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Abstract. Model checking of infinite state systems is undecidable,
therefore, there are instances for which fixpoint computations used in
infinite state model checkers do not converge. Given a widening operator
one can compute an upper approximation of a least fixpoint in finite
number of steps even if the least fixpoint is uncomputable. We present
a widening operator for automata encoding integer sets. We show how
widening can be used to verify safety properties that cannot be verified
otherwise. We also show that the dual of the widening operator can be
used to detect counter examples for liveness properties. Finally, we show
experimentally how the same technique can be used to verify properties
of complex infinite state systems efficiently.

1 Introduction

Symbolic verification of large and complex infinite state systems may require
an unreasonable number of fixpoint iterations. Furthermore, since the problem
of verification of temporal properties of infinite state systems is in general un-
decidable, the fixpoint computations might not converge at all. To overcome
this problem one can use approximations. Abstract interpretation framework [9]
provides a technique known as widening, to compute a least fixpoint’s upper
bound in finite time. Widening has been successfully applied to Polyhedra based
verification of systems specified with arithmetic constraints [10,13,7]. On the
other hand, similar work for the automata encoding of arithmetic constraints
has been limited. We present a widening operator for automata encoding of in-
teger sets as described in [3]. We also show how to verify properties of infinite
state systems using an approximate fixpoint computation based on our widening
technique. Note that, for these properties the exact fixpoint computation does
not converge. Finally, we show experimentally how the same technique can be
used to improve the efficiency of our infinite state model checking tool, Action
Language Verifier (ALV) [8], and compare its performance with BRAIN [15].
Most reachability properties can be formulated as least fixpoints over sets
of states. If the state space is infinite, these fixpoints may not be computable.
Widening is a well known technique [9,10] that facilitates the convergence of a
fixpoint computation by extrapolating an upper approximation of the exact least
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fixpoint. In [10, 12] a widening operator was defined for systems whose transition
relation and sets of states can be described by linear arithmetic constraints,
symbolically represented as sets of convex Polyhedra. This technique has been
successfully used in the analysis of various types of systems such as concurrent
systems (by extending it to Presburger arithmetic formulas [7]), synchronous
programs and linear hybrid systems [13].

Systems described by Presburger arithmetic formulas can also be symbol-
ically represented by finite automata [6,16]. Experimental results in [3], indi-
cate that the automata representation often outperforms the polyhedral rep-
resentation. However, until lately the use of approximation techniques for the
automata representation has been limited. In a series of recent papers [14, 5]
“Regular Model Checking” (RMC) has been defined as a framework for algo-
rithmic verification of systems with transition relations represented by a regular
length-preserving relation on strings. Typical examples of such systems are lin-
ear parameterized networks of processes. Widening techniques have been used
to compute the set of reachable configurations of such systems in finite time.
However, the arithmetic relations considered in [14,5] are restricted because of
the unary encoding used (only addition of constants is allowed). Our goal is to
develop a widening technique for automata representing Presburger formulas.

Another way to deal with non-termination of exact infinite state model check-
ing is to compute the reflexive-transitive closure R* of the transition relation R
of the system (or an upper approximation of R*). Given R*, one can compute the
set of states forward or backward reachable from an initial set of states I with
a single image computation. Therefore computing R* is at least as hard as com-
puting sets of reachable states. In fact, it may be the case that the set of states
reachable from I is regular but R* is not. Nevertheless, ways to approximate R*
for regular transition relations R have been studied in [5,11, 4]. In particular, in
[4] the authors present a generic technique for computing R* (sometimes pre-
cisely) for transition relations representing arithmetic relations. The technique
is generic in the sense that it can handle relations that are not in a restricted
form. Our technique is also generic but is based on widening instead of iterating
relations. As we show in Section 4 our approach can verify some properties of
systems with non-regular R*. The algorithm in [4] is complicated and involves
determinization of automata which is potentially an expensive operation even
when heuristics are used to improve efficiency. There is no full implementation of
this algorithm that allows it to be used for verification applications. As we show
in Section 5, our widening technique can be used to verify properties of com-
plex systems efficiently. Finally, note that one can use our widening technique
to iterate transducers but the opposite is not true.

