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Abstract

Theories of object recognition often assume that only one representa-
tion scheme is used within one visual-processing pathway. Versatility
of the visual system comes from having multiple visual-processing
pathways, each specialized in a different category of objects. We
propose a theoretically simpler alternative, capable of explaining the
same set of data and more. A single primary visual-processing pathway,
loosely modular, is assumed. Memory modules are attached to sites
along this pathway. Object-identity decision is made independently at
each site. A site's response time is a monotonic-decreasing function of
its confidence regarding its decision. An observer's response is the
first-arriving response from any site. The effective representation(s) of
such a system, determined empirically, can appear to be specialized for
different tasks and stimuli, consistent with recent clinical and
functional-imaging findings. This, however, merely reflects a decision
being made at its appropriate level of abstraction. The system itself is
intrinsically flexible and adaptive.

1 Introduction

How does the visual system represent its knowledge about objects so as to identify
them? A largely unquestioned assumption in the study of object recognition has
been that the visual system builds up a representation for an object by sequentially
transforming an input image into progressively more abstract representations. The
final representation is taken to be the representation of an object and is entered into
memory. Recognition of an object occurs when the representation of the object
currently in view matches an item in memory.

Highly influential proposals for a common representation of objects [1, 2] have
failed to show promise of either producing a working artificial system or explaining
a gamut of behavioral data. This insistence of having a common representation for
all objects is aso a major cause of the debate on whether the perceptual
representation of objects is 2-D appearance-based or 3-D structure-based [3, 4].

Recently, a convergence of data [5-9], including those from the viewpoint debate
itself [10, 11], have been used to suggest that the brain may use multiple



mechanisms or processing pathways to recognize a multitude of objects. While
insisting on a common representation for all objects seems too restrictive in light of
the varying complexity across objects [12], asserting a new pathway for every
idiosyncratic data clusters seems unnecessary.

We propose a parsimonious alternative, which is consistent with existing data but
explains them with novel insights. Our framework relies on a single processing
pathway. Flexibility and self-adaptivity are achieved by having multiple memory
and decision sites distributed along the pathway.

2 Theory and Methods

If the visual system needs to construct an abstract representation of objects for a
certain task (e.g. object categorization), it will have to do so via multiple stages.
The intermediate result at each stage is itself arepresentation. The entire processing
pathway thus provides a hierarchy of representations, ranging from the most image-
specific at the earliest stage to the most abstract at the latest stage.

The central idea of our proposal is that the visual system can tap this hierarchical
collection of representations by attaching memory modules along the processing
pathway. We further speculate that each memory site makes independent decisions
about the identity of an incoming image. Each announces its decision after a delay,
determined by an amount related to the site's confidence about its own decision and
the amount of memory it needs to consult before reaching the decision. The
homunculus does nothing but takes the first-arriving response as the system's
response. Figure la depicts this framework, which we shall call the Hierarchically
Distributed Decision Theory for object recognition.
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Figure 1: An illustration of the Hierarchically Distributed Decision Theory
of object recognition (a) and its implementation in a toy visual system (b).

2.1 A toy visual system

We constructed a toy visual system to illustrate various properties of the
Hierarchically Distributed Decision Theory. The task for this toy system is to
identify letters presented at arbitrary position and orientation and corrupted by
Gaussian luminance noise. This system is not meant to be a model of human vision,
but rather a demonstration of the theory. Given a stimulus (letter+noise), the
position of the target letter is first estimated and centered in the image (position
normalization) by computing the centroid of the stimulus' luminance profile. Once
centered, the principal axis of the luminance profile is determined and the entire
image is rotated so that this axis is vertical (orientation normalization). The
representation at this final stage is both position- and orientation-invariant.
Traditionally, one would commit only this final representation to memory.

In contrast, the Hierarchically Distributed Decision Theory stated that the
intermediate results are also committed to some form of sensory memory (Figure



1b). A memory item is a feature vector. For this toy system, a feature vector is a
sub-sampled image at the output of each stage. To recognize a letter, each site s
independently decides the letter's identity L, based on the immediate representation
Is available to the site. It does so by maximizing the posterior probability Pr(Lg|ls),
assuming 1) independent feature noise of known distribution (in this case,
independent Gaussian luminance noise of zero mean and standard deviation s) and
2) that its memory content completely captures all other sources of correlated noise
and signal uncertainties (deviation from which is assessed by Eq. 3). Specifically,

