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INSTRUCTION BASED ON ADAPTIVE LEARNING TECHNOLOGIES 

Introduction 

	   A common intuition is that instruction is most effective if it takes into account (a) that 

learners are different, and (b) that they change as they learn. But learners differ in a great many 

ways, for example in their knowledge state, interest, goals, affective state, strategic behaviors, 

and learning styles. To what learner differences should instruction adapt? Also, how can adaptive 

instruction take into account that learners change continuously? Which ways of adapting are 

most effective? An alternative view is that learning technologies should not only adapt to learner 

differences, but also to learner similarities. How can a deep understanding of the demands a task 

domain makes on all learners be used both to adapt system design to common rough spots? 

 The idea of adapting to learners to individualize instruction is not new. For example, 

mastery learning is a well-known and effective way of adapting instruction to individual 

students’ knowledge growth (Bloom, 1968; Keller, 1968; Kulik, Kulik, & Bangert-Drowns, 

1990). In spite of this success, mastery learning is not implemented on a large scale in regular 

instructional practice. Adaptive forms of instruction, such as mastery learning, can encounter 

barriers to adoption including resource demands (e.g., frequent formative assessment and 

individualized remedial practice or instruction), practical challenges for educators (e.g., how to 

manage a student with 3rd grade reading needs and 2nd grade mathematics needs who is, by age 

and socially, in 4th grade), and a perception of unfairness because different students are assigned 

different work to accomplish the same milestones.  

Technology can help address some of these barriers. By now, advanced learning 

technologies such as intelligent tutoring systems can support many forms of adaptivity and 

individualization, in ways that would be difficult to manage for teachers (Koedinger et al., 2013). 
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They can assess learners along many psychological dimensions, including knowledge, affect, and 

metacognition (Aleven & Koedinger, 2013; Conati & Kardan, 2013; Sottilare, Graesser, Hu, & 

Holden, 2013). They can adjust their pedagogical decision making accordingly. They often do so 

without separate assessment activities that take away from learning time because these systems 

can assess students as they work on instructional activities. For example, a “cognitive mastery” 

approach implemented in intelligent tutoring software has been shown to substantially enhance 

student learning (Corbett, McLaughlin, & Scarpinatto, 2000). It has also turned out to be a viable 

and practical method in schools, addressing some of the practical obstacles noted. It is 

implemented in Cognitive Tutor software used by hundreds of thousands of middle-school and 

high-school students annually (Koedinger & Corbett, 2006).   

Adaptive instruction builds on a variety of theoretical perspectives, including work 

documenting aptitude-treatment interactions (ATIs; e.g., Cronbach & Snow, 1977), individual 

differences in learning (Jonassen & Grabowski, 1993), expertise reversal (e.g., Kalyuga 2007; 

Kalyuga, Ayres, Chandler, & Sweller, 2003), the Zone of Proximal Development (Vygotsky, 

1978), the model-scaffold-fade paradigm (Collins, Brown, & Newman, 1989), and the 

Assistance Dilemma (Koedinger & Aleven, 2007; Koedinger, Pavlik, McLaren, & Aleven, 

2008). For example, educational research on ATIs (Cronbach & Snow, 1977; Snow, 1989; 

Kalyuga et al., 2003) has documented many instances of where a choice of an effective 

instructional treatment depends on learner characteristics such as prior knowledge.  

In this chapter, we take stock of the state of empirical research regarding the value of 

adapting instruction to the demands of the domain, learner characteristics, and the learner’s path 

in the ongoing learning activity. Our review includes work on advanced learning technologies, 

such as intelligent tutoring systems, conversational agents, and educational games. However, the 
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focus is on empirical work and not on technology. In this sense, our chapter is different from 

previous reviews of adaptivity in learning technologies (e.g., Brusilovsky, 2001; Vandewaetere 

& Clarebout, 2014; Vandewaetere, Desmet & Clarebout, 2011; VanLehn, 2006; 2016), which 

focus on technology aspects. Our chapter is a selective review. For the topics discussed, we 

searched broadly for articles that compared adaptive and non-adaptive instruction, as well as for 

articles that tested whether interactions might exist between instructional treatments and learner 

characteristics.  

What Does It Mean To Be Adaptive? 

 We define adaptivity as follows: A learning environment is adaptive to the degree that (a) 

its design is based on data about common learner challenges in the target subject matter, (b) its 

pedagogical decision making changes based on psychological measures of individual learners, 

and (c) it interactively responds to learner actions (cf. Aleven et al., 2015; Aleven, Beal, & 

Graesser, 2013). According to this definition, some systems may be more adaptive than others 

(i.e., adaptivity is a matter of degree, not a binary property).  

 For all parts of the definition, adaptivity requires data about learners. Part a of the 

definition captures the design of systems based on data from cognitive task analysis, such as 

qualitative data from interviews (Clark et al., 2007) or think alouds (Ericsson & Simon, 1984) as 

well as quantitative data from student performance on tasks given in experiments on paper (e.g., 

Koedinger & Nathan, 2004) or as part of an existing educational technology (e.g., Stamper & 

Koedinger, 2011).  Parts b and c of the definition capture ways in which the running system 

adjusts its behavior based on data it gathers about each student, as students use it. The system 

can adapt to students over a short time span, in reaction to a single student action, or over a long 

time span, in reaction to a student state or trait identified over many student actions.  
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In addition, according to part a of our definition, a system may be adaptive at design time 

even if it is not adaptive at run time (i.e., as it is being used by students), perhaps extending how 

the term “adaptive” is commonly used. A system is adaptive at design time if it is designed in a 

way that is responsive to the learning demands that the domain produces that are largely the 

same for many learners (e.g., challenges or hurdles that are the same across learners). For 

example, a video lecture might be seen as non-adaptive form of instruction. The video is the 

same for all learners and in all situations. It does not satisfy parts b and c of our definition. 

Nonetheless, a video lecture could be viewed as adaptive if it has been designed based on a 

careful analysis of data about student learning in the given domain (part a of the definition). This 

would be adaptivity not to individual learners, but to the demands that the task domain makes on 

learners in general. The video would be in instance of design-time adaptivity. 

Adaptive to What? 

What should instruction adapt to in order to be more effective than one-size-fits-all instruction? 

There are many learner characteristics to consider, by one accounting as many as 30 (Jonassen & 

Grabowski, 1993). Which characteristics are most worth adapting to is an empirical question.  In 

our review of the empirical literature on adaptive learning technologies, we distinguish five 

broad groups of learner characteristics, shown as the rows of the Adaptivity Grid in Table 1. A 

key characteristic is student knowledge.  There is ample evidence in various literatures (e.g., 

Corbett et al., 2000; Dochy et al., 2002; Jonassen & Grabowski, 1993; Kalyuga, 2007; Tobias, 

1994) that students differ significantly in their prior knowledge related to given subject matter 

and that the effectiveness of instructional treatments interacts with students’ knowledge. A key 

idea is further that instruction needs to be designed with the knowledge demands of a domain 

clearly in mind, and that uncovering these knowledge demands is best done using data. As a 
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Table 1.  The Adaptivity Grid: columns indicate the different time scales of adaptation (i.e., what to adapt), rows indicate learner 
characteristics for which instruction is adapted (i.e., what to adapt to), and each cell provides empirical evidence  (i.e., relevant studies 
reported in this chapter). 
 Design Loop Task Loop Step Loop 

Prior knowledge  
and  
knowledge growth 
 

Koedinger & McLaughlin, 2010; 
Koedinger, Stamper, McLaughlin, 
& Nixon, 2013b; Lovett, Meyer, & 
Thille, 2008; Stamper & 
Koedinger, 2011 

Arroyo, Mehranian, & Woolf, 2010; Atkinson, 1972; Beck, 
Woolf, & Beal, 2000; Corbett, McLaughlin, & Scarpinatto, 
2000; Kalyuga & Sweller, 2004, 2005; Muldner & Conati, 
2007; Nückles, Hübner, Dümer, & Renkl, 2010; Oksa, 
Kalyuga, & Chandler, 2010; Salden, Aleven, Schwonke, & 
Renkl, 2010; Salden, Paas, & van Merriënboer, 2006b; Van 
Merriënboer et al., 2004 

Conati & VanLehn; 2000; Mitrovic, 
Ohlsson, & Barrow, 2013 
 
 
 
 
 

Students’ path 
through a problem: 
Strategies, errors 
 

Adams et al., 2014; Booth, Lange, 
Koedinger, & Newton, 2013; 
Koedinger & Anderson, 1998; 
McKendree, 1990; McLaren et al., 
2016 

Anderson et al., 1995; McLaren et al., 2012; Roll, Aleven, 
& Koedinger, 2010 
 
 
 

Anderson, Conrad, & Corbett, 1989; Chi, 
VanLehn, Litman, & Jordan, 2011; Lee, 
Rowe, Mott, & Lester, 2014; Rittle-Johnson 
& Star, 2007; Rowe & Lester, 2015; 
Stamper, Eagle, Barnes, & Croy, 2013; 
Waalkens, Aleven, & Taatgen,  2013  

Affect, motivation 

D’Mello, Lehman, Pekrun, & 
Graesser, 2014; Lehman, D'Mello, 
Strain, Mills, Gross, Dobbins, . . . 
Graesser, 2013 

Anand & Ross, 1987; Baker et al, 2013; Baker et al., 2009; 
Baker et al., 2008; Bernacki & Walkington, 2014; Heilman 
et al., 2010;  Walkington, 2013; Walkington & Bernacki, 
2015; Walkington & Sherman, 2012 

D'Mello et al., 2010; D’Mello, Olney, 
Williams, & Hayes, 2012; Forbes-Riley & 
Litman, 2011 
 

Self-regulated 
learning strategies, 
metacognition, 
effort 

Aleven & Koedinger, 2002 
 
 
 

Arroyo et al., 2007; Long, 2015; Long & Aleven, 2013a; 
Long & Aleven, 2013b; Mitrovic & Martin, 2007 
 
 
 
 

Aleven, McLaren, Roll, & Koedinger, 2010; 
Duffy & Azevedo, 2015; Kinnebrew, 
Szegedy, & Biswas, 2014; Leelawong & 
Biswas, 2008; Mathan & Koedinger, 2005; 
Roll, Aleven, McLaren, & Koedinger, 2011; 
Wagster, Tan, Wu, Biswas, & Schwartz, 
2007 

Learning styles 

 Brown, Brailsford, Fischer, & Moore, 2009; Constantinidou 
& Baker, 2002; Cook, Thompson, Thomas, & Thomas, 
2009;  Ford & Chen, 2001;  Graf & Kinshuk,  2007; 
Mampadi, Chen, Ghinea, & Chen, 2011; Massa & Mayer, 
2006;    Popescu, 2009,  2010;   Tseng, Chu, Hwang, & 
Tsai, 2008;  
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second group of characteristics, a system may respond to the specifics of a student’s path through 

a learning activity, including a student’s solution strategy, specific errors, requests for help and 

assistance, and other elements of the problem state. Third, researchers in advanced learning 

technologies have become very interested in how instruction can assess learners’ affective or 

motivational state, and how instruction might adjust to these characteristics on the fly. Fourth, 

we consider to what degree it has been shown to be fruitful for instruction to be adaptive to 

learners’ self-regulatory processes, including metacognitive processes. Finally, it is often thought 

that instruction should adjust to students’ learning styles. 