The rest of the paper is organized as follows. First we discuss fixpoint compu-
tations and how widening technique can be used to help them converge in Section
2. Next, we briefly present the automata representation we are using for integer
sets satisfying Presburger formulas in Section 3. In Section 4 we formally define
our widening operator for arithmetic automata, prove some interesting proper-
ties and illustrate how it can be applied to a set of characteristic systems. Finally
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in Section 5 we present experimental results that demonstrate how our widening
technique can be used to verify properties of complex systems efficiently.

2 Fixpoint Computations and Widening

We consider systems whose states can be described by the values of v inte-
ger variables x1,...,x,. A set of states of the system, S C ZY, is a relation
on the v integer variables. The transition relation of the system, R C Z?, is
a relation on the current state and next state variables x1,...,z,,2],..., 2.
In particular, we consider systems where S and R can be represented as Pres-
burger arithmetic formulas, i.e., S = {(x1,...,2y) | ¢s(x1,...,2,)} and R =
{(x1,.. . zp, 24, ...,2) | pr(21, ... @0, @), ..., 2))}, where ¢ and ¢r are Pres-
burger arithmetic formulas. In Section 3, we show how to represent S and R
symbolically using finite automata.

We define the pre-condition of S with respect to R, pre(S, R) C Z", as the
set of states that can reach some state in S in one step. Similarly we define
post(S, R) C Z" as the set of states reachable from some state in S in one step.
One can compute pre(S, R) and post(S, R) as follows

pre(S,R) = {(x1,...,2y) | 327..32%, (DS, —af.....00—ar] N DR)
post(S, R) = {(x1,...,2y) | (Bx1..324.05 A ¢R)[w/1‘_w1;-447$,/[,‘_wv]}'

where 9y, is the formula generated by substituting z for y in . Hence, to
compute pre(S, R) and post(S, R) we need to be able to compute three oper-
ations: conjunction, existential variable elimination and renaming. In Section
3, we will show that these operations can be implemented using an automata
representation for R and S.

We can formulate the verification problem of invariants based on pre- and
post-condition functions as follows. We are given a set of initial states I, a
transition relation R, pre- and post-condition functions pre(S, R) and post(S, R),
and a property P. To verify the property we have two alternatives. The first is
to compute FR(I), the set of states forward reachable from the initial states I,
and then check whether

FR(I)CP (1)

The second way is to compute BR(—P) the set of states backward reachable
from the negation of the property and then check that

BR(-P)NI =0 2)

Since the problem is undecidable, we might not be able to compute FR(I) or
BR(—P) exactly. In that case we can follow a conservative approach by replacing
FR(I) and BR(—P) by over approximations FR(I)™ O FR(I) and BR(-P)* D
BR(—P) in equations 1 and 2 respectively. Note that, we may not be able to
verify a property that actually holds when we use approximations. Below we
describe how to compute FR(I) and FR(I)T. Computation of BR(—P) and
BR(=P)™ is similar.
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The set F'R(I) of reachable states from I is the least fixpoint of the functional
AX . IT'Upost(X, R). This fixpoint is the limit of the sequence Sy, S1, ..., where
So = I and S;11 = S; U post(S;, R). This sequence may not converge. However
we can compute an over approximation F'R(I)T which is the limit of a new
sequence S§, 51, ..., such that for each 4, S; C S and the sequence S}, 57, ...
converges after a finite number of iterations. We compute the Ss by using a
widening operator V, which satisfies the following property:

Given two sets A and B, AUB C AVB. (3)
Now we can define S; as:
Si if0<i<s
S!_ V(Si_yUpost(Si_,R)) ifi>s
where s is the seed of the widening sequence. Experiments show that higher
seeds are likely to result in better approximations. The goal is to find a widening
operator such that the sequence S, Sq,... converges as fast as possible to a

fixpoint that is as close as possible to the exact set of reachable states. We
present a widening operator for automata representing integer sets.

