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Abstract

The purpose of this note is to give an (almost) self-contained proof of the strong convexity of von
Neumann’s entropy.

1 Preliminary

Let us begin with some definitions. Fix two normed spaces (X , ‖ · ‖) and (Y, ‖ · ‖Y). We use L(X ,Y) to
denote the space of all continuous linear operators from X to Y, equipped with the usual operator norm.
We also use the abbreviation X ′ := L(X ,R), and the dual pairing 〈x; f〉 := f(x) for x ∈ X , f ∈ X ′.

Definition 1 (Fréchet Derivative) Let O be an open set of X . The Fréchet derivative of f : O → Y at
x ∈ O is the (continuous) linear operator g ∈ L(X ,Y) such that

‖f(x+ w)− f(x)− g(w)‖Y = o(‖w‖). (1)

If f is differentiable in each point of O, the derivatives collectively induce f ′ : O → L(X ,Y). When Y = R,
we have f ′ : O → X ′ and consequently the more familiar notation [f ′(x)](w) = 〈w; f ′(x)〉. One can also
iterate the definition to define even higher order derivatives. Essentially we need only the first order.

Importantly, we observe that by definition Fréchet derivative is a topological property. Therefore, if two
norms ‖ · ‖1 and ||| · |||1 are equivalent on X , and two norms ‖ · ‖2 and ||| · |||2 are equivalent on Y, then we
obtain the same Fréchet derivative of f under both (X, ‖ · ‖1) → (Y, ‖ · ‖2) and (X, ||| · |||1) → (Y, ||| · |||2).
Moreover, the induced norms on L(X ,Y) are also equivalent. Iterating the argument we see that derivatives
of all orders are the same under both (X, ‖·‖1)→ (Y, ‖·‖2) and (X, ||| · |||1)→ (Y, ||| · |||2). If the norm we are
interested in is equivalent to a Hilbertian norm, then we can calculate the derivatives under the Hilbertian
setting, which is much more convenient.

Definition 2 (Strong Convexity) The function f : X → R∪{∞} is strongly convex iff there exists σ > 0
such that for all x,w ∈ X , λ ∈]0, 1[, we have

λf(x) + (1− λ)f(w) ≥ f(λx+ (1− λ)w) +
σ

2
λ(1− λ)‖x− w‖2. (2)

When the above inequality holds with σ = 0, we call f convex.

It is not hard to see that there exists the largest possible σ so that (2) is true (assuming f 6≡ ∞). This is
usually referred to as the modulus of convexity and denoted as σ(f). It is easy to verify that

∀α > 0, σ(αf) = ασ(f), σ(f + g) ≥ σ(f) + σ(g), (3)

i.e., σ(·) is a positive homogeneous concave function. Moreover,

σ(sup
α
fα) ≥ inf

α
σ(fα), (4)
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thus pointwise supremum of σ-strongly convex functions is σ-strongly convex. It is clear that by definition
strong convexity is a topological property1, although the moduli of convexity is not.

Interestingly, there is a simple relation between strong convexity and convexity in the Hilbertian setting:

Proposition 1 Suppose the norm ‖ · ‖ on X is Hilbertian, then f : X → R ∪ {∞} is σ-strongly convex iff
f − σ

2 ‖ · ‖
2 is convex.

Proof: Simply verify Definition 2 with the aid of the parallelogram law:

‖x+ w‖2 + ‖x− w‖2 = 2(‖x‖2 + ‖w‖2). (5)

Proposition 1 no longer holds when we equip X with a non-Hilbertian norm; in fact, a strong converse is
true, but we need a characterization of inner product spaces first.

Definition 3 The modulus of convexity of a normed space is defined for every ε ∈ [0, 2] as:

δ(ε) = inf
‖x‖=‖w‖=1,‖x−w‖=ε

1− ‖x+w2 ‖. (6)

Clearly, δ(0) = 0, and δ(2) = 1. Intuitively, δ characterizes how round the unit ball of ‖ · ‖ is.