In order to adapt to individual differences in the task-loop or step-loop, the system needs 

to assess these characteristics for individual students, especially for characteristics that can 

reasonably be expected to change over the course of instruction (e.g., knowledge of the targeted 

learning objectives, affective or motivational state, and so forth). The fields of AI in Education 

and Educational Data Mining have produced many techniques for inferring student 

characteristics from available data, under the banner of student modeling  (e.g., Desmarais & 

Baker, 2012). This topic however is outside the scope of the current chapter. 

How and When to Adapt? 

How and when should instruction adapt or be adapted to learner similarities and 

differences? In principle, any instructional feature could be adapted, based on learner 

characteristics. We organize the many ways in which instruction can vary and change into three 

broad categories, with different time scales, from slowest to fastest: Design-loop adaptivity, task-

loop adaptivity, and step-loop adaptivity, shown as the columns of the Adaptivity Grid (see 

Table 1).  

Design-loop adaptivity involves data-driven decisions made by course designers before 
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and between iterations of system design, in which a course or system is updated based on data 

about student learning, specifically, data collected with the same system or course. As a result, 

the system becomes more adaptive (or adapted) to the demands of the task domain. This 

corresponds to part (a) of our definition of adaptivity, above.  In design-loop adaptivity, 

instruction is adapted to similarities among learners. 

Task-loop adaptivity involves data-driven decisions the system makes to select 

instructional tasks for the learner.  In task-loop adaptivity, the instruction is changed one task at a 

time; a paradigmatic example is individualized task selection, for example as it occurs in 

cognitive mastery approaches (Corbett & Anderson, 1995; Corbett et al., 2000).   

Step-loop adaptivity involves data-driven decisions the system makes in response to 

individual actions a student takes within an instructional task. In step-loop adaptivity, 

instructional features that operate within a task or learning activity are changed based on learner 

characteristics. The distinction between step-loop functionality and task-loop functionality is 

often made in theoretical accounts of advanced learning technologies (e.g., VanLehn, 2006, 

2011, 2016), as a practical way of thinking about system behavior.  

Nature of Empirical Evidence Studied 

The two dimensions of adaptivity (i.e., when/how to adapt, and what to adapt to) define a 

design space for adaptive instructional systems, shown in the Adaptivity Grid of Table 1. Each 

cell represents a class of adaptive mechanisms, typically consisting of a method for assessing 

student characteristics and one for adjusting the instruction based on this assessment. In the 

remainder of the chapter, we discuss empirical evidence regarding the Adaptivity Grid. For each 

cell, we look at empirical work that tested the effect of the particular class of adaptive 

mechanisms captured in that cell. We look at experimental studies that compared outcomes 
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resulting from adaptive versus non-adaptive versions of the same instruction. We also look at 

studies that tested – in the context of advanced learning technologies – whether interactions exist 

between student characteristics and instructional treatments. The value of adaptivity is 

demonstrated either when an adaptive instructional treatment produces more favorable outcomes 

than corresponding non-adaptive instruction, or when a crossover interaction is found between a 

choice of instructional treatment and a learner characteristic, such that learners with the 

characteristic do better with one instructional treatment, but learners without the characteristic do 

better with a different instructional treatment. 

Adapting to Prior Knowledge and Knowledge Growth 

 In technology-driven courses, as in traditional courses and classrooms, students enter 

with varying degrees of knowledge of and experience with the targeted domain.  A one-lesson-

fits-all approach to learning and instruction becomes implausible when learning environments 

are filled with such a diversity of incoming knowledge. The heterogeneity of knowledge (i.e., 

variance in incoming, on-going and learning rates) among learners is considered by many to be 

the most influential factor in learning (Dochy, Segers, & Pletinckx, 2002; Tobias, 1994). Thus, a 

key goal of adaptivity in learning environments is to improve methods for assessing prior 

knowledge and knowledge growth, and then adapting the instruction accordingly. These 

adaptations can be done in the design-loop, task-loop, or step-loop as can be seen in Table 1. All 

three ways of adapting to prior knowledge have been shown to be effective in enhancing 

desirable outcomes of instruction. 

Design-Loop Adaptations To Student Knowledge 

 Design-loop adaptation is aptly demonstrated with the redesign of a course or tutoring 
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system that occurs as a result of discovering deficiencies in the knowledge component model that 

underlies the instruction. Typically, this discovery process involves student data, especially 

student data from the same course. A knowledge component model is a fine-grained 

decomposition of the knowledge targeted in the instruction, together with a mapping that 

specifies which activities involve which knowledge components (Koedinger, Corbett, & Perfetti, 

2012; Stamper & Koedinger, 2011). Knowledge component models are commonly used in the 

design and analysis of intelligent tutoring systems but apply equally to online courses or 

instruction without technology.  

Analysis of log data, in which activities are tagged based on a knowledge component 

model, may reveal hidden skills, that is, knowledge within the instructional objectives that was 

missed by the instructor or course designers and therefore is missing from the knowledge 

component model. It may also reveal missed generalizations that students make, or assumed 

generalizations that students miss, meaning that the knowledge component model captures 

knowledge at the wrong level of abstraction. These kinds of deficiencies can be quite difficult to 

avoid in the original knowledge component model underlying a course or tutoring system, but 

can adversely affect the instruction’s efficiency or effectiveness. 

The redesign of a blended statistics course (Lovett, Meyer, & Thille, 2008) illustrates that 

design-loop adaptivity can dramatically enhance the effectiveness and efficiency of instruction. 

Using course log data and pre/post test data, knowledge component analysis uncovered 

deficiencies in the knowledge component model underlying the course, including missed 

generalizations and incorrectly assumed generalizations. Based on this analysis, the course 

objectives were revised, new activities were added and others were deleted to ensure all 

objectives received the right amount of practice. The redesigned course led to dramatically better 
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learning outcomes in half the time, compared to the original course (i.e., the course without the 

new design-loop adaptations). 

As a second illustration, Stamper and Koedinger (2011) redesigned a unit of a geometry 

tutor after discovering specific knowledge components were missing from the tutor’s knowledge 

component model. Using visualization tools (e.g., learning curves) and similar data-mining 

techniques as were used in the Lovett et al. (2008) study, they discovered a latent planning skill 

(i.e., knowing to decompose) that was hindering students from successfully computing the area 

of multi-shaped figures. They redesigned the tutor in a number of ways to address these new 

skills (e.g., they created new problems targeting the planning skill, included more practice 

problems with the targeted skill, and added hints to help students apply the planning skill).  They 

found that students using the adapted tutor had more efficient learning (i.e., less time to mastery) 

and higher performance on a posttest, compared to the original tutor prior to the re-design (i.e., 

the tutor without the design-loop adaptivity).  

In a third example of design-loop adaptation, Koedinger and McLaughlin (2010) based a 

system redesign on data showing that algebra students are worse at writing expressions (e.g., 

800-40x) for two-operator story problems (e.g., “Anne is 800 meters from the dock rowing at 40 

meters per minute ...”) than they are at writing expressions (e.g., 40x and 800-y) for two 

otherwise equivalent one-operator story problems (Heffernan & Koedinger, 1997).  They 

hypothesized that practice on substitution problems (e.g., “Substitute 40m for x in 800 – x”) 

would address the gap. They added  and indeed found better learning in comparison to a control 

that involved practice on simple one-step story problems. 

These examples illustrate that it can be effective to adapt courses or tutoring systems to 

the specific knowledge demands of a given domain, even without run-time adaptivity. As 
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illustrated, a knowledge component approach can be used to uncover these demands by finding 

common patterns in student data (Aleven & Koedinger, 2013; Stamper & Koedinger, 2011), 

refine learner models, and adapt the corresponding instruction to learner similarities. A major 

benefit to a knowledge-component approach, as distinct from other learner modeling (e.g., 

ALEKs selects next problem based on Knowledge Space Theory; Falmagne, Albert, Doble, 

Eppstein & Hu, 2013; Falmagne et al., 1990) is the development of explanatory models that can 

easily be interpreted, and therefore used to facilitate the redesign of new tasks adapted to student 

needs (Koedinger, Stamper, McLaughlin, & Nixon, 2013). 

Task-Loop Adaptations To Student Knowledge 

 There is good evidence that task selection based on assessment of individual students’ 

knowledge state can substantially contribute to the effectiveness of instruction. For example, 

more than 40 years ago, Atkinson (1972) studied task selection techniques for learning German 

vocabulary. Of the four approaches he evaluated, the two that used student response history for 

automated item selection showed the greatest gain on a delayed posttest, more than both the 

learner control and random selection conditions.  

Similar results have been obtained with intelligent tutoring systems developed using 

cognitive theory and learner modeling principles. For example, Cognitive Tutors, a type of 

intelligent tutoring system grounded in cognitive theory (Anderson et al., 1995), implement a 

variation of mastery learning, called cognitive mastery task selection. In this approach, the 

system dynamically assesses student knowledge using a Bayesian model (called Bayesian 

Knowledge Tracing; Corbett & Anderson, 1995). Based on this assessment, the system selects 

tasks that exercise knowledge components that a given student is not likely to have mastered. 

This approach to adaptive task selection, as used in an intelligent tutoring system, was shown to 
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substantially improve the effectiveness and efficiency of student learning, compared to giving all 

students the same problem set (Corbett, McLaughlin, & Scarpinatto, 2000).   It has become a 

standard in commercially-available tutoring systems (Cognitive Tutors). 

A different form of task-loop adaptivity to student knowledge, namely, adaptive selection 

and presentation of worked examples to students, has also been shown to be effective. Muldner 

and Conati (2007) devised a method to adaptively select the best example to present to a student 

to promote learning by analogical problem solving (in which the student solves a problem aided 

by having an analogous example at hand). The adaptive method selected examples based on 

students’ domain knowledge, their tendencies for using certain strategies for learning from 

examples known to be effective, and the similarity between a problem and candidate example. 

Adaptively presented examples led to greater use of self-explanation strategies known to be 

conducive to learning, compared to non-adaptively selected examples, but there was no 

difference in learning gains. On the other hand, Salden, Aleven, Schwonke, and Renkl (2010), in 

the context of an intelligent tutoring system for high-school geometry, found that adaptively 

transitioning from worked examples to tutored problem solving has a greater impact on learning 

than fixed fading of examples or no worked examples (i.e., tutored problem solving by itself). 

Here, the decision made in the task loop was which steps in the next problem should be 

presented to the student as worked-out steps to be explained, and which steps should be open, for 

the student to solve. This decision was based on the system’s assessment of how well students 

explained the worked examples, using the Bayesian Knowledge Tracing method described above 

(Corbett & Anderson, 1995).  

