costs. Each
robot aims to maximize its individual profit; however, since
all revenue is derived from satisfying team objectives, the
robots self-interest equates to doing global good. Moreover,
all robots can increase their profit by eliminating excess cost.
Thus, to solve the task-allocation problem, the robots run
task auctions, and bid on tasks in other robots task auctions.

If the global cost is determined by the summation of indi-
vidual robot costs, each deal made by a robot will result in
global cost reduction. Note that robots will only make prof-
itable deals. Furthermore, the individual aim to maximize
profit (rather than to minimize cost) allows added flexibility
in the approach to prioritize tasks that are of high cost and
high priority over tasks that incur low cost but provide lower
value to the overall mission. The competitive element of the
robots bidding for different tasks enables the system to de-
cipher the competing local information of each robot, while
the currency exchange provides grounding for the compet-
ing local costs in terms of the global value of the tasks being
performed.

Teamtalk
Our vision of integrally social robots, dynamically formed
and dynamically tasked, is the vision that both humans and
robots are able to dynamically form teams, and that in these
teams, humans are able to guide the robots toward goals
by inserting tasks into the trading framework. The trading
framework may then assign play roles and provide informa-
tion to both the robot and the human team members, taking
efficient advantage of the skills of both people and robots
of various capabilities. To this end we have developed the
human interface component, Teamtalk (Harris et al. 2004).
Teamtalk is a multi–modal multi–agent dialog system, and it
is a client of the OpTrader server. Each human team member
can carry a tablet PC with them which:
• runs an instance of the Teamtalk software
• provides for pen–and–tablet–based IO with the robots,

and
• provides for speech–based IO with an attached headset

Architecture
Each human team member (each with an instance of
Teamtalk) is a Teamtalk client of the OpTrader, and each
Teamtalk instance spawns a Ravenclaw dialog manager
for each active robot. Thus, n × m stateful dialogs are
held, where n is the number of human team members (and
Teamtalk instances) and m is the number of robotic team
members. Each Teamtalk instance contains a single auto-
matic speech recognition engine, parser, natural language
generation module, text–to–speech engine, and pen–and–
tablet interface. For each robot that comes on–line, the in-
terface spawns a separate dialog management system, and
confidence annotation module.

Information Flow
A typical exchange that demonstrates the internal dynamics
of the Teamtalk systems follows: A human team member
utters a phrase, which in turn is decoded by Sphinx into one
or more hypotheses along with associated confidence scores.
The hypotheses are routed to Phoenix, which parses each hy-
pothsized utterance, and for each parse, generates the con-
cepts and additional confidence annotation.

These concepts are routed to m instances of Helios, one
for each robot. Helios examines the acoustic and language
model confidences from Sphinx, additional confidence an-
notations imparted by Phoenix’s parser coverage of the hy-
potheses, and the expectation agenda generated by Raven-
claw based on that robot’s dialog state. From all of this
evidence, Helios picks concepts to pass to the dialog man-
ager, and assigns a final combined confidence value for each
unique concept that is passed along.

At this point each robot’s dialog manager has received
a set of concepts with associated confidences. Each dia-
log manager decides from the dialog state and the concepts
whether it is the addressed robot in the dialog or it is sim-
ply eavesdropping on a conversation between the human and
another dialog partner. This allows for the possibility of
opportunistic eavesdropping, so that one currently not ad-
dressed robot could, for example, develop a better context

Sphinx Helios

Helios

Rosetta

Tablet

Ravenclaw

Ravenclaw

Kalliope

Backend
Client

Phoenix
Speech In

Tablet IO

Speech Out

Robots

Figure 2: Teamtalk system architecture

from which to understand the next utterance that may ac-
tually be addressed to it. The dialog manager may act on
the concepts, or it may engage in a grounding action on one
or more of the concepts. This decision is made based on a
policy that depends on the concept confidence history in the
dialog, and the action to be performed (more on this below).
The exact form of the grounding action, if made, ultimately
depends on the Rosetta configuration, but may be something
like, ”did you say you wanted to go backwards”. The dialog
is a mixed–initiative dialog, so that if certain concepts are
provided that only partially complete some agenda, the dia-
log system may take initiative with, for example, ”how far
do you want me to go backwards?”.