Proposition 2 1
2‖ · ‖

2 is 1-strongly convex ( w.r.t. the norm ‖ · ‖) iff ‖ · ‖ is Hilbertian.

Proof: The if part follows immediately from Proposition 1. The only if part follows from Day [1947], or
Chelidze [2009].

Example 1 We now show that Proposition 1 does not extend to any other norm. Firstly, for any abstract
norm ‖ · ‖, clearly σ

2 ‖ · ‖
2− σ

2 ‖ · ‖
2 ≡ 0 is convex, but according to Proposition 2, σ

2 ‖ · ‖
2 is σ-strongly convex

iff ‖ · ‖ is Hilbertian.
Conversely, consider an abstract norm ‖ · ‖ on R2, with its unit ball C. Let B be the unique ellipsoid of

maximum volume in C, i.e., John’s ellipsoid. Note that B touches C at four points or more. Let ‖ · ‖2 be
the Hilbertian norm on R2 whose unit ball is B. Since B ⊆ C, ‖x‖2 ≥ ‖x‖ for all x ∈ R2, with equality at
say w 6= ±z. According to Theorem 3 below we know f = 1

2‖ · ‖
2
2 is 1-strongly convex w.r.t. the norm ‖ · ‖.

However, we show that 1
2‖ · ‖

2
2 − 1

2‖ · ‖
2 is convex iff ‖ · ‖ = ‖ · ‖2. Indeed, from the definition of convexity:

‖x+y2 ‖
2
2 − ‖

x+y
2 ‖

2 ≤ 1
2 [‖x‖22 + ‖y‖22 − ‖x‖2 − ‖y‖2] (7)

⇐⇒ 2[‖x‖2 + ‖y‖2] ≤ ‖x− y‖22 + ‖x+ y‖2. (8)

Plug in x = w, y = z we have

2[‖w‖22 + ‖z‖22] = 2[‖w‖2 + ‖z‖2] ≤ ‖w − z‖22 + ‖w + z‖2,

implying ‖w+z‖ ≥ ‖w+z‖2, but by construction ‖w+z‖ ≤ ‖w+z‖2, hence ‖w+z‖ = ‖w+z‖2, i.e., B and
C agree on the middle ray of w and z. Iterating the argument we know B and C agree on a dense subset of
rays. By continuity we must have B = C, i.e., ‖ · ‖ = ‖ · ‖2. The result immediately extends to any space X
with dimension bigger than 2, since we can always restrict to a two-dimensional subspace.

Example 2 Not all norms whose square is strongly convex. Take, for instance, the `1 norm:

1
2‖e1‖

2
1 + 1

2‖e2‖
2
1

2
=

1

2
=

1

2
‖e1 + e2

2
‖21.

Next we present some rules for checking strong convexity.

1Contrarily, convexity (i.e. σ = 0) itself does not even require a topology! From this one is hinted that strong convexity of
f is not only about f , it also reveals something about the topology on X .
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Theorem 1 (Zero Order Rule) The convex function f : X → R∪{∞} is σ-strongly convex on core(dom f)
iff for all x,w ∈ core(dom f),

f(x) ≥ f(w) + f ′(w;x− w) +
σ

2
‖x− w‖2. (9)

Proof: Note first that on core(dom f), the directional derivative is finite and sublinear. By (2), we have

f(x)− f(w) ≥ f(w + λ(x− w))− f(w)

λ
+
σ

2
(1− λ)‖x− w‖2.

Letting λ ↓ 0, we obtain (9).
Conversely, let z = λx+ (1− λ)w, (9) yields

f(x) ≥ f(z) + (1− λ)f ′(z;x− w) +
σ

2
(1− λ)2‖x− w‖2

f(w) ≥ f(z) + λf ′(z;w − x) +
σ

2
λ2‖x− w‖2.

Taking convex combination, we have

λf(x) + (1− λ)f(w) ≥ f(z) + λ(1− λ)(f ′(z;x− w) + f ′(z;w − x)) +
σ

2
λ(1− λ)‖x− w‖2,

which leads to σ-strong convexity due to sublinearity of the directional derivative.