The extensive line of work on expertise reversal, which has provided abundant evidence 

that instruction for novice learners should be different than that for advanced knowledge learners 
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both in well-defined domains (e.g., algebra- Kalyuga et al., 2003; Kalyuga, 2007) and ill-defined 

domains (e.g., literary text: Oksa, Kalyuga & Chandler, 2010; journal writing: Nückles, Hübner, 

Dümer & Renkl, 2010; air traffic control: Salden, Paas & van Merrienboer, 2006a, 2006b), has 

also demonstrated that adapting to student knowledge in the task loop can yield more effective 

instruction.  In a further development of expertise reversal, Kalyuga and Sweller (2004) tested 

adaptation to student knowledge based on a (domain-specific) rapid dynamic assessment method 

(RDA). This assessment method was based on the assumption that advanced learners choose a 

different solution path than novice learners (i.e., the more knowledgeable, the more likely a 

learner will skip earlier, easier steps and jump to later steps). In four separate experiments, 

Kalyuga and Sweller (2004) demonstrated the effectiveness of the RDA method for initial 

training placement based on prior knowledge (e.g., fully worked examples vs. faded examples) 

and adapting instruction based on knowledge growth in real time. 

Although assessing cognition is fundamental to adaptation, it is hard to isolate knowledge 

growth from load and effort. Kalyuga and Sweller (2005) added a cognitive efficiency rating 

(using self-reported measures of cognitive load with performance measures) and found greater 

knowledge and cognitive efficiency gains. Van Merrienboer et al. (2004) used a four-component 

instructional design model (4C/ID-Model) for task selection that accounts for cognitive load and 

mental effort when assessing expertise. Arroyo, Mehranian, and Woolf (2010) demonstrated the 

promise of a task selection policy that combines assessment of mastery with estimates of effort. 

In other projects, discussed below, aspects of student affect are taken into account, in 

combination with cognitive factors, in adaptive task selection policies. 

Step-Loop Adaptations to Student Knowledge 

 Adaptation to prior knowledge and knowledge growth has also been shown to be 
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effective in the system’s step loop. For example, Conati and VanLehn (2000) and, later, 

Hausmann, Nokes, VanLehn, and Gershman (2009), studied effects of adaptive support for self-

explanations of worked-example steps. They implemented a Self-Explanation Coach (SE-Coach) 

in a tutor for college-level physics problem solving (Conati, 2013; 2016; Conati & VanLehn, 

2000). The SE-Coach adaptively selected the steps of worked examples, based on the tutor’s 

assessment of student understanding, captured in the system’s learner model. It also provided a 

structured template interface for two types of self-explanations, as well as feedback on 

explanations entered in this interface. The adaptive support for self-explanation led to greater 

learning gains, compared to a control conditions that was given prompts to explain but no 

adaptive support for self-explanation. This effect was found only for students with low prior 

knowledge. Thus, similar to results found in Kalyuga and Sweller’s (2005) task-loop adaptation, 

as students became more knowledgeable, the less they needed structured, adaptive help and the 

more likely scaffolding interfered.  

Mitrovic, Ohlsson, and Barrow (2013), investigated effects of adaptive positive feedback 

on student solutions with SQL-Tutor, a tutoring system that helps students learn to write 

computer code to query a database. The type of tutor used (called a constraint-based tutor) 

typically provides error feedback only (Mitrovic & Ohlsson, 2006; Ohlsson, 2016). The authors 

hypothesized that positive feedback to a student’s attempted solution, given in addition to error 

feedback, would help reduce student uncertainty and thereby help students learn more effectively 

or efficiently. They devised an adaptive mechanism that gave positive feedback on solution 

aspects that were correct, but about which the student might be uncertain. Potential uncertainty 

was identified based on the submitted solution, the student’s knowledge (captured in the 

system’s long-term student model) and the state of his or her interaction with the system. In a 
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classroom experiment, Mitrovic et al. (2013) compared the revised tutor, which gave adaptive 

feedback on successes and errors, with the original tutor, which gave feedback on errors only, 

and found the students in the experimental condition reached mastery in half the time of the 

control condition.   This approach is closely related to that by Forbes-Riley and Litmann (2011), 

described below. 

Discussion of Adapting to Student Knowledge 

 Much evidence points to the benefits of adapting instruction to student knowledge 

congruent with the notion that prior knowledge is a key influence on student learning. In design-

loop adaptation, there have been some striking demonstrations of improved effectiveness due to 

offline analysis in which educational data mining methods provided insight into the demands of 

the domain, led to refined knowledge component models, and informed redesign of the course or 

tutoring system. This line of work leads one to consider instructional design as an iterative 

process in which data from an earlier system version is key in creating the next version, which is 

more adaptive to all learners. Further, task-loop adaptivity to students’ knowledge growth may 

well be the single cell in our Adaptivity Grid where adaptive instruction is most effective. 

Adaptive forms of task selection based on dynamic assessment of students’ evolving knowledge 

were shown to be more effective to non-adaptive instruction that presented the same sequence to 

all students (e.g., the work on cognitive mastery by Corbett et al., 2000). Although this work has 

been impactful, it would be useful to see one or more replications of these results. The evidence 

is not as prolific regarding the value of adapting to knowledge growth at the step level, although 

here too we see some interesting demonstrations.  There may be room for interesting innovations 

in the step loop and the task loop. For example, adaptively fading support may be effective (e.g., 

VanLehn et al., 2000; see also Collins et al., 1989; Salden et al., 2010). The extensive line of 
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studies focused on the expertise reversal effect might prove fertile ground for the design of 

adaptive instruction. Finally, more and more, researchers are developing task selection methods 

that combine a range of learner factors, rather than focusing on student knowledge by itself (e.g., 

Arroyo et al., 2014; Mazziotti et al., 2015; Grawemeyer, Mavrikis, Holmes, & Gutierrez-Santos, 

2015). 

Adapting to Student Strategies or Errors 

 Adapting to student strategies and errors means using data about the character and 

frequency of student strategy use and error patterns to make decisions about (select or change) 

some element of instruction. Such adaptations have been tried and were found effective in all 

three loops (i.e., in the design, task, and step loops).  

Design-Loop Adaptations To Strategies or Errors 

 Educational technology design can often be enhanced by adapting it to data-identified 

similarities in students’ strategies or errors. An example of adaptation to non-obvious similarities 

in student strategies comes from cognitive task analysis toward design of the Algebra Cognitive 

Tutor (Koedinger & Nathan, 2004). It was discovered that beginning algebra students used 

informal strategies to perform better on algebra story and word problems (66% and 62% correct, 

respectively) than on matched equations (43% correct), rather than the normative strategy of 

translating a story into an equation and solving the equation. The informal strategies included 

iteratively generating an estimate for the unknown value, following the verbal specification of 

the computations (thus not needing an equation), and testing whether the given result is achieved. 

A design loop adaptation was implemented to capitalize on these findings. Although an initial 

Algebra Cognitive Tutor unit design followed an existing textbook approach of scaffolding 
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students by prompting them to first write an equation before answering problem-solving 

questions, the data suggested doing so was not good cognitive load management because it 

required students do something harder (equation symbolization) before something easier (story 

problem solving). The adaptive design idea was to switch this order, that is, to have students do 

something easier first (solve the problem working out the computations needed) to bridge to 

something harder (generalize and express the computations in algebraic symbols).  A random 

assignment experiment reported in Koedinger and Anderson (1998) demonstrated that this 

adaptive design idea does, indeed, produce better student learning, compared to the original 

design that followed the textbook order (i.e., prompt for equations first). 

In addition to making design loop adaptations in reaction to student strategy data, design 

loop adaptations can also be made in reaction to data on similarities in student errors.  In 

research on the Geometry Proof Tutor, McKendree (1990) identified certain strategic proof 

planning skills that were particularly difficult for students.  She adapted the design of the tutor so 

that the tutor’s error feedback (given when students are stuck on a step) provided instruction on 

these strategies (e.g., by pointing out the goal on which to focus next in the proof). She 

demonstrated, in a random assignment experiment, that a tutor with these error messages 

produced better student learning than the original tutor, which provided correctness feedback 

only (i.e., only informed the student whether each proof step was correct or not). Note, this 

adaption, changing the strategic focus on all error feedback messages, was applied across all 

students (in the treatment condition) based on a similarity across students (they all tend to have 

difficulty with strategic planning decisions). Thus, it is a design loop adaption.  

As another example of design loop adaptations, a number of researchers have used 

domain-specific data or literature on common student errors to design tutoring systems that 
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present incorrect or erroneous worked examples to students. They performed random assignment 

experiments to investigate whether the addition of incorrect worked examples enhances student 

learning relative to comparable controls, namely, the same tutoring systems without incorrect 

worked examples but with correct examples and/or problem-solving practice. Booth, Lange, 

Koedinger, and Newton (2013) created alternative versions of an algebra equation-solving tutor 

that included, respectively, only correct examples, only incorrect examples, or both.  They found 

that incorrect examples enhanced student learning, compared to the other tutor versions. Their 

design-loop adaptation is based on substantial data collection and analysis of persistent and 

problematic errors in Algebra I (cf., Booth, Barbieri, Eyer, & Pare-Blagoev, 2014). Similarly, 

two studies (Adams et al, 2014; McLaren et al., 2016) with a math tutoring system for learning 

decimals, called AdaptErrEx, found enhanced learning in a condition with incorrect examples as 

measured on a delayed post-test, as compared to tutored problem solving without 

examples.  Their design-loop adaptation was based on substantial data and analysis that 

identified students’ most common decimal misconceptions.  Isotani, McLaren, and Altman 

(2010) describe how they adapted instruction to this data on common student errors by designing 

incorrect examples that targeted the identified misconceptions. Thus we see that redesigning 

systems based on data about student strategies and errors in the given domain can lead to re-

designed instruction that is more effective than the original, even if the system does not adapt 

dynamically to student differences. 

Task-Loop Adaptations To Strategies or Errors 

 The AdaptErrEx system (Goguadze, Sosnovsky, Isotani, & McLaren, 2011; McLaren et 

al., 2012) provides an example of how task-loop adaptations to differences in student errors can 

be implemented.  This system adapts the choice of erroneous examples to present to an 
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individual student, based on pre-test differences in student error patterns and associated 

misconceptions. If pre-test errors suggest the student may believe that the bigger the whole 

number to the right of the decimal, the bigger the decimal, then a good choice of erroneous 

example might be: “0.25 is bigger than 0.5” because this student is likely to make that same 

error. Conversely, if pre-test errors of a student suggest she has the misconception that more 

digits means a smaller decimal, now “0.5 bigger than 0.75?” becomes a good adaptive choice to 

help the student debug her misconception. As mentioned, erroneous examples helped students 

learn better, although the value of adaptive selection was not confirmed. 

As another instance of adapting to errors in the system’s task loop, the Invention Lab 

(Roll, Aleven, & Koedinger, 2010) selects new contrasting cases based on the specific 

shortcomings in students’ attempts at inventing procedures that achieve desirable goals (e.g., 

develop a measure of variability in a numeric variable sample such as how high an object 

bounces when dropped on a trampoline).  Cases can be considered to be tasks within a 

curriculum or project and so we place the Invention Lab in this section (and also because of its 

similarity with AdaptErrEx). However, cases might, instead, be considered as steps in an 

invention problem/activity and then InventionLab is an instance of step-loop 

adaptation.  Experimental results suggest that having students attempt to invent procedures and 

adaptively get new cases based on limitations in the proposed procedure yields better transfer 

than having students evaluate given procedures, although the experiment did not try to isolate the 

value of adaptivity.   