The dialog manager, based on grounded concepts, sends
messages to the back–end manager, which in turn inserts
tasks to an OpTrader server. Task completion messages,
as well as all other messages originated by the robots, are
captured by the back–end manager, and those messages are
routed to each robot’s Helios just like the human utterances
were. Helios generally assigns high confidence to concepts
that are originated by the robots, since those messages do
not incur the noisy speech channel.

The robot–originated messages, having been annotated
by Helios, are routed to Ravenclaw. Ravenclaw treats
most robot–originated messages as requests by the robots
to speak, and generally passes those messages directly to
Rosetta. It may also complete task agencies, taking these
off of the focus stack and changing the expectation agenda
as appropriate. These messages are also routed to the pen–
and–tablet system, which in the case of a completed task,
may change the color of the robot’s icon or take some other
suggestive actions.

Rosetta uses template–based natural language generation
to render concept terms into strings of words. The responses
generated by Rosetta are routed to Kalliope. Kalliope is
configured to use Cepstral’s Swift Synthesis engine, and it
chooses a Swift voice for each robot. That way, each robot
can speak in its own voice.

Challenges
The Teamtalk system addresses several challenges in multi–
modal and multi–agent spoken dialog. Some of these chal-

lenges are currently addressed at a superficial level, as we
believe that all of the elements must be in place to some de-
gree in order to develop valid tests of the system–wide con-
sequences of the other design decisions. Some challenges
that we are addressing are outlined below.

How should a system manage multi–agent dialogs? We
have chosen to implement a stateful dialog manager for each
human–robot pair, and to have those dialog managers be
capable of spawning upon the interfaces’ contact with the
robot. We have also decided that all messages pass through
all dialog managers, regardless of the apparent intended re-
cipient. It is up to each dialog manager to determine if it
is being addressed or not, and what those consequences are.
This choice allows us to handle more complicated address-
ing mechanisms (see below), allows the dialog manager’s
policies to be easily customized to the particular robot (also
see below), and allows for the possibility of beneficial eaves-
dropping.

How should addressing mechanisms be interpreted by the
robots? There are five manners in which a person can ad-
dress a team. These are: (i) as individuals; (ii) as a whole
team; (iii) as a team leader; (iv) to nobody in particular (talk-
ing into the air); (v) via a proxy.

Our system handles the first two manners, and could be
modified to handle the third manner. The fourth and fifth
manner seemed unusual in practice.

How should robot voices be handled in a multi–robot sys-
tem? We have chosen to assign a voice for every robot, un-
til the number of available voices is exhausted. At that point
there is no choice but to recycle voices. Clarifying saluta-
tions are copious in our NLG (e.g. ”clyde here, message”),
so even when the voices themselves fail to distinguish the
robot, the content of the message probably will. In our cur-
rent system, voices are discrete and finite, and cannot be pa-
rameterized. A future version of the system may allow for
parameterized voices so that the number of distinct voices
will be limited only by the limit of the number of distinc-
tions a person can make.

How should speech recognition be handled in a multi–
robot system? We have decided to incorporate a single
ASR per human team member. This decision is partly made

on computational grounds. ASR overshadows all of the
other systems’ computational requirements. Having a sin-
gle ASR per human prevents the explosion of computational
requirements where the number of robots grows, while at
the same time allowing the ASR system to be tailored to the
acoustic models that best fit that particular speaker.

How should one manage asynchronous messages gener-
ated by an agent back–end? We have chosen to route
those messages through the same path that parsed human
messages would have been routed, namely, through the con-
fidence annotator and the dialog manager. Both the confi-
dence annotator and the dialog manager are aware (through
tags attached to the messages) of the origin of the message
and may adjust their responses appropriately.

How should one handle robots entering and leaving the
sphere of interaction? Our back–end manager, upon de-
tecting a yet unseen robot, spawns the necessary components
to fulfill that robot’s dialog needs. This procedure fulfills the
requirement that robots be capable of forming teams in an
ad–hoc fashion.