When dom f is open and f is continuous, f ′(x; d) = max{〈d;x∗〉 : x∗ ∈ ∂f(x)}. Therefore we can replace
the directional derivative with any subdifferential.

Theorem 2 (First Order Rule) Let O be an open convex set of X . The Gateâux differentiable function
f : O → R is σ-strongly convex iff for all x,w ∈ O,

〈x− w; f ′(x)− f ′(w)〉 ≥ σ‖x− w‖2. (10)

Note that we have used the fact that f is real-valued so that f ′ ∈ X ′ (hence the notation 〈w; f ′(x)〉).
Proof: By (9), we have

f(x) ≥ f(w) + 〈x− w; f ′(w)〉+
σ

2
‖x− w‖2,

f(w) ≥ f(x)− 〈x− w; f ′(x)〉+
σ

2
‖x− w‖2.

Adding them we obtain (10).
Conversely, define h(λ) := σ

2λ
2‖x − w‖2 and g(λ) := f(w + λ(x − w)) − λ 〈x− w; f ′(w)〉. Then by (10)

g′(λ) ≥ h′(λ). By the mean value theorem, we have g(1)− g(0) ≥ h(1)− h(0), which is (9).

Theorem 3 (Second Order Rule) Let O be an open convex set of X . The twice Fréchet differentiable
function f : O → R is σ-strongly convex iff ∀x ∈ O, w ∈ X

〈w; [f ′′(x)](w)〉 ≥ σ‖w‖2, (11)

or equivalently

inf
x∈O,w∈X :‖w‖=1

〈w; [f ′′(x)](w)〉 ≥ σ. (12)

Proof: Due to homogeneity of (11), we can assume w.l.o.g. that x+ w ∈ O. By (10) we have

〈w; f ′(x+ w)− f ′(x)〉 ≥ σ‖w‖2.

Since f is twice Fréchet differentiable, 〈w; f ′(x+ w)− f ′(x)〉 = 〈w; [f ′′(x)]w + o(‖w‖)〉. Letting ‖w‖ → 0
yields (11).
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Conversely, let h(λ) := σλ‖x − w‖2 and g(λ) = 〈x− w; f ′(w + λ(x− w)〉. Then by (11) g′(λ) ≥ h′(λ).
By the mean value theorem, we have h(1)− h(0) ≤ g(1)− g(0), which is (10).

Functions defined on the vector space L(H1,H2), consisting of all continuous linear operators from the
Hilbert space H1 to another Hilbert space H2, deserve some special attention. Equip L(H1,H2) with a
norm ‖ · ‖ (not necessarily the operator norm, which is Hilbertian in this case), and consider the function
f : L(H1,H2)→ R ∪ {∞}.

Definition 4 (Unitary Invariance) f : L(H1,H2) → R ∪ {∞} is called unitarily invariant iff for all
L ∈ L(H1,H2), isometries U : H2 → H2 and V : H1 → H1, we have f(L) = f(ULV ). In other words, f
only depends on the singular values of its input.

If we equip L(H1,H2) with the operator norm ‖ · ‖op, then it becomes very easy to check strong convexity,
thanks to the next theorem:

Theorem 4 ([]) content...

2 Pinsker’s Inequality

Consider the normed space X = Rn, ‖ · ‖ = `n1 and denote the (open) unit ball (restricted to the positive
orthant) Bn+ := {x ∈ Rn++ : ‖x‖1 < 1}. Recall that the unnormalized (negative) entropy is defined as

∀x ∈ Rn+, h(x) :=
∑
i

xi log xi − xi, (13)

under the convention2 0 log 0 := 0. For illustration purpose, let us first prove

Theorem 5 The unnormalized entropy h : Bn+ → R has moduli of convexity 1 with respect to the `n1 norm.