Beck, Woolf and Beal (2000) investigated whether statistical and machine learning 

techniques could be used for effective task-loop adaptivity. Using linear regression and 

reinforcement learning, they created an adaptive agent, called ADVISOR, that adaptively 
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selected the next topic, problem, or hint based on the student’s level of prior proficiency and 

level of cognitive development, the difficulty of the current topic and the current problem, and 

the student’s prior attempts at answering, including hints seen. The objective of ADVISOR’s 

adaptive policy was to minimize the time the student spends per problem. (The choice of 

objective was driven in part by the desire to have a proof-of-principle demonstration for the 

given approach to using machine learning.) Embedded in an intelligent tutor for arithmetic 

(AnimalWatch), ADVISOR led to a significant reduction in the time spent per problem 

compared to using AnimalWatch as-is. This project demonstrated that a machine-learned 

adaptive policy for tutoring can influence students’ learning processes, although learning 

outcomes were not measured.  

Step-Loop Adaptations To Student Strategies or Errors 

 Error feedback and next-step hints are forms of step-loop adaption that are common in 

intelligent tutoring systems (cf., Koedinger et al., 2013a; VanLehn, 2006; 2011). This kind of 

adaptation gives different students different instructional feedback and hints (i.e., it adapts 

instruction to student needs) depending on the specific errors those students make or the specific 

strategies they pursue.  Dynamic adaption to specific student errors requires a system that can 

monitor student step-by-step actions in the given computer interface and evaluate those actions 

as correct or incorrect or, in less well-defined domains, as more desirable or less desirable. Some 

forms of intelligent tutoring systems can not only evaluate the correctness of student solutions 

and actions, but can generate correct solutions to problems and complete partially complete 

solutions.  Such tutors can provide another form of adaptation, namely, hints as to what to do 

next. If the problem space is such that multiple solution strategies are possible within a given 

problem, then dynamic adaptation of hints (so that the next-step hint is adaptive to student 
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strategies), requires that the tutoring system is capable of recognizing of generating alternative 

solutions.  As a simple example: If one student is adding fractions with unlike denominators, like 

¼ + ⅙, and had entered 24 as the converted denominator for ¼, she will get a different next-step 

hint than a student who had entered 12 as the converted denominator of ¼. As another example, 

this time from the domain of introductory computer programming, when stuck in a programming 

problem that requires repeated steps, a student pursuing a looping solution will get a different 

next step hint (e.g., toward entering terminating condition on a while loop) than a student 

pursuing a recursive solution (e.g., a hint toward entering a base condition to exit the recursion).   

A number of experiments have explored variations on whether, how, and when giving 

solution state feedback or next-step hints aid learning (see Aleven, McLaren, Roll, & Koedinger, 

2016; Koedinger & Aleven, 2007, for a review of some of these studies).  One of the most 

powerful early results comes from experiments with the LISP programming tutor (Anderson, 

Conrad, & Corbett, 1989) where it was found that students who received step-by-step error 

feedback and as-needed next-step hints learned more than students with a typical set of problems 

and program solution evaluation only at the end of each problem, and they did so in one third the 

time.   

Work by Stamper, Eagle, Barnes, and Croy (2013) showed the value of next-step hints 

that adapt to the solution path that the student is following. They used data from past student 

solutions to problems, with machine learning methods, to automatically generate next-step hints 

for students using an online environment for practicing logic proofs.  The original version of the 

online proof system allowed any logically correct step but gave no suggestions or feedback as to 

which of the many possible correct next steps would advance the proof. The machine-learned 

hints suggested a next step that (in past student work) was a frequent choice on the way to a 
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completed proof, from the given state. In a quasi-experiment, the adaptive next-step hints helped 

students persevere, do better in the tutor, and obtain better course grades, compared to a the 

original online proof system, which provided no suggestions for what to do next. More generally, 

our recent review of the literature on the value of next-step hints indicates that these hints help 

learning, albeit to a limited degree (Aleven et al., 2016).  

Potential benefits of adapting to students’ strategy choices within the step loop were 

explored by Waalkens, Aleven, and Taatgen (2013). They compared learning with three versions 

of a tutoring system for equation solving that differed only in the range of student strategies that 

the system recognized as correct and for which it provided tutoring. One system version 

recognized and supported only a standard strategy, determined based on cognitive task analysis 

and review of textbooks.  Another version dealt with this standard strategy as well as minor 

variations.  A third recognized major and minor strategy variations. In the last two versions, 

students were free to use whichever strategy variation they preferred, within the range 

recognized by the system. Surprisingly, Waalkens et al. found no difference in learning or 

enjoyment due to these different degrees of adaptivity (or strategy freedom). These results are in 

line with the literature on supporting strategic flexibility in algebra (e.g., Rittle-Johnson & Star, 

2007).  They suggest that in order to help students learn to use multiple strategies and acquire 

strategic flexibility, more is needed than merely being able to follow along with student strategy 

choices.   For example, when instructional goals include use of multiple alternative domain 

strategies, these strategies should be practiced separately. When the instructional goals include 

strategic flexibility, additional activities may need to be designed in which students have the 

freedom to select their own strategies (as in the study with Lynnette), perhaps with added support 

for reflecting on the choice of strategies or comparing different solutions. It may be helpful as 
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well as to provide activities that provide focused practice with strategy choice (cf. Rittle-Johnson 

& Star, 2007).  

 Increasingly, work focuses on adaptively selecting the next tutor action or dialogue move 

in the system’s step loop; often, machine learning is used to create policies are adaptive to 

student errors and strategy choice, and often to other variables as well. Early work by Beck et al. 

(2000) was mentioned above. As another example, in work with a tutorial dialogue system, Chi, 

VanLehn, Litman, and Jordan (2011) used reinforcement learning (a particular machine learning 

technique) to generate a policy that selects between tell and elicit moves by the tutor agent (i.e., 

whether to provide information to the student or ask the student to generate it, a key decision in 

tutorial dialogue). In a lab study, this policy was shown to lead to better learning than a policy 

that was deliberately “counter-adaptive” (i.e., selected tell when elicit was called for, and vice 

versa), demonstrating that choice between tell and elicit influences student learning. That left 

open the question, however, of whether this adaptive policy leads to better student learning, 

compared to a reasonable non-adaptive alternative.  Similarly, Murray, VanLehn and Mostow 

(2004) used a Dynamic Bayesian Network to select the next tutor move in tutoring systems for 

reading and for calculus, with some promising results using simulated students. Rowe and Lester 

(2015) focused on step-loop adaptivity in the context of an educational game for science learning 

(CRYSTAL ISLAND; Meluso, Zheng, Spires, & Lester, 2012). They used reinforcement 

learning to learn a policy by which the system could select the next step in the game’s unfolding 

narrative, in a manner responsive to the state of the narrative and problem solving, as well as to 

students’ prior knowledge and how frequently they play video games. Their study shows that 

compared to randomly selecting tutorial decisions, the machine-learned adaptive policy had a 

positive influence on student behavior in the game (greater efficiency of hypothesis testing and 
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information gathering), though not on domain content learning. A related study (Lee, Rowe, 

Mott, & Lester 2014) found an improvement in domain content learning over a minimal 

guidance control condition. None of these projects appear to have shown enhanced learning over 

a stringent and challenging control condition, due to machine-learned step-loop adaptivity, 

although that may just be a matter of time.    

Discussion of Adapting to Students’ Strategies and Errors 

 We found a substantial number of effective design loop adaptations to students’ strategies 

and errors, more than we expected, underlining once more that use of data from a system can be 

of significant help in improving that system. We see many demonstration of effective step-loop 

adaptations to students’ strategies and errors. In particular, the use of step-level feedback has 

been shown to be very effective; for next-step hints, the evidence is more equivocal but on 

balance, positive (Aleven et al., 2016). Efforts to use machine learning to adaptively select 

tutoring moves in the step loop have yielded promising results, although not yet a clear 

demonstration that they enhance learning over a strong, non-adaptive way of selecting these 

moves. Although we found examples of systems’ adapting to student errors or strategies in their 

task loop, somewhat to our surprise, we did not find any studies rigorously demonstrating the 

value of such adaptivity, in contrast to the adapting to students’ knowledge growth, discussed in 

the previous section. Perhaps it makes sense that adaptations to faster phenomena (strategies and 

errors) might need to be faster (i.e., in the step loop) than adaptations to slightly slower 

phenomena (knowledge growth). Nevertheless, it is plausible that both step-loop adaptations to 

knowledge growth and task-loop adaptations to strategies and errors could be effective, so we 

look forward to further research in this area.  
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Adapting to Affect and Motivation 

In this section we discuss empirical evidence regarding whether learning technologies might be 

more effective if they adapt to, or be adapted to, aspects of student affect or motivation. Work in 

the area of affect-aware learning technologies (D’Mello, Blanchard, Baker, Ocumpaugh, & 

Brawner, 2014;  D’Mello & Graesser, 2014) tends to focus on affective states such as boredom, 

confusion, frustration, engagement/flow/engaged concentration (often called “non-basic 

emotions”) as they have been found to be frequent during learning with technologies (e.g., 

D’Mello, 2013).  A number of theoretical frameworks clarify the role of emotions arise in 

academic settings (e.g., Boekaerts 2007; Pekrun, Frenzel, Goetz, & Perry, 2007), but tend to 

provide little guidance in designing adaptive learning technologies  Nonetheless, we see 

interesting work in this area. 

Adapting to individual differences in affect requires being able to detect a learner’s 

affective states, preferably in a temporally fine-grained and unobtrusive manner.  Much work has 

focused on how machine learning or statistical methods can be used for this purpose. Some 

methods rely only on data from the regular student-system interaction stream (e.g., Baker et al., 

2012) whereas others require data collected with special sensors to measure facial expressions, 

variables extracted from speech, EEG, heart rate, skin conductivity, pupil dilation, posture, and 

so forth (Arroyo et al., 2009; Calvo & D’Mello, 2010; Conati, 2002; Conati & MacLaren, 2006; 

Harley, Bouchet, Hussain, Azevedo, & Calvo, 2015; Sabourin, Mott, & Lester, 2011). The 

details of this work are beyond the scope of this chapter.  

In addition to work on affect-aware learning technologies, a few studies focused on how 

to adapt to student motivation. There is great variety in theoretical perspectives on the role of 

motivation in education (e.g., Schunk, Pintrich, & Meece, 2008). However, as in the case of 
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affect, existing theories are often not specific enough to provide much guidance for technology 

design. Nonetheless, we found some studies that demonstrate effective ways of adapting to 

individual students’ specific motivations.  