How should one ground concepts? We have chosen to
ground concepts based on the ASR confidence, the gram-
mar coverage, the concept history, the task, and per–robot
policies. In this way, we are able to conservatively ground
concepts for high risk tasks, and yet liberally and efficiently
execute low risk tasks. For example, in our field work, our
Pioneer robot with its laser–based collision detection will
translate on command, only asking for command confirma-
tion when there is a very noisy speech signal; conversely,
our Segway SMP, with its high momentum, poor odometry,
and total lack of collision detection, almost always asks for
translation confirmation.

How can one effectively use a pen–and–tablet inter-
face with a multi–agent speech interface? Much like the
manner that we broadcast all utterances to all dialog man-
agers, human and robot originated alike, the tablet display is
treated as a shared resource. The human team member may
draw on the tablet at will, which sends a corresponding mes-
sage to all of the dialog managers. Any of the robot dialog
managers may send messages to the tablet display, which
can in turn be interpreted by the other dialog managers.

Implementation
We have attempted to address two main challenges in our
implementation. The first is the dynamic formation of
pickup teams efficiently given heterogeneous robots. We
have adapted the Traderbots system to perform this func-
tion. Tasks are matched with plays consisting of a number
of roles; the roles of the play, when performed, should sat-
isfy the requirements of the task. Each role in a play contains
a sequence of action primitives that can actually be executed
by the robots - but a role can also require a certain set of
capabilities. Robots only bid on roles that they have the ca-
pability to perform, thus accommodating the heterogeneity
of the robots and providing an efficient way for new kinds of
robots with different sets of capabilities to represent them-
selves to the system. Traderbots also requires that robots

have the ability to estimate the cost of actions - for instance,
a cost may be the total distance that a role requires a robot
to move. By minimizing cost in performing role allocations
we hope to not only get feasible solutions but also to have
high efficiency.

The heterogeneity of the pickup teams demands that much
care be taken during play execution - roles may depend on
each other, and all robots need to do their part to actually
discover, localize, and retrieve treasure. Thus once the allo-
cation has been performed, the tight coordination subsystem
must monitor and direct play execution.

The following describes our implementation of the sub-
systems for dynamic pickup team allocation and tight coor-
dination. The first part introduces the main components of
implementation, and the second part of the section illustrates
system performance by describing the life cycle of a treasure
hunt task as it moves through allocation to execution.

Implementation Components
To realize the full functionality of our system a number
of different processes must be run on each of the different
robots, as well as on a human operator workstation. The
following will describe only those processes essential to the
function of the system.

The top layer of our implementation consists of a num-
ber of Traders. Each agent, including the human operator,
is assigned a Trader. A Trader is the agent’s interface to the
market. The Trader can introduce items to be auctioned to
other Traders by sending a call for bids, can respond to calls
for bids with bids, can determine which bids are most benefi-
cial for the auctioning agent, and can issue awards to bidders
that have won auctions. In our system the human operator
has a trader known as an OpTrader. Each robot agent has a
trader called a RoboTrader.

The PlayManager forms the next component module. The
primary role of the PlayManager is to select useful plays for
a task and to coordinate the execution of activities in a play
across a small sub-team to perform a won task. The Play-
Manager can select plays to be bid on for a specified task,
coordinate the execution of a play with the play managers
for the other assigned roles, execute the sequence of tasks
for its particular robot and synchronize the activities, where
required, between the different roles.

A final important component - the Robot Server - pro-
vides an interface between the PlayManager and the compo-
nents on the robot responsible for controlling the robot. A
strength of our system is that neither the PlayManagers nor
the Traders need to know very much about how the control
of the system is actually implemented - the Robot Server
serves as the single point of contact. Thus the Robot Servers
on the robots must understand a standard packet, cause Play-
Manager commanded actions to be performed, and to send
action statuses, but beyond that robot platform developers
are free to develop their system in any fashion they wish.

The Treasure Hunt Task Life Cycle
A task is issued and enters the Trading system Initially,
the human operator designates a SearchArea task, embed-
ding the points of a bounding polygon in the task data. The

SEARCH (8,12) (8,18) (14,18) (14,12)

SEARCH−1

PlayManager

RoboTrader

Task
SEARCH−2

PlayManager

RoboTrader

Task
SEARCH−3

PlayManager

RoboTrader

Task
SEARCH−4

PlayManager

RoboTrader

TaskPlay Play Play Play

PIONEER 1 SEGWAY 1 SEGWAY 2 PIONEER 2

Task

Auction Call

OpTrader

Figure 3: Parts (a) and (b) of the task life-cycle as discussed
in the Implementation section.

task is sent to the OpTrader. The OpTrader creates an auc-
tion call with the task data, serializes it, and sends it via the
wireless network using UDP to all RoboTraders (see Figure
3).