Proof: Not surprisingly, we are going to apply Theorem 3. As noted before, the Fréchet derivative is a
topological property, so we can calculate it by changing the norm ‖ · ‖ to `n2 . After some usual elementary
differentiation we arrive at

inf
x∈Bn

+,y∈Rn:‖y‖1=1

n∑
i=1

y2i
xi
≥ inf
x∈Bn

+,y∈Rn:‖y‖1=1

n∑
i=1

y2i
xi
·
n∑
i=1

xi ≥ inf
x∈Bn

+,y∈Rn:‖y‖1=1

(
n∑
i=1

|yi|

)2

= 1. (14)

Clearly the lower bound cannot be improved.

Let us denote B̄n+ := {x ∈ Rn+ : ‖x‖1 ≤ 1}. Under the usual convention 0 log 0 := 0, we have

Corollary 1 The unnormalized entropy h : B̄n+ → R has moduli of convexity 1 with respect to the `n1 norm.

Proof: Apply Theorem 5, with a limiting argument, to (2).

Corollary 2 (Pinsker’s Inequality) For all x, y ∈ Pn1 := {x ∈ Rn+ : ‖x‖1 = 1}, the Kullback-Leibler
divergence

d(x‖y) :=
∑
i

xi log xi − xi log yi ≥ 1
2‖x− y‖

2
1. (15)

Proof: Clearly strong convexity is preserved under restricting the (effective) domain. Apply Corollary 1
and Theorem 1.

Note that Pinsker’s inequality, mostly known in information theory, usually comes with an extra factor
1

ln 2 , which is simply due to scaling because information theory prefers log2 while we use loge.

2Clearly h is continuous under this convention.
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3 Matrix Pinsker’s Inequality

Now let us move on to the matrix case. Let X = Sn, the space of all Hermitian n × n matrices, and equip
the trace norm ‖ · ‖ = ‖ · ‖tr (i.e. the sum of the singular values). Denote Sn+ ⊆ Sn as the cone of all n× n
positive semidefinite matrices and Sn++ its interior. Clearly for X ∈ Sn+, ‖X‖tr = tr(X).

Define similarly as before Bn+ := {X ∈ Sn++ : tr(X) < 1}, B̄n+ := {X ∈ Sn+ : tr(X) ≤ 1} and Pntr :=
{X ∈ Sn+ : tr(X) = 1}. The following “generalization”3 of the unnormalized (negative) entropy is due to
von Neumann [1927]:

∀X ∈ Sn+, H(X) := tr(X logX −X), (16)

where the convention 0 log 0 := 0 is again adopted. Our main goal is to prove

Theorem 6 The unnormalized entropy H : Bn+ → R has moduli of convexity 1 under the trace norm.

Before delving into the proof, let us lay down the immediate consequences (as we saw previously):

Corollary 3 The unnormalized entropy H : B̄n+ → R has moduli of convexity 1 under the trace norm.

Corollary 4 For all X,Y ∈ Pntr, D(X‖Y ) := tr(X logX −X log Y ) ≥ 1
2‖X − Y ‖

2
tr.

Not surprisingly, we are going to apply again Theorem 3 to prove Theorem 6. For this, we need to
compute the derivatives.

As a gentle start, we claim that H ′(X) = 〈·; logX〉, which may or may not be trivial depending on the
reader’s background. We will not present the proof but mention only that H is a (real-valued) spectral
function (i.e. depends only on the spectrum of its input), whose differential rules are well-understood, see
for example [Borwein and Lewis, 2006, page 105].

Next, we need to differentiate H ′(X). By changing the trace norm to the Frobenius norm (so that
(Sn)′ ∼= Sn) we may identify the (first order) Fréchet derivative H ′ with the function log : Sn++ → Sn. We
need the following lemma to proceed:

Lemma 1 Let f ∈ C1(I) where I is an open interval of R. For X ∈ Sn whose spectrum lies in I, we have

∀W ∈ Sn, [f ′(X)](W ) = U
[
f [1](Λ) ◦ (U>WU)

]
U>, (17)

where U is some unitary matrix that diagonalizes X, i.e. X = UΛU> with Λii = λi ∈ R; f [1](Λ) ∈ Sn with
its ij-th element being {

f(λi)−f(λj)
λi−λj

, if λi 6= λj
f ′(λi), otherwise

; (18)

and ◦ denotes the Hadamard (elementwise) product.