Design-Loop Adaptations To Affect and Motivation 

A typical design-loop adaptation to affect or motivation might involve the following steps: First, 

a learning scientist or learning engineer collects data about student affect while students are 

using a given tutoring system or online course, for example, through systematic observation or 

frequent polling in the software. Second, she uses the affect data, combined with system log data, 

to identify parts of the instruction that are particularly frustrating or confusing for large numbers 

of students (i.e., that tend to induce negative affect or affective states whose frequency correlates 

negatively with learning gains). She then redesigns these parts of the system in an attempt to 

make them less frustrating or confusing. Finally, she tests if the new system is more effective 

than the original version. As a slight variation on this process, she might check which parts of the 

system are associated with greater incidence of positive affect (e.g., engaged concentration) or 

greater incidence of affective states that correlate positively with learning. She might then test 

whether using these features in other parts of the system makes the system as a whole more 

effective. A small number of studies illustrate this pattern. 

Specifically, a series of studies on designing for confusion (D’Mello, Lehman, Pekrun, & 

Graesser, 2014; Lehman et al., 2013) provide an interesting illustration of design-loop adaptivity 

to student affect. This work was grounded in prior data analysis that found that confusion can 

correlate positively with learning (D’Mello et al., 2014), consistent with theories focused on 

cognitive disequilibrium as being instrumental in learning (Piaget, 1952).  These researchers 

asked, could designing instructional conditions that induce (and resolve) confusion be a 
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successful instructional design strategy? They created a system capable of conducting trialogs 

(with a natural language speech interface) in which a human student, computer tutor agent, and 

computer student agent reason through a challenging question in the targeted task domain. (e.g., 

research design).  The trialogs were designed to cause confusion on the part of the human learner 

by having the two computer agents contradict each other or express false information, later 

resolved during the trialog. In two studies, confusion was measured as hesitations and pauses in 

decisions, through self-report, and facial expressions. These studies compared four experimental 

conditions, which differed only in whether each agent expressed incorrect information. (Thus, 

there were two conditions with contradictions, and two without.) It was found that contradiction 

led to deeper comprehension but only if the learners were confused. The work illustrates that 

adapting to affect in the design loop can be effective.  We view this work as an instance of 

design-loop adaptivity, because the design of the trialogs was grounded in analysis of affect data 

from prior studies and because the system redesign may have been based on an analysis of 

dialogue data from a prior system version (e.g., regarding issues about research design may have 

been confusing to students). 

Work by Baker et al. (2009) follows the first part of the prototypical design loop scenario 

outlined above, focused on a phenomenon he dubbed gaming the system, a set of ostensibly 

disengaged student behaviors. Specifically, Baker et al. (2013) define gaming the system as 

behaviors in which learners try to get through problems with minimal effort, taking advantage of 

software features such as hints and step-level feedback to coax answers out of the system without 

much cognitive effort. This behavior is associated with lower learning when it occurs on problem 

steps for which the student has a low level of knowledge (Baker et al., 2013). Some work has 

focused on preventing or counteracting gaming. Using statistical techniques, Baker et al. (2009) 
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created a classifier capable of detecting gaming behavior automatically based on the regular 

student-system interaction stream. This detector was used to investigate which features 

commonly found in tutors (especially in the user interface) might make them prone to gaming. 

The researchers created an extensive taxonomy of tutor features and used it to code the features 

of a large number of tutor units for which they had log data. Running the gaming detector over 

the log data from these tutor units enabled them to identify features associated with greater 

incidence of gaming.  The study provides a foundation for further investigations into design-loop 

adaptivity. For example, one might redesign one or more tutor units so they avoid gaming-prone 

features identified in this work, and then run a classroom study to test the hypothesis that the 

redesigned tutor leads to less gaming and other desirable outcomes (e.g., greater engagement and 

learning). 

Task-Loop Adaptations To Affect and Motivation 

Some advanced learning technologies can adapt to affect and motivation in their task loop, with a 

positive influence on student learning. One project focused on adaptations to elicit students’ 

personal interest (Hidi & Renninger, 2006). Past research shows that higher interest is associated 

with learning (Ainley, Hidi, & Bendorff, 2002; Harackiewicz, Durik, Barron,Linnenbrink-

Garcia, & Tauer, 2008; Hulleman & Harackwicz, 2009). One way to elicit interest is to 

personalize instructional contexts according to students’ out-of-school interests (e.g., sports, 

gaming, movies; Anand & Ross, 1987; Cordova & Lepper, 1996). Walkington and colleagues 

investigated the effect of adjusting the cover stories of algebra problems to students’ personal 

interest, in a study with 145 students in a Cognitive Tutor Algebra course (Walkington, 2013; 

Walkington & Sherman, 2012). Students randomly assigned to conditions received either normal 

problems or personalized problems based on their personal interest in sports, music, art, or 
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games. The mathematics in the assigned problems was the same in both conditions. The results 

were quite remarkable. Personalization based on interest improved the immediate accuracy and 

efficiency of learning and led to accelerated future learning with the tutoring software, four units 

later, without the personalization. The effects were strongest when normal problems were 

disconnected from student experiences (e.g., nitrogen in an asteroid) rather than already 

somewhat personalized (e.g., money at work). The effects were largest for students identified as 

struggling with Algebra I. In a follow-up study with 152 students, a similar personalization 

intervention led to increased triggered situational interest when working in the software, 

improved accuracy and efficiency in the tutor, and enhanced individual interest in learning 

mathematics, which was associated with gains on paper-based tests of Algebra I skills (Bernacki 

& Walkington, 2014; Walkington & Bernacki, 2015). 

Similarly, a study by Heilman et al. (2010) found that learners of English as a second 

language learn better when reading materials are selected (by machine algorithms) in a manner 

that takes into account not just cognitive, domain-based factors (e.g., what vocabulary words the 

learner has not learned yet, and the difficulty level of the text) but also based on the learner’s 

personal interest.  

Finally, work by Baker et al. (2008, 2013) provides some evidence for the effectiveness 

of adapting, in a system’s task loop, to students’ gaming the system. As mentioned, Baker et al. 

created a machine-learned detector that automatically detected the occurrence of disengaged 

gaming behaviors. They embedded the detector in a tutoring system for middle-school 

mathematics, so that, when it detected a student’s gaming of the system, it would assign learning 

tasks that focused on prerequisite knowledge for the instructional objectives targeted in the given 

unit. For students prone to gaming, this task-loop adaptation reduced gaming behaviors and led 
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to improved learning, compared to working with the regular tutor version, in which there was no 

adaptivity to student gaming. 

Step-Loop Adaptations Affect and Motivation 

A number of studies have investigated the effectiveness of step-loop adaptations to affect. These 

studies tended to use conversational agents and other kinds of tutorial dialogue systems. These 

systems interact with students in natural language (sometimes in speech, sometimes through a 

chat interface) and often show an animated agent on the screen that represents a tutor or peer 

learner character. 

One study evaluated the effect of empathic dialogue moves by a pedagogical agent 

(AutoTutor). The affect-aware AutoTutor system selected the moves adaptively based on the 

student’s affective state (D’Mello et al., 2010). The system was capable of detecting boredom, 

confusion, frustration, and neutral affective state using discourse features, body language 

(posture), and facial expressions, for which it required some special sensors not part of a 

standard computer configuration. It responded with empathetic, encouraging, motivational 

dialogue moves and emotional displays. For example, the tutor agent might say: “This stuff can 

be kind of dull sometimes, so I’m gonna try and help you get through it. Let’s go!” or:  “Some of 

this material can be confusing. Just keep going and I am sure you will get it.” In a study with 84 

participants, students were randomly assigned to an affect-aware version of AutoTutor or the 

regular version, whose dialogue moves were selected based on the state of dialogue, but without 

responding to student affect. The affect-aware empathic dialogue moves enhanced learning for 

lower domain-knowledge students, who also perceived the affect-aware system more positively. 

We consider the empathic dialogue moves to be step loop adaptations, because they adjust what 

happens on the specific steps within a problem (i.e., turns within a dialogue). 
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A study with a system called Gazetutor (a pedagogical agent that gives lectures) also 

demonstrated that adaptively responding to student affect in a system’s step loop can be 

efffective (D’Mello, Olney, Williams, & Hayes, 2012).  During the lecture presented by the 

pedagogical agent, this system used eye tracking to detect disengagement on the part of the 

student as not looking at relevant areas of the screen for 5 seconds or more. It addressed students 

in disengaged state using prompts such as  “Please pay attention” or  “You might want to focus 

on me for a change.” The gaze-sensitive tutor helped students re-orient attention and learn with 

greater understanding, compared to a version that did not respond to disengagement detected 

through eye tracking.  

Finally, Forbes Riley and Litman and (2011) tested whether, in a tutorial system that 

engages in natural language dialogue with the student, adapting to student uncertainty as detected 

in the speech signal leads to better learning. The system treated correct but uncertain responses 

differently from correct but certain responses, in a manner similar to the study by Mitrovic et al. 

(2013), described above. For correct responses about which the student appears to be certain, the 

dialogue agent merely acknowledged that the answer is correct. When the answer was correct but 

the student was uncertain, however, the system acknowledged that the answer was correct and 

then elaborated on why, in the same manner as it did for incorrect responses, either by providing 

an explanation or by leading the student through a line of reasoning. The results of an evaluation 

study were inconclusive, however, possibly due to the relatively low incidence of correct but 

uncertain responses (which were the only occasions for adapting to uncertainty). 

Discussion of Adapting to Student Affect and Motivation 

The work reviewed here shows that adapting to student’s affect can be effective in all 

three loops (design loop, task loop, and step loop. This line of work is instrumental in helping us 
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understand how affect interacts with academic learning. There is a much larger space of affect-

sensitive adaptations to be explored. An interesting question is how much guidance studies of 

human tutors’ responses to affect might provide (Lehman, Matthews, D’Mello, & Person, 2008). 

Also, it appears that female and male students react differently to affective adaptive support 

(Vail, Boyer, Wiebe, & Lester, 2015).   

Although less work has focused on adapting to student motivation than on adapting to 

student affect, the limited work that has been done in this area shows that selecting tasks based 

on personal interest can have a strong effect on student learning. Some work (not discussed 

above) has focused on automatically detecting motivational states (specifically, self-efficacy) 

using machine-learned models  (McQuiggan, Mott, & Lester, 2008). These methods could be 

used for adaptive technologies that respond adaptively to students’ changing self-efficacy. 

Some work emphasizes the interplay between affect and cognitive factors. For example, 

Baker et al.’s (2008) tutor reacted with a cognitive intervention (namely, remedial practice) to 

disengaged behaviors. Along similar lines, some researchers are now designing adaptive 

algorithms for task selection that consider affect in combination with cognitive factors such as 

knowledge growth or problem-solving success. For example, Arroyo et al. (2014) describe an 

effort-based adaptive tutoring algorithm that integrates engagement factors, including a measure 

of the effort the student is exerting in the learning process. Mazziotti et al. (2015) present an 

algorithm for task selection that integrates affect and cognitive factors. In short, we are seeing 

forms of hybrid adaptivity that cut across the rows of the Adaptivity Grid (i.e., that integrate 

multiple psychological realms). 