L, =arg max Pr(r|1,) (1)

where Letters is the set of letter identities. A letter identity r isin turn a set of letter
images V at a given luminance, which may be shifted or rotated. So we have,
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In addition to choosing a response, each site delays sending out its response by an
amount ts. tgis related to each site's own assessment of its confidence about its
decision and the size of memory it needed to consult to make the decision. tgsisa
monotonically decreasing function of confidence (one minus the maximum posterior
probability) and a monotonically increasing function of memory size:
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ho, h4, and h,, are constants common to all sites. M;s is the effective number of items
in memory at site s, equal to the number of distinct training views the site saw (or
the limit of its memory size, whichever isless). In our toy system, M, is the number
of distinct training views presented to the system. M, is approximately the number
of training views with distinct orientations (because |, is normalized by position),
and M; is effectively one view per letter. In general, M; > M, > M3. Relative to the
decision time t, the processing time required to perform normalizations is assumed
to be negligible (This assumption can be removed by letting hy depend on site s.)

2.2 Learning and testing

The learning component of the theory has yet to be determined. For our toy system,
we assumed that the items kept in memory are free of luminance noise but subjected
to normalization errors caused by the luminance noise (e.g. the position of a letter
may not be perfectly determined).

We measured performance of the toy system by first exposing it to 5 orientations
and 20 positions of each letter at high signal-to-noise ratio (SNR). Ten letters from
the Times Roman font were used in the simulation (bcdeghnopw). The system
keeps in memory those studied views (Site 1) and their normalized versions (Sites 2
& 3). Therefore, M; = 520" 10 = 1000. Since the normalization processes are
reliable at high SNR, M, » 50, and M3 » 10.

We tested the system by presenting it with letters from either the studied views, or
views it had not seen before. In the latter case, a novel view could be either with
novel position alone, or with both novel position and orientation. The test stimuli
were presented at SNR ranglng from 210 to 1800 (Weber contrast of 10-30% at
mean |uminance of 48 cd/m? and a noise standard deviation of 10 cd/m?).



3 Results and Discussions

Figure 2a shows the performance of our toy visual system under different stimulus
conditions. The numbered thin curves indicate recognition accuracy achieved by
each site. As expected, Site 1, which kept raw images in memory, achieved the best
accuracy when tested with studied views, but it could not generalize to novel views.
In contrast, Site 3 maintained essentially the same level of performance regardless
of view condition — its representation was invariant to position and orientation.
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Figure 2: (a) Accuracy of the system (solid symbols) verses accuracy of
each site (numbered curves) under different contrast and view conditions.
(b) Relative frequency of asite issuing the first-arriving response.

The thick curves with solid symbols indicated the system's performance based on
first-arriving responses. Clearly, it tracked the performance of the best-performing
site under all conditions. Under the novel-position condition, the system's
performance was even better than the best-performing sites. This is because
although Site 2 and 3 performed equally well, they made different errors. The
simple delay rule effectively picked out the most reliable response at each trial.

Figure 2b shows the source distribution of the first-arriving responses. When
familiar (i.e. studied) views were presented at low contrast (low SNR), Site 1, which
used raw image as the representation, was responsible for issuing about 60% of the
first-arriving responses. This is because normalization processes tend to be less
reliable at low SNR. Whenever an input to Site 2 or 3 cannot be properly
normalized, it will match poorly to the normalized views in memory, resulting in
lower confidence and longer delay. As contrast increased, normalization processes
became more accurate, and the first-arriving responses shifted to the higher sites.
Higher sites encode more invariance, and thus need to consult fewer memory items.
Lastly, when novel views were presented, Site 3 tended to be the most active, since
it was the only site that fully captured all the invariance necessary for this condition.

The delay mechanism specified by Eq. 3 allows the system as a whole to be self-
adaptive. lIts effective representation, if we can speak of such, is flexible. No siteis
exclusively responsible for any particular kind of stimuli. Instead, the decision is
always distributed across sites in atrial-by-trial basis.

What do existing human data on object recognition have to say about this simple
framework? Wouldn't those data supporting functional specialization or object-
category-specific representations argue against this framework? Not at all!

3.1 Viewpoint effects

Entry-level object recognition [13] often shows less viewpoint dependence than
subordinate-level object recognition. This has been taken to suggest that two



different mechanisms or forms of representation may be subserving these two types
of object recognition tasks [4].

Figure 3a shows our system's overall performance in response time (RT) and error
rate when tested with the studied (thus "familiar") and the novel (new positions and
orientations) views. The difference in RT and error rate between these two
conditions (Figure 3b) is a rough measure of the viewpoint effect. Even though the
system includes a site (Site 3) with viewpoint-invariant representation, the system's
overall performance still depends on viewpoint, particularly at low contrast.
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Figure 3: (a) RT and error rate of the toy system when tested with either
the studied or novel views. (b) Difference between the two conditions.