K3

3 Automata Representation for Integer Sets

The representation of Presburger formulas by finite automata has been stud-
ied in [6, 16, 3]. Here we briefly describe finite automata that accept the set of
natural number tuples that satisfy a Presburger arithmetic formula on v vari-
ables. The representation we discuss below can be extended to integers using 2’s
complement arithmetic [3]. We present the construction for natural numbers to
simplify the presentation. Our implementation of widening technique and our
verification tool also handles negative integers.

We encode numbers using their binary representation. A v-tuple of natural
numbers (ni,na,...,n,) is encoded as a word over the alphabet {0,1}", where
the 44, letter in the word is (bi1, big, ..., biy) and b;; is the 4y, least significant bit
of number n;. Given a Presburger formula ¢, we construct a finite automaton
FA(¢)=(K, X, d,e, F) that accepts the language L(¢) over the alphabet ¥ =
{0, 1}, which contains all the encodings of the natural number tuples that satisfy
the formula. K is the set of automaton states, 3’ is the input alphabet, § :
K x ¥ — K is the transition function, e € K is the initial state, and F' C K is
the set of final or accepting states.

For equalities, FA(D"7_; a; - 2; = ¢) = (K, X, 4, e, F), where

K ={k| Zaigkg Zai\/ngS—c\/—cgkgO}U{sink},
a; <0 a; >0
2:{071}’07 €= —¢C, F:{O}a

5k (b1 b)) = (k + ;a “b)/2 itk 4+ Y00, a; - b is even and k # sink

sink otherwise
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For inequalities, FA(Y . | a; - x; < ¢) = (K, X, d,e, F), where

K={k| > ai<k<> aiVO<k<—cV—-c<k<0}
a; <0 a; >0
2 ={0,1}", e=—-¢, F={k|keKAk<0},

8k, (b, .oby)) = [(k+ Za - b;)/2].

Moreover, conjunction, disjunction and negation of constraints can be im-
plemented by automata intersection, union and complementation, respectively.
Finally, if some variable is existentially quantified, we can compute a non-
deterministic FA accepting the projection of the initial FA on the remaining
variables and then determinize it. The resulting FA may not accept all satis-
fying encodings (with any number of leading zeros). We can overcome this by
recursively identifying all rejecting states k such that é(k, (0,0, ...,0)) € F, and
make them accepting. Universal quantification can be similarly implemented by
the use of the FA complementation.

4 Widening Arithmetic Automata

Before formally defining a widening operator for arithmetic automata we briefly
describe the intuition behind it. Let A and A’ be two automata representing two
consecutive members of a sequence Ag, A1, ..., whose limit A, is the exact least
fixpoint we are trying to compute. Since A, is the union of all A;s, it can be seen
as a product automaton with each state being a tuple (of possibly infinite size)
containing a state from each A;. First, consider a string w and assume that after
consuming w A, A’ and A, move to state k,k’ and k. respectively. Then ko
contains k and k’. Second, consider states k and &’ of A and A’ respectively, such
that the languages accepted from k and k' are the same. Then again there exists
a state ko, of Ao, that contains both k and k’. For either scenario, our widening
method, given A and A’ as an input, produces an automaton that accepts both
languages of A and A’ and in which & and &’ are merged in a single state.

Given two finite automata A = (K, X, d,e, F) and A’ = (K', X, ¢, ¢/, F') we
define the binary relation =y on K U K’ as follows. Given k € K and k' € K,
we say that k =¢ k' and k' =¢ k if and only if

Vw € X*. §*(k,w) € F < §*(K',w) € F' (4)
or k,k' # sink AJw e X*. 6" (e,w) =k A" (', w) =k, (5)

where §*(k, w) is defined as the state A reaches after consuming w starting from
state k. In other words, condition 4 states that k =y k' if the languages accepted
by A from k and by A’ from k' are the same. Condition 5 states that k =v k' if
for some word w, A ends up in state k and A’ ends up in state k" after consuming
w. For k1 € K and ko € K we say that k1 =v ko if and only if

E'k/EK/.klEvk//\kgEvkl V dke K ki=vkANky=v k (6)

Similarly we can define kf =v k) for k{ € K’ and &k € K'.