Adapting to Students’ Self-regulation of Learning  
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Self-regulated learning (SRL) refers to self-directive processes and associated 

motivational beliefs that enable learners to take a proactive role in acquiring academic skill, by 

setting goals, selecting and deploying strategies, and self-monitoring one’s effectiveness 

(Zimmerman, 2008). Theories of SRL abound (e.g., Winne & Hadwin, 1998; Zimmerman & 

Campillo, 2003; Zimmerman, 2008)’ SRL  accounts for substantial variability in learning 

outcomes (Zimmerman & Martinez-Pons, 1988, 1990;,Pintrich & De Groot, 1990). Here we 

consider the question of whether advanced learning technologies might be more effective if they 

adapt to learners’ self-regulation of learning. Adapting to self-regulation means that data is used 

to design support that helps students in applying self-regulatory processes during their learning 

activities. Sometimes, the main goal is to help students learn more effectively at the domain 

level, helped by the support for SRL. Sometimes, a key additional goal is to help students 

become better at regulating their own learning so that their future learning experiences, when the 

support for SRL is no longer in effect, will be more effective.  We discuss projects focused on 

both types of goals. 

Design-Loop Adaptations To Self-Regulated Learning 

A typical design-loop adaptation to students’ self-regulation of learning would involve analyzing 

data from a given system to better understand student self-regulation with that type of system 

and/or to find evidence of productive or not-so-productive forms of self-regulation. This data 

mining and modeling phase would be followed by a redesign of the system to better support the 

identified self-regulation processes, and/or the learning thereof. The redesigned system could be 

adaptive either to student similarities with respect to the targeted SRL processes.  

A considerable amount of work has focused on supporting self-explanation within 

adaptive learning technologies (Corbett, Wagner, & Raspat, 2003; McNamara, O’Reilly, Rowe, 
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Boonthum, & Levinstein, 2007; Rau, Aleven, & Rummel, 2009; Weerasinghe & Mitrovic, 2006; 

Wylie, Sheng, Koedinger, & Mitamura, 2011). Some of this work can be viewed as design-loop 

adaptivity. For example, a set of studies on supporting self-explanation with a Cognitive Tutor 

(Aleven & Koedinger, 2002) started with a discovery in data, a key criterion for design-loop 

adaptivity. On pre- and post-tests, students were better able to solve geometry problems than 

provide reasons for their problem steps in terms of geometry theorems and definitions (Aleven, 

Koedinger, Sinclair, & Snyder, 1998). This finding suggested that students learned shallow 

strategies, such as relying on vague notions of symmetry in geometry diagrams or relying on the 

fact that angles look the same in the diagram. It led to the hypothesis that prompting students to 

articulate the reasons behind their steps during their work with the tutor might lead to more 

robust learning, in line with work on self-explanation at the time (e.g., Chi, Bassok, Lewis, 

Reimann, & Glaser, 1989; Chi, de Leeuw, Chiu, & LaVancher, 1994; Renkl, Stark, Gruber, & 

Mandl, 1998). The tutor was redesigned so that it prompted students to explain problem steps by 

providing the name of the geometry theorem that justified the step. Two classroom studies 

compared students’ learning outcomes with the redesigned tutor versus the original tutor. The 

original tutor provided guidance during problem solving but did not offer any prompts or support 

for self-explanations. The redesigned tutor was the same, except that prompted for explanations 

and provided hints and feedback regarding these explanations. The support for self-explanation 

led to stronger conceptual knowledge and less shallow procedural knowledge (Aleven & 

Koedinger, 2002). We consider this work as an instance design-loop adaptivity, because the 

support for the targeted SRL process was designed based on data from the given system and the 

support was the same for all learners. 

Task-Loop Adaptations To Self-Regulated Learning 
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 A typical task-loop adaptation to student SRL would be a system that supports student 

self-regulation in-between tasks (e.g., provides support for making good task selection decisions, 

known to be challenging for students) or that tries to select tasks that pose specific challenges 

regarding SRL. Although the latter approach is interesting, we only know of work that has taken 

the former approach. This work has focused on the use of “open learner models” to adapt to or 

support student SRL. Open learner models are a common feature in intelligent tutoring systems. 

They are presentations of a system’s assessment of student characteristics such as their current 

level of knowledge related to instructional objectives, often shown in a convenient graphical 

format (Bull & Kay, 2010; Corbett & Anderson, 1995; Mabbott & Bull, 2004). Open learner 

models often take advantage of the system’s underlying student modeling technologies (e.g., 

Desmarais & Baker, 2012). They can serve a variety of purposes; one of their functions has long 

been considered to be “promoting metacognitive activities such as reflection, planning and self-

monitoring” (Bull & Kay, 2010, p. 301), typical self-regulatory processes. A small number of 

empirical studies have tested this proposition. 

Arroyo et al. (2007, 2014) found benefits of periodically presenting a simple student 

model in the task loop of an intelligent tutoring system. Specifically, after every six problems, 

their system (Wayang Outpost, for middle-school mathematics) presented progress charts to the 

student, which documented his/her own recent domain-level learning and performance, 

accompanied by brief metacognitive tips that encourage good study habits. A pseudo-

experimental classroom study with 88 students compared learning with a tutor version with 

progress charts and tips to learning with a tutor version that did not have progress charts or tips, 

but that was otherwise the same. The progress charts and tips influenced student behavior with 

fewer quick guesses at answers and greater engagement, as indicated by spending more time per 
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problem on subsequent problems. Also, they led to higher pre/post learning gains and, 

remarkably, a higher passing rate on state exams.  

Studies by Long and Aleven (2013a; 2013b) investigated how and how well open learner 

models can support self-assessment, a key self-regulatory process. In one classroom study, with 

an intelligent tutoring system for high-school geometry, these researchers tested benefits of 

periodically filling out paper skill diaries with self-assessment questions related to the learner’s 

own open learner model, compared to filling out a “control diary,” which asked superficial 

questions that did not involve self-assessment. Especially lower-performing students benefitted 

from the skill diaries; they had better learning outcomes than their counterparts in the control 

group. Also, the accuracy of their self-assessment improved from pre-test to post-test. A 

subsequent study, this time with Lynnette, an intelligent tutoring system for middle-school 

equation solving, found that an open learner model with added prompts for self-assessment (this 

time in the software, rather than in paper diaries) can help students attain better learning 

outcomes (Long & Aleven, 2013b), compared to working with a tutor version without an open 

learner model or self-assessment prompts. In a subsequent, larger, study, this result was 

replicated although it was restricted to students who had some amount of control over problem 

selection (Long, 2015).  

Finally, a series of studies by Mitrovic and Martin (2007) found mixed evidence 

regarding whether an open learner model can have a positive effect on students’ task selection 

decisions. Generally, these studies suggest that adapting to student self-regulation in a system’s 

task loop can be effective, especially when an open learner model in combination with additional 

support for self-assessment and learner-controlled task selection. 

Step-Loop Adaptations To Self-Regulated Learning 
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A number of projects provide evidence that tutor agents that respond to aspects of student self-

regulation within a task (i.e., within the system’s step loop) can be effective. An early approach 

was called intelligent novice tutoring (Mathan & Koedinger, 2005). The purpose was to help 

students learn a self-regulatory strategy for recognizing and fixing errors, aided by “grounded 

feedback” (Nathan, 1998; Stampfer & Koedinger, 2013). Grounded feedback is feedback that 

reflects back consequences of actions in a natural or easily-understood way, rather than 

indicating only whether the action is correct or not. The given tutor helped students learn to use 

and copy formulas in Excel; the output of Excel formulas, shown by Excel served as grounded 

feedback (e.g., the numbers resulting from applying a formula may be outside of the expected 

range, or error codes may be displayed). When a student made an error, the intelligent novice 

tutor intervened only when the student moved on to other things without correcting the error – 

that is, when the student made an error with the targeted self-regulatory strategy of error 

detection and correction. It then helped the student with error diagnosis and correction. This 

approach improved students’ domain-level learning, compared to immediate correctness 

feedback without the grounded feedback (Mathan & Koedinger, 2005). Thus, the experiment 

demonstrated that step-loop adaptation to SRL can enhance domain-level learning. 

Since then, a number of tutoring approaches to SRL have been developed and evaluated. 

Roll and colleagues developed a tutor agent that provides adaptive feedback on students’ help-

seeking behavior with an intelligent tutoring system (Aleven, McLaren, Roll, & Koedinger, 

2010; Roll, Aleven, McLaren, & Koedinger, 2011). This tutor agent was able to recognize, in a 

context-sensitive manner, many help-seeking errors, such as using hints to get answers without 

understanding, or not requesting a hint when a hint would objectively appear to be highly useful 

(e.g., after multiple errors on a step) (Aleven & Koedinger, 2000; Aleven, McLaren, Roll, & 



ADAPTIVE LEARNING TECHNOLOGIES 

Draft. Please do not distribute. 

39 

Koedinger, 2006; Aleven, Roll, McLaren, & Koedinger, 2016). Two classroom studies compared 

learning with two versions of a tutoring system for geometry learning that were the same except 

one gave feedback on help seeking, in the context of geometry problem solving. The second 

study found a lasting improvement of students’ help-seeking behavior, due to feedback on help 

seeking, although no effect on domain-level learning (e.g., Roll et al., 2011) was found, due to 

improved help seeking.  

A related project by Azevedo and colleagues, called Meta-Tutor, provides evidence for 

the effectiveness of automated tutoring on a broader range of SRL processes (Azevedo et al., 

2012). This project created tutor agents that support key SRL processes in a hypermedia learning 

environment through prompts and feedback.  These processes included setting sub goals, writing 

a summary, assessing how relevant particular content is, taking notes, assessing one’s own 

understanding, and so forth. In an experiment with 83 students, students who worked with a 

version of the hypermedia system that gave tutoring support for SRL achieved better learning 

outcomes than students who worked with the hypermedia system without this support, although 

the effect was found only for students with a performance approach orientation (Duffy & 

Azevedo, 2015).  

Finally, studies with a learning environment called Betty’s Brain tested the value of 

adaptive tutoring on aspects of SRL in the context of learning by teaching (Leelawong & Biswas, 

2008). The student’s task was to teach Betty, a teachable agent, by building a concept map that 

captures causal processes in a science domain. To help build the map, students could read 

available textual sources. Key self-regulatory strategies in this environment are information 

seeking and solution quality monitoring by requesting and interpreting feedback. Studies with 

5th-grade students compared learning in the standard teachable agent environment against 



ADAPTIVE LEARNING TECHNOLOGIES 

Draft. Please do not distribute. 

40 

learning with a version of that environment with adaptive support for the targeted SRL 

processes.  In the standard teachable agent environment, feedback focused on the correctness of 

the student’s concept map and included explanations of errors in this map. By contrast, in the 

SRL version of the environment, students were given feedback and advice regarding information 

seeking and monitoring map quality. A second study found that this support helped students do 

better on a “preparation for future learning” (PFL) task, in which the students created a new 

concept map with minimal support (Tan, Biswas, & Schwartz, 2006) These students learned 

better information seeking and monitoring skill that enabled them to make better concept maps 

(Wagster, Tan, Wu, Biswas, & Schwartz, 2007). No pre/post test of domain content was given, 

however. A similar result was obtained in a later study (Kinnebrew, Szegedy, & Biswas, 2014). 