Because the representation space of this toy system is the image space, contrast is a
direct measure of "perceptual" distinctiveness. Figure 3b shows that when objects
were sufficiently distinct (as in entry-level recognition), there was little or no
viewpoint effect. When objects were highly similar, performances were equally
poor for studied and novel views, so there was little viewpoint effect to speak of.
Viewpoint effect was localized to a mid-range of distinctiveness. Within this range,
increasing similarity increased viewpoint dependence. The fact that viewpoint
effect was present only within a bounded range of distinctiveness agrees with the
general experience that sizable viewpoint effect is uncommon unless artificially-
created objects or objects chosen from the same category (subordinate-level
recognition) are used.

3.2 Functionally specialized brain regions

Various fMRI studies have observed what appears to be functionally specialized
brain regions involved in object perception [7-9]. To identify and localize such
areas, atypical approach isto subtract the observed hemodynamic signals under one
stimulus condition from that under a different condition. An area is said to be
"selective" to a stimulus type X if its signal strength is higher whenever X, as
opposed to some other type of stimuli, is displayed.

We performed a simulated "imaging" on our toy visual system. Consider Figure 3b.
If we assume that one unit of metabolic energy is needed to send a response, and no
more response will be sent after the first-arriving response has been received, we
can re-label the x-axis of the histograms as "hemodynamic signal", or "activation
level". Furthermore, as mentioned before, we can label stimuli in high contrast as
"distinct objects" and those in low contrast as "similar objects.”

When we did "similar minus distinct", we obtained the result shown in the lower
right-hand panel in Figure 4a. Site 1 was more active than all other sites when
recognition was between similar objects, while Site 3 was more active when
recognition was between distinct objects. The standard practice of interpreting such
a result would label Site 1 as an area for processing similar (perhaps subordinate-



level) objects, and Site 3 as an area for processing distinct (perhaps entry-level)
objects. Knowing how the decisions are actually made however, such labeling is
clearly misguided.

When instead we did "familiar minus novel", we obtained a similar pattern of result
(Figure 4a, upper right). However, this time we would have to label Site 1 as an
area for processing familiar objects (or an area for expertise), and Site 3 for novel
objects. Analogous to an on-going debate about expertise vs. object-specificity
[14], whether Site 1 is for familiar objects or similar objects cannot be resolved
based on subtraction method alone.

According to the standard interpretation of the subtraction method, our toy visual
system appeared to contain functionally specialized sites; yet, none of the sites were
designed to specialize in any kind of stimuli. Even in the most extreme cases, no
site was responsible for more than 70% of the decisions.

One last point is worth mentioning. The primary visual pathway was equally active
under all conditions, so its activity became invisible after subtraction. The observed
signal change revealed only the difference in memory activities.
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Figure 4. The toy visual system gives the appearance of containing
functionally specialized modules in simulated functional imaging (a) and
lesion studies (b).

3.3 Category-specific deficits

Patients with prosopagnosia cannot recognize faces, but their ability for recognizing
other objects are often spared. Patients with visual object agnosia have the opposite
impairments. This kind of double dissociation is taken as another evidence to
suggest that the visual system contains object-specific modules (cf. [15]).

We observed the same kind of double dissociation with our toy model. Figure 4b
shows what happened when we "lesioned" different memory sites in our system by
preventing a site from issuing any response. When Site 1 was lesioned, recognition
performance for similar-but-familiar objects (analog to familiar faces) was impeded
while performance for distinct-but-novel objects was spared. The opposite was true
when Site 3 was lesioned. It is worth restating that our toy system consisted of only
a single processing pathway and no category-specific representations.

4 Conclusion

Intermediate representations along a single visual-processing pathway form a
natural hierarchy of abstractions. We have shown that by attaching sensory memory
modules to the pathway, this hierarchy can be exploited to achieve an effective
representation of objects that is highly flexible and adaptive. Each memory module



makes independent decision regarding the identity of an object based on the
intermediate representation available to it. Each module delays sending out its
response by an amount related to its confidence about its decision, in addition to the
time required for memory lookup. The first-arriving response becomes the system's
response.

It is an attractive conjecture that this scheme of adaptive representation may be used
by the visual system. Through a toy example, we have shown that such a system
can appear to behave like one with multiple functionally specialized pathways or
category-specific representations, raising questions for the contemporary
interpretations of behavioral, clinical and functional-imaging data regarding the
neuro-architecture for object recognition.
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