Each RoboTrader receives the task auction call and
gets a matching play from the PlayManager The Robo-
Traders receive the call for bids from the OpTrader. They
deserialize the call and pass the task specification to their in-
dividual PlayManagers over a UDP socket connection. Each
contacted PlayManager will compare the task string against
the applicability conditions for each play in its playbook. It
will then select a play stochastically amongst the set of plays
that are applicable, and return this play to the RoboTrader.

The RoboTrader assesses the play The RoboTrader now
has a play matching the task and a set of roles. It then must
select one of the roles for itself. For each role in the play, the
RoboTrader first considers whether or not it possesses all the
capabilities required to perform that role. For all roles for
which it is capable the Trader then performs a cost evalua-
tion.

In the treasure hunt we are largely concerned with min-
imizing the time it takes to accomplish the task - as our
robots move roughly the same speeds during play execution,
we try to minimize distance travelled as an approximation of
time. If robots were heterogeneous with respect to speed this
should be reflected in their costing function. For most roles
cost is computed as total metric path cost for goal points to
be visited in the role. Costing in our system is modular, so
additional or different costing functions can be added easily
as required.

Once a cost has been assigned to each role, the Robo-
Trader selects the lowest cost role for itself. It then prepares
an auction call with all the remaining roles. This auction call

Play − SEARCH 1

Role 1 − Cover area and map − Cost $105

Role 2 − Follow and look for treasure.

RoboTrader

Auction Call

SEGWAY 1

RoboTrader

RoboTrader

SEGWAY 2

RoboTrader

PIONEER 2

PIONEER 1

Figure 4: The RoboTrader, upon receiving a play from the
PlayManager, selects a play for itself and produces a cost
estimate. It auctions the other role in the play to the other
robots.

is serialized and sent to the other Traders, as shown on the
left in Figure 4.

The other RoboTraders bid on the role auction After
the other RoboTraders receive and deserialize the role call,
they determine their own cost for each role in the call. For
any role in the call that requires capabilities the Trader does
not possess it assigns an infinite cost. For all roles that the
Trader can perform, it assigns the cost determined by the
costing function. Note that the Trader must bid on all roles
for which it is capable. The role bids are then returned to
auctioneering RoboTrader (shown in Figure 5).

The RoboTrader bids on the task Once all bids are re-
ceived or a timeout has expired the auctioneer RoboTrader
then determines the winner or winners of the role auction.
All role bids are considered, and the lowest cost bid is se-
lected. If that bid is non-infinite, the role is designated as
assigned to the bidding Trader. As a Trader can only win
a single role in a play, that Trader’s other bids are nullified.
Additionally, all bids for that role from any other Trader are
nullified. Then the lowest cost remaining bid is considered;
this continues until all roles in the play are assigned or there
are no remaining bids.

If all roles from the play have been assigned, the Robo-
Trader constructs a bid for the original task, with a cost that
is summed over all assigned role cost estimates. The bid is
sent to the OpTrader. This is shown in Figure 6.

Task and role awards are granted Once the OpTrader
has received bids from all RoboTraders or a call timeout has
expired it awards the task to RoboTrader with the lowest cost
bid. An award message is sent to the winning RoboTrader.

SEGWAY 1

RoboTrader

Cost $180

Role 2

Role Bid

RoboTrader

PIONEER 2

RoboTrader

SEGWAY 2

Play − SEARCH 1

Role 2 − Cost $140

Role 1 − Cost $105

RoboTrader

PIONEER 1

Cost $140

Role 2

Role Bid
Role 2

Role Bid

Cost $ ∞

Figure 5: Receiving the bids for the remaining role, the Op-
Trader selects the lowest cost bid.