This work was therefore one of very few projects, together with Roll et al. (2014), that showed 

that effects of support for SRL can persist even when it was no longer in effect.  

Discussion of Adapting to Student Self-regulated Learning 

We find successful approaches to adapting to SRL in all three loops, although we also 

find some inconclusive results. A number of studies provide evidence that design-loop 

adaptations to SRL can be effective. These studies focused on supporting self-explanation. A 

number of studies tested whether an open learner model in an intelligent tutoring system can 

support effective task selection and self-assessment, key self-regulatory processes. The evidence 

is somewhat mixed; more work remains to be done to understand the circumstances under which 

an open learner model can support effective self-regulation, how best to design this kind of 

support, and whether it can have a lasting and transferable effect (e.g., Roll et al., 2014). A 

number of projects demonstrate that step-level tutoring of SRL can help improve students’ SRL 

processes, including demonstrations that the improvement can last beyond when the support is in 
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effect (Roll, Aleven, McLaren, & Koedinger, 2011; Tai, Arroyo, & Woolf, 2013; Tan, Biswas, & 

Schwartz, 2006;). Similarly, some projects found that domain-level learning outcomes improve 

due to adaptive support for SRL, illustrating the promise of adaptively supporting SRL in 

learning technologies (Aleven & Koedinger, 2002; Mathan & Koedinger, 2005; Duffy & 

Azevedo, 2015). However, a number of projects failed to find an effect on domain-level learning. 

Few projects have tested effects on future learning. Improving future learning (at the SRL level 

and at the domain level) remains as an important challenge.  While there have been some 

interesting successes, work remains to be done to demonstrate the generality and transferability 

of the SRL models underlying adaptive learning technologies. Also, it will be interesting to link 

explicitly to theoretical frameworks of SRL (e.g., Aleven, 2013). 

Adapting to Student Learning Styles 

 Finally, should instruction adapt to students’ learning styles? There is a very large 

literature as well as substantial controversy regarding this topic, as it pertains to both computer-

based and other learning environments. We follow Pashler, McDaniel, Rohrer, and Bjork (2008), 

who define learning styles as “the concept that individuals differ in regard to what mode of 

instruction or study is most effective for them.” We note that others (e.g., Jonassen & 

Grabowski, 1993, p. 233) define learning styles more narrowly as self-reported preferences for 

certain ways of processing information. Pashler et al. do go on to say, however, that [italics 

added] “assessments of learning style typically ask people to evaluate what sort of information 

presentation they prefer” and comment further that the notions of learning styles as preferences 

versus abilities are often conflated. One reason that research in this area is challenging is that 

there are many and varied taxonomies of learning styles—a review in 2004 covers 71 of them 

(Coffield, Moseley, Hall, Ecclestone, & Vorhaus, 2004). We also note that researchers 
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commonly construe learning styles as a relatively stable trait. Therefore, it is typically measured 

only once, at the outset of the instruction.  This single measure is then used to adapt subsequent 

instruction accordingly.  In contrast, we are increasingly seeing technology-based efforts to 

assess learning styles dynamically, during the learning process, by creating automated methods 

that infer students’ learning styles from behavior displayed in interactions with computer-based 

learning environments.  

The notion that instruction is more effective when it aligns with each student’s learning 

style has substantial intuitive appeal (Howard-Jones, 2014; Willingham, Hughes, & Dobolyi, 

2015). Howard-Jones (2014) for example, reports that a survey of over 932 teachers from five 

different countries revealed that over 96% of teachers (with the percentage in each country above 

90%) believed that students learn better when information is presented in a way that matches 

their learning style. There is however substantial controversy about the questions of whether, 

when, and how adapting to students’ learning styles can improve student learning. A number of 

prior reviews, notably one by Pashler et al. (2008), concluded that there was scant evidence to 

support the notion that adapting to learning styles makes instruction more effective. They did not 

find a single study that demonstrates a crossover interaction between learning styles and methods 

of instruction in terms of learning outcomes. Several studies cited there do use such methodology 

but fail to find any interaction (Constantinidou & Baker, 2002; Cook, Thompson, Thomas, & 

Thomas, 2009; Massa & Mayer, 2006). This standard of evidence and the dearth of studies 

meeting this standard are restated more recently in Rohrer and Pashler (2012). A later review by 

Kirschner and van Merriënboer (2013) came to the same conclusion, as does Howard-Jones  

(2014) and Willingham, Hughes, and Dobolyi (2015).  These reviews support the conclusion that 

adaptation to learning styles is largely unproven and lacks a theoretical basis. 
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These reviews however did not look at the large body of literature regarding the influence 

of learning styles in the context of learning technologies, primarily adaptive educational 

hypermedia systems (AEHs) (Brusilovsky, 2001). This term denotes online instruction that 

offers multiple media (e.g., videos, text) and, typically, freedom of navigating the learning 

materials. In this large literature, a slightly different, though still conflicted, picture emerges. A 

review specific to computer-assisted instruction, with a (non-exclusive) focus on medical 

domains, concluded that “if aptitude–treatment interactions with CLSs [cognitive/learning styles] 

exist, they seem to be infrequent and small in magnitude” (Cook, 2012). Of 65 contrasts in the 

reviewed studies, only 9 (14%) yielded a statistically significant aptitude-treatment interaction. 

This review therefore largely confirms the conclusions by Pashler et al., but would seem to leave 

the door open for learning style adaptivity to be occasionally useful, since a small percentage of 

reviewed studies showed an interaction between instructional treatment and learning style, with 

respect to students’ learning outcomes. Nonetheless, Cook, after unsuccessfully trying, in his 

own research, to confirm the notion that adaptivity to learning styles is helpful, concludes that 

the effect of learning styles, if it exists at all, is often overwhelmed by the effect of the 

instructional method.  

Two recent reviews came to somewhat more positive conclusions regarding the value of 

adapting to learning styles in learning technologies (Akbulut & Cardak, 2012; Özyurt & Özyurt, 

2015), though, in our opinion, without a careful weighing of the evidence for and against. 

Akbulut and Cardak (2012) reviewed 70 articles including both technical and empirical papers. 

Over half the empirical papers were “design-based case studies,” which do not answer our 

central question, whether adapting to learning styles makes instruction more effective. Regarding 

empirical studies, they concluded:  "When concrete learning outcomes in robust experimental 
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studies were considered, findings were slightly controversial. That is, there were eight studies 

indicating that AEH systems significantly affected the learning outcomes of the students in a 

positive way, and there were four studies refuting the significant effects on the learning 

outcomes.” Özyurt and Özyurt’s (2015) review of literature concerning adapting e-learning to 

learning style included 69 studies published between 2005 and 2015, of which 22 were 

concerned with the effect on academic achievement. They concluded that “[t]hough positive 

effects of AEHs on academic achievement and learning outputs were not clearly revealed in 

some experimental studies, majority [sic] of the studies yielded positive results in this matter.” . 

It is unfortunate however that neither of the Akbulut and Cardak (2012) and Özyurt and Özyurt 

(2015) reviews attempt to evaluate the methodological rigor of the studies that were considered, 

reconcile the conflicting results in the literature, or narrow down the range of circumstances 

under which adapting to learning styles may be helpful. Thus, we ask whether the work cited in 

these reviews force us to reconsider the conclusions reached in the earlier reviews by Pashler et 

al. (2008) and by Kirschner and Van Merriënboer (2012). Our answer is that only a small 

number of rigorous studies show advantages of adapting to learning styles. We review some of 

them below. We focus on task-loop adaptations to learning styles as we did not find any work on 

adaptations to learning styles in the design or step loop.  

Task Loop Adaptation to Learning Styles 

Ford and Chen (2001) studied the value of adapting instruction to the students’ level of 

“field dependence.”   Field dependence/independence denotes “the extent to which the 

organization of the prevailing field dominates perception of any of its parts” (Witkin, Oltman, 

Raskin, & Karp, 1971, p. 7). This learning style is typically measured through a performance test 

rather than self-report. According to prior work, field independent learners are better at analytic 
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activity and imposing structure on (relatively) unstructured information; they favor a hypothesis-

testing approach to learning. Field dependent learners, by contrast, are not as good at imposing 

structure and favor a more pre-structured learning environment.  Ford and Chen hypothesized 

that field-independent learners might do better in a learning environment in which the topics are 

sequenced in a breadth-first manner, which tends to support a “big picture before details” 

approach, whereas field-dependent learners might do better in a learning environment in which 

topics are sequenced in a depth-first manner, which conforms to a “topic-by-topic” approach. 

They tested this interaction hypothesis with 73 postgraduate students in the context of an online 

tutorial on HTML, studied for 1.5 hours. Based on their learning styles, students were assigned 

either to a “matched” or a “mismatched” condition, with materials sequenced in either a breadth-

first or depth-first manner. The hypothesized interaction was confirmed:  Field-independent 

learners showed greater learning gains with the breadth-first version of the materials, whereas 

field-dependent learners showed greater learning gains with the depth-first version of the 

materials. This interaction occurred only for male participants (there were roughly an equal 

number of male and female participants) and only with respect to conceptual knowledge of 

HTML, as assessed by multiple-choice questions, not in an application task. In short, the study 

finds better learning outcomes, due to adapting to learning styles, for a subset of students on a 

subset of measures.  

A study by Popescu (2009; 2010) like the Ford and Chen study, studied effects of 

changing the recommended sequence of materials, though based on a variety of learning style 

classifications. This study found that a matched condition (in which the sequence of the materials 

matched the students’ learning style) leads to slightly greater efficiency and enjoyment, 

compared to a mismatched condition, though not to greater learning.  
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Several studies compared instruction that adapts to learning styles (i.e., a matched 

condition) not to a mismatched condition, but to a non-adaptive condition. A study by Mampadi, 

Chen, Ghinea, and Chen (2011) tested the value of adapting to a Holist versus a Serialist learning 

style (Pask, 1976). Holists prefer to gain a view of the big picture first (e.g., important concepts 

and their connections), with details to be filled in gradually, whereas Serialists tend to prefer a 

topic-by-topic approach. The study involved an adaptive educational hypermedia system for 

learning about XML, a widely used file format in computer science. Students’ preferences for a 

Holist or Serialist style were assessed using the Study Preference Questionnaire (SPQ), a five-

item self-report questionnaire (Ford, 1985). Students in the experimental condition who preferred 

a Serialist style of learning were assigned to the Serialst version of the system whereas students 

in the experimental condition who preferred a Holist style of learning were assigned to the Holist 

version of the system. The Serialist system version was designed to support sequential access to 

the learning materials offered on the site. It offered next/previous buttons to navigate the 

materials, an alphabetical index of the site’s content, and no support for jumping around (i.e., it 

restricted navigation choices and offered no links in body text).  By contrast, the Holist version 

of the system offered no direct guidance for a particular sequence through the materials. Rather, 

it was designed to let students jump around, with many links in body text, and a hierarchical map 

of the site content. The students in the control condition used a system version that combined the 

features of both the Serialist and the Holist version of the system. Learning was assessed with a 

pre- and post-test with multiple-choice questions regarding XML. It was found that among 

students with a preference for a Holist learning style, those that used the system version geared 

toward a Holist learning style had higher post-test scores and higher gain scores (post-test minus 

pre-test) than those who used the control version (i.e., the full-featured version).  The analogous 
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result was found for the Serialists. Further, students in the adaptive condition perceived their 

respective system version more positively than did their counterparts in the control condition. 