326 Constantinos Bartzis and Tevfik Bultan

It is easy to prove that =y is an equivalence relation. Call C the set of
equivalence classes of =y. We define AVA' = (K", X, 6", ¢", F") by:

K// _ C
8" (ciyo) =c¢; st. (Vkee;NK. (ko) €c;Vik,o)=sink)A
(Vk' e e;NK'. 6'(K',0) € ¢; VI'(K, o) = sink)
e/=c st. ecche ec
F" ={c1,c9,..cn} st Ve, Ik e FUF' . k€ ¢

In other words, the set of states of AVA’ is the set C of equivalence classes of
=y. Transitions are defined from the transitions of A and A’. The initial state
is the class containing the initial states e and e’. The set of final states is the
set of classes that contain some of the final states in F' and F’. The following
Theorem states that V satisfies condition (3).

Definition 1. Given an automaton A = (K, X, d,e,F) and a state k € K, we
define L(k) to be the language accepted by the automaton (K, X, 5, k,F). Also
L(A) = L(e).

Theorem 1. Given two automata A and A’, L(A) UL(A") C L(AVA).

Proof. Essentially we want to prove that given w € X* such that w is accepted
by A or A’ then w is also accepted by AV A’. Without loss of generality we may
assume that w is accepted by A. Let w = 0¢o7 . ..0,. Then there is a sequence of
non-sink states ko, k1, . .., knt1 such that kg = e, §(k;, 0;) = kiy1 and k41 € F.
From the definition of AVA’ = (K", X,6"”,¢", F") it follows that there exists a
sequence cg, €1, - - -, Cpt1 such that co = €, 6”(¢c;,0;) = ci41 and k; € ¢; for all
0 <i<mn+1. Since kypy1 € cpr1 and ky1q € F it follows that ¢, 11 € F” and
thus w is accepted by AVA'.

According to the original definition [9], a widening operator has to guarantee
convergence. Our widening operator does not guarantee convergence. Neverthe-
less, we can force it to converge by a slight modification. If we discard the con-
dition k, k' # sink from equation 5, for each state in one automaton there exists
an equivalent state in the other. Thus, the produced automaton has at most as
many states as the smaller operand. As a result, the automata in the sequence
can not increase in size. There are finitely many automata with a given number
of states and a fixed alphabet. On the other hand, the size of the set of states
represented by the automata in the sequence is monotonically increasing, other-
wise we would have reached a fixpoint. Consequently, the sequence will converge.
One can deploy this technique when the number of iterations has become too
high. However, we decided not to use it in our implementation (see Section 5),
because in most of the cases this modification in the widening operator makes
the approximation too coarse to prove any property.

On the other hand, in the sequel we show that for a class of systems, if
the approximate computation converges, it computes the exact set of reachable
states.
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Definition 2. An automaton Ay = (K1, X, 61, e1, F1) is called weakly equivalent
to automaton As = (Ko, X, 62, €2, Fo) iff there exists a total function f : Ky \
{sink} — Ks such that §1(k,o) = sink or f(d1(k,0)) = d2(f(k),0) for all
k € Ky \ {sink} and o € X. Furthermore, f(e1) = ez and for all ky € Fi,
f(kl) € Fs.

Lemma 1. If automaton Ay = (Ki1,X,61,€e1, F1) is weakly equivalent to au-
tomaton Ay = (Ka, X, 02, €2, F3) then state k1 € K1\ {sink} is mapped to state
ko € Ky iff for allw € X*, 05 (e1,w) = k1 = §5(e2, w) = ka.

Lemma 2. If automaton A1 = (K1, X,01,e1, F1) is weakly equivalent to au-
tomaton As = (Ko, X, 02,9, Fy) then, if state ki € Kp is mapped to state
ko € Ko then L(kl) - L(kg)

The proofs of Lemma 1 and Lemma 2 are trivial and have been omitted.

Definition 3. An automaton A = (K, X, 0, e, F) is called state-disjoint iff L(k1)
N L(ks) =0 for all ky # ks € K.