RoboTrader

PIONEER 2

RoboTrader

SEGWAY 1

RoboTrader

PIONEER 1

$280
Task Bid

$260
Task Bid

OpTrader
Task

Award

$300
Task Bid

RoboTrader

SEGWAY 2

$245
Task Bid

Figure 6: The bids from all plays are returned to the Op-
Trader, who selects the lowest cost task bid and sends a task
award to the winning bidder.

All other RoboTraders are informed they lost the auction.
The winning RoboTrader then sends role award messages to
all RoboTraders that were assigned roles in the winning play.
Note that at this point the RoboTrader still has not accepted
the task award.

Awards are accepted and play execution begins The ini-
tial role bids made by the RoboTraders were non-binding.
However, a role award is binding; once accepted, a role must
be performed. If a RoboTrader has received no other role
award in the interval between bidding and the arrival of this
award, it accepts the role award. Otherwise it rejects the role
award. If any of the role awards are rejected, or one of the
Traders awarded a role does not respond to the award by a
timeout, then the task award is rejected and the OpTrader
must perform another auction.

If all role awards are accepted, then the RoboTrader sends
a task acceptance message to the RoboTrader. Then it sends
an execution message to the PlayManager detailing the fi-
nal role assignments. This stage is shown in Figure 7. The
RoboTrader’s role in the pickup team allocation is concluded
except for relaying status information to the OpTrader when

Task
Accept

RoboTrader

PlayManager

Robot
Server

Role 1
Action 1

Role 2

OpTrader

PIONEER 1

Play Search 1

Role 1 − Assigned to Pioneer 1

Role 2 − Assigned to Segway 2

SEGWAY 2

PlayManager

Robot
Server

Role 2
Action 1

Figure 7: After the RoboTrader has confirmed the availabil-
ity of the winning Role bidder, it can send notice of task
acceptance to the OpTrader and forward the role assign-
ments to the PlayManager. The PlayManager contacts the
play managers of all robots assigned a role and sends them a
description of the actions in their role. Action primitives are
sent to the robot servers and the play execution begins.

the play completes. Future work, however, will examine dy-
namic re-assignment of roles if and when required.

The PlayManager begins play execution Once informed
of the play to execute, and the list of assigned roles, the Play-
Manager forms the subteam to execute the play. It does this
by contacting each of the subteam members RoleExecutors
and transmits the play in compressed XML format to them.
The RoleExecutor is responsible for executing the assigned
role in the play. If any subteam members are essential and
fail to acknowledge the play reception, or are not able to
be contacted, the play is terminated and reported as such to
the RoboTrader. Otherwise, execution proceeds by the Play-
Manager informing each RoleExecutor to start operation.

At this point, each RoleExecutor becomes loosely cou-
pled to the PlayManager. The RoleExecutor will execute its
sequence of actions and will only inform the PlayManager of
termination (success or failure), or when it needs to synchro-
nize with another role according to the play. To synchronize
the RoleExecutor contacts the appropriate teammate’s Role-
Executor and informs the PlayManager for status keeping
purposes.

When each RoleExecutor reaches the end of its sequence
of actions to perform, it informs the PlayManager of suc-
cessful termination, and when the team is complete the Play-
Manager reports this to the RoboTrader. Alternatively, if a
robot fails, or the time limit for execution is reached (as en-
coded in the play itself), the play is terminated and reported

as such. Taken together, execution is distributed, and loosely
coupled.

Related Work
Within the field of robotics, there has been considerable
research into multi-robot coordination for a variety of do-
mains and tasks (Mataric 1994; Balch & Arkin 1998;
Gerkey & Mataric 2003). Many groups have focused on re-
search questions relevant to robot teams particularly (Balch
& (eds.) 2001). RoboCup robot soccer has offered a
standardized domain in which to explore multi-robot team-
work in dynamic, adversarial tasks (Noda et al. 1998;
Nardi et al. 2004) (see also http://www.robocup.org). Seg-
way Soccer (Browning et al. 2005) is a new league within
this RoboCup domain, which addresses the coordination of
heterogeneous team members specifically. The emphasis of
these human-robot teams is equality, both physically, as both
ride the Segway mobility platform, and with respect to deci-
sion making power and responsibility.