Thus, catering to a student’s learning style was found to be better than a non-adaptive approach 

that offers all options to all students. We have some reservations about this study and its write-

up, however. The paper does not state how participants were recruited or assigned to conditions, 

so we do not know if random assignment was used. Also, because the control is not the same 

instruction but without adaptation, we cannot isolate the cause of the observed benefit as 

adaptivity.  Finally, it is hard to know whether the system version used in the control condition 

represents a bona fide or ecologically valid AEH, or whether it perhaps imposes high cognitive 

load by having too many features.  

A study by Graf and Kinshuk (2007) with 235 university students investigated the value 

of adapting an online course (on object-oriented modeling, a basic computer science topic) based 

on three dimensions in the Felder-Silverman learning style model (FSLSM) (Felder & Silverman 

1988), namely, the active/reflective, sensing/intuitive, and sequential/global dimensions. For 

each of these dimensions, the online course varied the sequence and number of course elements 

of various types, such as chapter outlines, chapter conclusions, regular content pages, examples, 

self-assessment tests, and exercises. For example, active learners received more exercises and 

self-assessment tests, but fewer outlines and conclusions/summaries, compared to reflective 

learners. As another example, for sensing learners, examples were presented after the related 

abstract materials, whereas the order was reversed for intuitive learners. The dimensions were 

assessed at the beginning of the instruction using the ILS questionnaire, a 44-item questionnaire 

developed by Felder and Soloman (1997). Students were assigned randomly to three conditions 

working with respectively a course version that matched their learning style (matched), 
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mismatched their learning style (mismatched), or contained all materials (standard). The study 

found more efficient learning (with no difference in learning outcomes) for students in the course 

version that matched their learning style, compared to students in the mismatched version or the 

standard version. Unfortunately, the paper does not report the extent of the efficiency difference, 

only that it was statistically significant. 

A similar effect of adapting to learning styles was found in a study by Tseng, Chu, 

Hwang, and Tsai (2008). Although there were no differences in students’ learning outcomes, 

students in the version that adapted to learning styles spent less time, compared to those working 

with a system version that did not adapt. Other studies however failed to find a difference in 

adapting to learning styles (e.g., Brown, Brailsford, Fischer, & Moore, 2009). 

Finally, some studies that are sometimes cited as supporting the value of adapting to 

students’ learning styles tested an adaptive method that took into account not only students’ 

learning styles, but also an assessment of student knowledge (Despotovic-Zrakic, Markovic, 

Bogdanovic, Barac, & Krco, 2012; Limongelli, Sciarrone, Temperini, &  Vaste, 2009; Mustafa 

& Sharif, 2011), a point made also by Popescu (2010). From the point of view of creating 

effective adaptive learning technologies, it makes perfect sense to adapt to student knowledge in 

combination with other student characteristics. However, these types of experiments do not help 

in testing the value of adaptivity specifically to learning styles.  

Discussion of Adaptation to Learning Styles 

Although we discussed some studies that found beneficial effects for adapting to learning styles, 

in the end, we do not diverge far from the conclusions by Pashler et al. (2008), Kirschner and 

van Merriënboer (2013), and Cook (2012), that adapting to learning styles is not often effective. 

Cooks’s (2012) viewpoint, that the instructional method often matters more than learning style, 
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resonates with us. Further, we are more drawn to look at the question of how learners can be 

helped in operating effectively in given learning environments through the theoretical lens of 

self-regulated learning. This entails identifying what learning strategies work in a given kind of 

environment, using the tools of cognitive task analysis, and studying what instruction can help 

learners develop these strategies. While this approach has its own challenges, it is grounded in 

what works, rather than in student preferences, and might help get us away from a view of 

learning styles as traits, which would be more in line with view of strategic flexibility as an 

important element of expertise, and in line with views of intelligence as malleable.  

Conclusion 

 This chapter gives an overview of the state of scientific knowledge of when and how 

adaptive instruction can be effective in enhancing educational outcomes. Our review focuses on 

empirical evaluations of educational effectiveness of adaptive technologies as compared to non-

adaptive alternatives. We also look at studies that tested for crossover interactions between 

student variables and instructional treatments. Compared to previous reviews of adaptive 

instruction, novel features of this review are the emphasis on the use of data as a crucial element 

of developing adaptive instruction, an Adaptivity Grid that organizes a design space for adaptive 

instruction, highlighting design-loop changes as a form of adaptivity, and focusing on empirical 

studies rather than technical aspects. The review focuses on studies of students learning 

individually. We do not address collaborative learning. 

The review spans a large design space, captured in a 3x5 Adaptivity Grid. We distinguish 

three forms of adaptivity:  step-loop adaptivity (within a problem), task-loop adaptivity (between 

problems), and design-loop adaptivity (between system versions, based on data-driven redesign). 

We distinguish five broad psychological realms that can be the basis of adaptations: the student’s 
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knowledge, her path through an activity, affect/motivation, self-regulation, and students’ learning 

styles. The grid could be expanded to include additional factors, such as social factors or 

relatively stable student characteristics such as working memory capacity and spatial reasoning 

ability.  

We found evidence of effectiveness of adaptivity for 13 out of 15 cells of the Adaptivity 

Grid, albeit of varying strength. Covering this many cells was somewhat of a surprise to us; 

when we embarked on this review, we did not fully know the range of existing empirical 

research. (The cells not covered are design-loop and step-loop adaptations to learning styles.) 

Thus, the reviewed body of work demonstrates a wide range of methods for effective adaptation 

of instruction. We find some general trends in the series of studies reviewed, which give us 

insight not only into what works and what can be used now to improve instruction, but also into 

what might be ahead in terms of further research in this area. The trends are: (a) prevalence of 

effective design-loop adaptations; (b) strong evidence for adapting to knowledge and knowledge 

growth in the design loop and task loop; (c) strong evidence for adapting to strategies and errors 

in both the design loop and step loop; (d) lack of evidence for adapting to learning styles; and (e) 

emergence of hybrid forms of adaptivity, meaning ways of taking into account multiple 

psychological realms, such as combinations of knowledge, path through problem, and affect. We 

discuss each trend in turn. 

Prevalence of Effective Design-Loop Adaptations 

One surprise to come out of this review is the prevalence and effectiveness of data-driven design 

loop adaptations. Design-loop adaptations adjust instruction to student similarities, as in the 

redesign of the statistics course by Lovett et al. (2008). We found effective design-loop 

adaptations for four of the five psychological realms of the Adaptivity Grid. The prevalence of 
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design loop adaptations can be viewed as evidence that big data is starting to impact classroom-

ready products of educational research. It should also be viewed as evidence that getting 

instructional design right in a first iteration is more difficult than is often thought, and that 

instructional design should be approached as an iterative, data-driven process, supported for 

instance by visualizations and methods for educational data mining. This notion may apply in a 

broad range of instructional design, not just advanced learning technologies.  

Strong Evidence for Adapting to Student Knowledge in the Design Loop and Task Loop 

 If, as many authors before us have noted, there are big differences in the prior knowledge 

that students bring to bear, it would follow that instruction that adapts to the knowledge and 

knowledge growth of individual students will often be more effective than instruction that does 

not. This notion is borne out by our review, as we found effective demonstrations of adaptivity in 

all three loops, but particularly the design and task loops. Regarding the task loop, the evidence 

is strong that mastery learning approaches implemented in technology (such as those used in 

Cognitive Tutors; Corbett et al., 2000) can be practical and effective in actual classrooms. 

Perhaps contrary to common intuition, data also shows that oftentimes, the specific difficulties 

that learners experience in a given task domain are largely the same. This might be one way to 

explain why design loop adaptations, which cater to similarities among learners, can be effective. 

Strong Evidence for Adapting to Strategies and Errors in the Design Loop and Step Loop 

 The evidence in favor of adapting to strategies and errors in a system’s step loop is strong 

– perhaps no surprise, as the step loop has often been viewed as a strength of intelligent tutoring 

systems (VanLehn, 2006; 2016) and evidence bears it out (VanLehn, 2011). But it was a surprise 

that many design-loop adaptations to strategies and errors were shown to be effective. An 
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interesting result is further that although adaptive technologies have recognized the need for 

supporting strategy development and strategic flexibility, merely being able to recognize and 

react to multiple strategies may not be enough (Waalkens et al., 2013).  

Lack of Evidence for Adapting to Learning Styles  

 Evidence that adapting to learners’ preferred style of learning helps make instruction 

more effective is weak, even though there is no lack of work in this area and it is a common 

belief, even among teachers, that learners learn more effectively when instruction matches their 

style of learning. Early reviews (e.g., Pashler et al., 2008) argued that very few studies had been 

conducted that constitute a fully rigorous test of the value of instruction that adapts to learning 

styles. They also argued that a small number of studies provided evidence against that notion. 

Since then, additional reviews have appeared that focused on learning technologies. One review 

came to the conclusion that adapting to learning styles is often (though not always) ineffective, 

as instructional methods tend to overwhelm the effect of learning styles (Cook, 2012). Two other 

reviews (Akbulut & Cardak, 2012; Özyurt & Özyurt, 2015) present a more optimistic picture, 

but without, we feel, a critical appraisal of the evidence across studies or trying to reconcile 

conflicting results in this literature. Although we found some studies that support the notion that 

adapting to learning styles can be effective, more studies failed to find an effect. At this point in 

time, it is very difficult to predict when and how adapting to learning styles is effective. 

Prevalence of Hybrid Forms of Adaptivity 

 Finally, an emerging trend is that the “What to adapt to?” question is increasingly being 

approached as involving and integrating multiple psychological realms.  This focus leads to 

hybrid adaptive policies that are responsive to a variety of student variables (e.g., Arroyo et al., 
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2014; Rowe & Lester, 2015; Mazziotti et al., 2015) across the rows of the Adaptivity Grid. This 

work is consistent with findings in the literature that the different features to adapt to might 

interact (e.g., Vail et al., 2015, Moos & Azevedo, 2008). In part, this trend may be inspired by 

the idea that adaptation should take into account multiple realms, for example, because it is 

limiting to focus on cognitive factors only. In part, this trend may be inspired by knowledge 

representation (such as Bayesian Networks) or machine learning approaches (e.g., reinforcement 

learning) that easily combine information from different realms. At this point in time, we are not 

aware of any empirical results that show that adapting to multiple psychological realms is better 

than adapting to a single realm, or to a fixed (i.e., non-adaptive) instructional sequence.  

However, it is only a matter of time before increasingly complex adaptive systems will emerge 

that test this and other innovative ideas! 
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