Lemma 3. Consider a transition system and an approzimate sequence S§,
S1,... as defined in Section 2. If \X . I U post(X, R) has a least fixpoint repre-
sented by a state-disjoint automaton As and the automaton A; representing Si,
1> s is weakly equivalent to Ao, then the automaton A;y1 representing Sl{Jrl 18
also weakly equivalent to Aoo.

Proof. Let Al represent S! U post(Si,R). Then A;11 = A; VA, Let A; =
(K,X.6,e,F), A, = (K',2,6,¢/,F') and Ass = (Koo, X, 000, €0, Fo). Note
that by Lemma 2 and the monotonicity of AX . IUpost(X, R), L(A;) C L(A}) C
L(As). Hence, the states of A;11 are of two kinds: classes of =v that contain
states from both A; and A} and singleton classes containing one state from A;.
Recall that A; is weakly equivalent to A, with respect to a function f.

First we show that for any two distinct states k1, ko of A; that belong to the
same class, f(k1) = f(k2). States k1 and ko are in the same class iff they are
both =y to some state k&’ of A;. This can happen in two ways. First, assume that
there exist w1, we € X* such that 6*(e,w1) = k1, 6*(e,ws) = ko, 6" (e/,w1) = k'
and 6" (e, wz) = k’. Then by Lemma 1, 6% (0o, w1) = f(k1) and 6% (oo, wo) =
7(ka). Since L(A;) C L(A}) € L(Auc), 0 2 L(kt) UL(kz) € L(K) € L(f (k1)) 0
L(f(kz)). Since Ay is state-disjoint, we conclude that f(ki1) = f(kz2). Second,
assume that L(k") = L(k2) and for some w € X*, §*(e,w) = k1 and §"*(e/,w) =
k'. Using similar arguments we conclude that ) # L(k1) C L(k") = L(k2) C
L(f(k1)) N L(f(k2)) and therefore f(k1) = f(k2).

Now we can prove that A} is weakly equivalent to A. To do so, we define
a function f’ : K’ — K, according to Definition 2. Given any state k' € K’
such that k' =y k for some k € K (i.e., ¥’ belongs to a non-singleton class),
we define f'(k') = f(k). Now we can show that all transitions from k&’ con-
form to Definition 2. First we consider transitions to states in non-singleton
classes. If L(k') = L(k) then for all 0 € X, L(§'(k',0)) = L(§(k,0)). Conse-
quently, &' (k',0) =v 6(k, o) and thus f/(6'(k',0)) = f(6(k,0)) = b (f(K),0) =
0o (f'(K"),0). Now if L(k') # L(k), then there exists w € X* such that §*(e, w) =
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k and §*(e’,w) = k’. Then §*(e,w.c) = é6(k, o) and 6" (¢/, w.0) = §'(K', o), thus
0(k,0) =v 0'(K',0) and again we can conclude that f/(6'(k',0)) = doo (f'(K), 0).
Now let us consider transitions going to singleton states, for which f’ has not
been defined yet. Assume ¢'(k’,0) is such a state. We define f'(8'(k',0)) =
doo(f'(K'), ). Now we need to prove that there is no state k” € K’ that be-
longs to a non-singleton class and symbol o’ € X' such that ¢'(k”,0") = §' (K, 0)
and f/(6'(k",0")) # doo(f'(K"),0"). If that were the case, we can show that
L0 (f'(K"),0)) would intersect L(doo(f'(k"),0’)), which contradicts the hy-
pothesis. Proceeding in the same manner we can show that f’ can be defined
for the rest of the states, so that A} is weakly equivalent to A. Finally, A;4;
is weakly equivalent to A, since it is constructed by merging states of A} that
have the same f’.

Theorem 2. Consider a transition system and an approrimate sequence
S4, 81, ... as defined in Section 2. If AX . I Upost(X,R) has a least fizpoint
represented by a state-disjoint automaton Ao and the automaton As represent-
ing S’ is weakly equivalent to A, then if the sequence converges, it will converge
to the exact least fixpoint.