How to effectively coordinate heterogeneous teams has
been an ongoing challenge in multi-robot research (Scerri
et al. 2004; Kaminka & Frenkel 2005). However, no one
has focused explicitly on the principles underlying the build-
ing of such highly dynamic teams when the a-priori inter-
action between individual robot developers is so minimal.
Much of the existing research implicitly assumes that the
robot team is built by a group of people working closely
together over an extended period of time. While some pre-
vious research within the software agents community has
addressed the coordination of simulated agents built by dif-
ferent groups (Pynadath & Tambe 2003), none has chosen to
address this pickup challenge for the coordination of multi-
ple robots. We believe this research direction of forming dy-
namic teams will greatly advance the science of multi-robot
systems.

Teamtalk is a modification of the emerging Olympus
framework (CMU), which is based on the MIT/MITRE
Galaxy Communicator (MIT-MITRE) reference architec-
ture for spoken dialog systems.

Conclusions
In this paper, we presented the concept of pickup teams,
where teams are formed dynamically from heterogeneous
robots with no a-priori experience of one another. We have
presented an appropriate domain for exploring the research
issues related to pickup teams – multi-robot treasure hunts.
Based on our prior work with synchronized activities using
STP with plays and tactics combined with robust multi-robot
role assignment using the TraderBots market-based archi-
tecture, we have proposed a new technique to address the
problem of pickup teams.

References
Balch, T., and Arkin, R. 1998. Behavior-based formation
control for multiagent robot teams. IEEE Transactions on
Robotics and Automation.
Balch, T., and (eds.), L. P., eds. 2001. Robot Teams: From
Diversity to Polymorphism. AK Peters.

Bowling, M.; Browning, B.; and Veloso, M. 2004. Plays as
effective multiagent plans enabling opponent-adaptive play
selection. In Proceedings of International Conference on
Automated Planning and Scheduling (ICAPS’04).
Browning, B.; Searock, J.; Rybski, P. E.; and Veloso, M.
2005. Turning segways into soccer robots. Industrial Robot
32(2):149–156.
CMU. http://garlic.speech.cs.cmu.edu/
rcwiki/index.php/Main_Page.
Dias, M. B. 2004. TraderBots: A New Paradigm for Robust
and Efficient Multirobot Coordination in Dynamic Envi-
ronments. Ph.D. Dissertation, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA.
Gerkey, B. P., and Mataric, M. J. 2003. Multi-robot task
allocation: analyzing the complexity and optimality of key
architectures. In Proceedings of ICRA’03, the 2003 IEEE
International Conference on Robotics and Automation.
Harris, T. K.; Banerjee, S.; Rudnicky, A.; Sison, J.; Bo-
dine, K.; and Black, A. 2004. A research platform for
multi-agent dialogue dynamics. In Proc. of the IEEE In-
ternational Workshop on Robotics and Human Interactive
Communication.
Kaminka, G., and Frenkel, I. 2005. Flexible teamwork in
behavior-based robots. In In Proceedings of the National
Conference on Artificial Intelligence (AAAI-2005).
Mataric, M. J. 1994. Interaction and Intelligent Behavior.
Ph.D. Dissertation, EECS, MIT, Boston, MA. Available as
technical report AITR-1495.
MIT-MITRE. http://communicator.
sourceforge.net/.
Nardi, D.; Riedmiller, M.; Sammut, C.; and Santos-Victor,
J., eds. 2004. RoboCup 2004: Robot Soccer World Cup
VIII (LNCS/LNAI). Berlin: Springer-Verlag Press.
Noda, I.; Suzuki, S.; Matsubara, H.; Asada, M.; and Ki-
tano, H. 1998. RoboCup-97: The first robot world cup
soccer games and conferences. AI Magazine 19(3):49–59.
Pynadath, D. V., and Tambe, M. 2003. An automated team-
work infrastructure for heterogeneous software agents and
humans. Autonomous Agents and Multi-Agent Systems 7(1-
2):71–100.
Scerri, P.; Xu, Y.; Liao, E.; Lai, J.; and Sycara, K. 2004.
Scaling teamwork to very large teams. In AAMAS’04.
Smith, R. G. 1980. The contract net protocol: High level
communication and control in a distributed problem solver.
IEEE Transactions on Computers C-29(12):1104–1113.