Proof. Automaton Ay, i.e., the last automaton that has been computed without
widening, is weakly equivalent to A.. By Lemma 3, all A;, i > s, are also
weakly equivalent to A. Since L(Ag) € L(A;) C ... C L(Ax), the limit of the
sequence is L(As ), which represents the least fixpoint of AX . I U post(X, R).

Corollary 1. Consider a transition system with one integer variable x that is
initially set to 0 and is increased by a constant ¢ at each step. Then the approz-
imate fixpoint corresponds to the exact set of reachable states.

Proof. Clearly all reachable states satisfy Jy > 0 . x = ¢ - y. If ¢ is odd, the
automaton A, representing this constraint has states 0,1,...,¢— 1, where L(n)
contains all non-negative integers for which the remainder of division with ¢
is n. State 0 is the initial and only accepting state. Also §(0,0) = 0. Clearly
L(n)N L(m) = ) whenever n # m, therefore Ao is state-disjoint. Moreover, the
automaton Ag representing the initial state x = 0 has only one accepting and
initial state that loops 0 and sends 1 to sink. Obviously Ay is weakly equivalent
to Ao, and hence the hypothesis of Theorem 2 holds. Consequently, the exact set
of reachable states will be computed. If ¢ is even, it can be written as ¢ = 2" - d,
where d is odd. Then every number divisible by ¢ consists of a prefix of n zeros
and a suffix that is divisible by d. Following similar arguments as before we can
conclude that the hypothesis of Theorem 2 holds, if the widening seed is 1.

Note that the class of systems that satisfy the hypothesis of Theorem 2 is
quite large. Corollary 1 is just an example of such a system. Figure 1 illustrates an
example fixpoint computation for the system described in Corollary 1, when ¢ =
3. The first column shows the automata representing the approximate fixpoint
iterate S;, the second column shows the automata representing S} = S;Upost(.S;)
and the third column shows the equivalence classes on the states of S;. For each
i, Siy1 = S;VSL.
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Fig. 1. Example fixpoint computation for increment by 3

module square()

integer y,z; module con_decr ()

parameterized integer x; integer x,y;

initial: y=0 && z=x; initial: x>=0 && y>=0;

square: z>0 && z’=z-1 && y’=y+x; con_decr: y>0 => (x’=x-1 && y’=y-1);

spec: AG([z=0 => ((x<=3 => y<=9) && spec: AF([x=0])
(x=4 => y=16) && (x>=5 => y>=25))]) endmodule
endmodule

Fig. 2. Example specifications of transition systems

Our second example, shown in Figure 2 as module square, is a transition
system that computes the square of an integer parameter x by iteratively adding
x to a variable y that is initially set to 0. Variable z is used to count the iterations.
The set of reachable states of the system contains exactly those states where y =
(x — z) -« and is obviously non-regular. Hence, no forward fixpoint computation
is expected to converge since the fixpoint cannot be represented in a finite way.
Also, the closure of the transition relation of the system is not regular and thus
cannot be computed exactly. On the other hand, there are meaningful properties,
like the one shown in Figure 2, which can be verified using a backward fixpoint
computation. The exact computation does not converge. However our algorithm
terminates after 10 iterations and indeed verifies the property.

Finally, the third example illustrates the use of the collapse operator V,
the dual of the widening operator V. The collapse operator should satisfy the
condition that given two sets A and B, AN B D AV B. Given a widening oper-
ator V, one can trivially define a collapse operator as: AVB = =(=AV-DB). For
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other representations for integer sets (e.g. Polyhedra [7], or composite disjunctive
representations [17]), negation is an expensive operation and therefore this defi-
nition is not efficient. However, for deterministic automata, negation has linear
complexity in the number of states (it suffices to make accepting states rejecting
and vice versa), thus the above definition can be implemented efficiently.

The collapse operator is useful in disproving liveness properties and produc-
ing counter examples for them, whenever the exact fixpoint computation does
not converge. As an example, consider the system shown in Figure 2 as module
con_decr. There are two non-negative variables x and y with arbitrary initial
values. We keep decrementing them concurrently while y is positive. We want
to check whether AF(z = 0) i.e.,  will eventually become 0 for all execution
paths. It is easy to see that this does not hold when x > y. The exact backward
fixpoint computation for AF(x = 0) does not converge. If we stop the computa-
tion after a fixed number of iterations, we can obtain an under-approximation
of AF(z = 0) and observe that it does not include the set of initial states, thus
the property might not hold. To prove that, we need to verify the negation of
the initial property, namely EG(z # 0). Once again the exact fixpoint compu-
tation does not converge. However, an approximate fixpoint computation that
uses our collapse operator converges in 3 steps and indeed computes the exact
set of states that violate AF(z = 0), namely those states where x > y. Note
that since the sequence of fixpoint iterates for EG is decreasing, we cannot use
widening.

5 Experiments

Widening can be used for two purposes: 1) As we explained above, it can be
used when the exact fixpoint computations do not converge; 2) It can be used to
speed up fixpoint computations that would otherwise converge but only after a
large number of iterations. To demonstrate this fact we repeated the experiments
in [2] using widening as well.

We integrated the construction algorithms in [2, 3] as well as the approximate
fixpoint computation algorithms based on the widening technique presented ear-
lier to an infinite state CTL model checker called Action Language Verifier (ALV)
[8] built on top of the Composite Symbolic Library [17]. In our experiments we
compare the running times of the exact and approximate forward and backward
fixpoint algorithms. For the same experiments we also present the running time
of BRAIN [15]. BRAIN is a reachability analysis tool, that 1) uses Hilbert’s basis
as symbolic representation for integer sets, and 2) computes the exact backward
fixpoint iterations. There is no approximation operation in BRAIN for the fix-
point computations which do not converge.

We experimented with a set of examples taken from the BRAIN distribu-
tion available at: http://www.cs.man.ac.uk/ ~voronkov/BRAIN/ and the ALV
distribution available at: http://www.cs.ucsb.edu/ bultan/composite/. We
obtained the experimental results on a SUN ULTRA 10 work station with 768
Mbytes of memory, running SunOs 5.7. The results are presented in Table 1. For
the approximate fixpoint computations we also report the seed used for widen-
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Table 1. Experimental results. Time measurements appear in seconds

Problem Instance BRAIN ALV

exact exact|approximate|seed|approximate|seed

forward|backward forward backward

CSM4 3.76 S 99.35 0.21 0 79.29 5
CSM6 25.01 o3} 540.88 0.21 0 482.11 7
CSM8 128.54 oo| 1772.85 0.21 0 3782.51 9
CSM10 494.03 oco| 4809.13 0.21 0 T 11
CSM12 1644.33 oo| 9676.81 0.20 0 Tl 13
CSMinv10 0.93 S 0.58 0.18 0 0.61 4
CSMinv20 3.57 [eS) 0.90 0.18 0 0.79 4
CSMinv30 9.59 [eS) 1.09 0.19 0 1.01 4
CSMinv40 20.71 oo 1.20 0.19 0 1.08 4
CSMinv50 38.58 00 1.45 0.19 0 1.36 4
bigjava 11244.60 S T T 0 T 0
bigjavainv 2641.05 2.85 82.33 9.78 0 43.17| 10
bigjavainv1l 30615.20 8.57| 1160.09 8.32 0 26.13 1
consistencyprot 1.09 0o 24.28 0.34 0 26.85 7
consistencyprotinv 7.75 1.16 59.38 1.14 0 11.55 1
consistencyprotinvl 0.05 00 0.16 0.20 0 0.17 4
consprod 11346.40 1.85 T 1.39 0 T 4
consprodinv 1.27 00 0.66 139.17 0 0.54 5
ticket2 * 0.13 oo 0.12 0 0.13 0
ticket3 * 0.45 o] 0.45 0 0.56 0
ticket4 * 2.93 ] 2.89 0 6.77 0
coherence * [SS) S 0.23 0 0.13 0
bakery3 0.35 00 0.38 7.95 0 0.44 4
bakery4 14.82 oo 9.83 1681.85 0 10.09 5
bakeryb 1107.75 00 577.45 ) 0 582.43 6

ing. Entries of T mean that the computation was aborted because it did not finish
in 5 hours or the memory limit was exceeded. Entries of co mean that the exact
fixpoint computation does not converge. Finally, x means that we are checking
a liveness property that cannot be handled by BRAIN. Problem instances can
be categorized in three groups:

1. Pure integer problems (CSM, bigjava, consistencyprot and consprod)
2. Integer problems with invariants (those with the suffix inv)
3. Problems with both boolean and integer variables (ticket, coherence, bakery)

The problems with invariants are obtained from the original problems by con-
joining the transition relation with a set of invariants. A typical invariant has the
form z1 4 ...+ x < m, where m is a natural number. Such invariants essentially
bound the variables x1, ..., xx to a finite region.

We analyzed each of the problem instances with three different configura-
tions of ALV using two exact fixpoint computation algorithms (forward and
backward) and two approximate fixpoint computation algorithms based on our
widening technique. For each problem we chose a widening seed that makes our
approximation precise enough to allow us to verify the properties. For the for-
ward case, the lowest possible value for the seed, 0, is adequate. However, for
the backward case we had to set the seed higher to achieve the required preci-
sion. In this sense our technique is not fully automatic. Nevertheless, one could
automate the choice of widening seed by iteratively trying all possible values,
starting from 0, until the property is verified.
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For almost all problem instances, one of the configurations of ALV (depending
on the choice of exact or approximate algorithm, forward or backward fixpoint,
and the value of the widening seed) is faster than BRAIN. Note that according
to [15] BRAIN outperforms other infinite state model checkers: Hytech, DMC
and a version of ALV that uses a Polyhedral representation for arithmetic sets.
The only two exceptions are consistencyprotinvl, for which the difference of
performance is very small, and bigjava, for which ALV runs out of memory.

Among all fixpoint computation algorithms used in ALV, the approximate
forward algorithm is the faster for most of the problems with the approximate
backward algorithm coming second. This indicates that the use of widening can
speed up fixpoint computations significantly even when the exact computations
converge. We believe that the fact that the forward algorithm is usually faster
than the backward algorithm is due to the specifics of each problem instance
and is not a general rule. A characteristic example is consprod and consprodinv.
Another observation is that while the approximate backward algorithm performs
well for the invariant versions of the problem instances, it usually performs poorly
for the non-invariant versions. This does not happen with the forward algorithm.
An explanation to this fact is that each of the forward fixpoint iterates natu-
rally satisfies the invariants. However, this is not true for the backward fixpoint
iterates, whose size is reduced when intersected with the invariants.

The problem instances ticket2, ticket3, ticket4 and coherence could not be
solved by any exact backward algorithm. For ALV, the exact backward fix-
point computation diverges whereas the forward fixpoint computation converges.
BRAIN cannot handle liveness properties as the ones specified in ticket and co-
herence. On the other hand, both approximate algorithms were able to verify the
properties. Furthermore, while the exact forward fixpoint computation diverges
for most of the problem instances, the approximate one converges relatively fast
for almost all of these problem instances. This shows that in practice our widen-
ing technique can be successfully applied to non-trivial systems, whereas in [4]
only very simple systems are considered. A problem of special interest is bakery.
Our exact backward fixpoint computation always converges and scales better
than BRAIN, whereas the exact forward fixpoint computation always diverges.
Widening does not help much for this problem. The approximate forward fixpoint
computation does not scale well. The approximate backward fixpoint computa-
tion is precise enough only when widening is used in the last iteration and thus
it takes a little longer than the exact computation to finish.

Finally, we repeated all experiments using another version of ALV in which
integer sets are symbolically represented as polyhedra and manipulated by the
Omega Library [1]. This version uses an extension of Halbwachs’ widening al-
gorithm [10] to Presburger arithmetic [7]. For the ticket, coherence and bakery
problems, we could verify the properties using both forward and backward ap-
proximate fixpoint computations but the running times are much higher than
those for the automata version. For the CSM problem instances, the approxi-
mate forward fixpoint computed was not precise enough to verify the properties
immediately. Due to internal limitations of the Omega Library we could not get
results for the rest of the problem instances.
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