This lemma, however complicated it might appear at a first glance, is actually quite natural. Its proof is also
(in some sense) straightforward: Start with polynomials and then extend by continuity to all C1 functions4.
For those who are determined, consult, say [Bhatia, 1997, page 124] for a complete proof.

The rest is computation (what is not?). Apply Lemma 1:

〈W ; [f ′(X)](W )〉 = tr
(
U
[
log[1](Λ) ◦ (U>WU)

]
U>W

)
= tr

([
log[1](Λ) ◦ (U>WU)

]
U>WU

)
.

Recall that in the vector case (corresponding to U>WU diagonal), we calculated the infimum by applying
simply the Cauchy-Schwarz inequality. The matrix case seems genuinely harder, but not much if we have
the following integral representation:

∀λ ∈ Bn+,
log λi − log λj

λi − λj
=

∫ ∞
0

1

(t+ λi)(t+ λj)
dt, (19)

3The reason to put a quotation mark can be understood by checking the year when von Neumann published his result!
4We have deliberately not mentioned what do we mean by the logarithm of a matrix so that if one has no difficulty in

arriving here, s/he should recognize this standard proof technique in functional calculus.
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where the left hand side is interpreted as 1
λi

in case λi = λj . This last interpretation should always be kept
in mind from now on (so that we do not have to cumbersomely split the sum). Therefore

〈W ; [f ′(X)](W )〉 =
∑
ij

log λi − log λj
λi − λj

(U>WU)2ij

≥
∫ ∞
0

∑
ij

(U>WU)2ij
(t+ λi)(t+ λj)

dt

=

∫ ∞
0

tr

(
1

t+X
W

1

t+X
W

)
dt.

where we note that all terms involved are nongegative (so that there is no worry about integrability).

Fix t and W . Consider the function g(X) := tr
(

1
t+XW

1
t+XW

)
= vec(W )( 1

t+X ⊗
1

t+X )vec(W ). We make

two important observations: 1) g is convex on Sn++, which follows from the (operator) convexity of the map
A 7→ A−1 ⊗A−1 on Sn++

5; 2) g(V >XV ) = g(X) for any unitary V that commutes with W .
We can now continue our computation. Diagonalize W = V∆V > and define the random diagonal

matrix Γ whose diagonal entries are sampled independently from {1,−1} with equal odds. Note that V ΓV >

commutes with W hence g(V ΓV >XV ΓV >) = g(X). Therefore due to the convexity of g,

E
(
g(V ΓV >XV ΓV >)

)
≥ g(E(V ΓV >XV ΓV >)) = g(V diag(V >XV )V >),

where diag : Sn → Sn is the diagonal operator, i.e. zeroing out all off-diagonal entries. Therefore

inf
X∈Bn

+,W∈Sn:‖W‖tr=1
〈W ; [f ′(X)](W )〉 = inf

X∈Bn
+,W∈Sn:‖W‖tr=1

tr
([

log[1](Λ) ◦ (U>WU)
]
U>WU

)
≥ inf
X∈Bn

+,W∈Sn:‖W‖tr=1

∫ ∞
0

tr

(
1

t+X
W

1

t+X
W

)
dt

≥ inf
X∈Bn

+,W∈Sn:‖W‖tr=1

∫ ∞
0

tr

(
V

1

t+ diag(V >XV )
V >WV

1

t+ diag(V >XV )
V >W

)
dt

= inf
X∈Bn

+,W∈Sn:‖W‖tr=1

∫ ∞
0

n∑
i=1

∆2
ii

(t+ (V >XV )ii)2
dt

= inf
X∈Bn

+,W∈Sn:‖W‖tr=1

n∑
i=1

∆2
ii

(V >XV )ii

≥ inf
X∈Bn

+,W∈Sn:‖W‖tr=1

1∑n
i=1(V >XV )ii

= inf
X∈Bn

+,W∈Sn:‖W‖tr=1

1

tr(V >XV )

= 1,

where the last inequality is due to Cauchy-Schwarz (recall the diagonalization W = V∆V >). Clearly the
lower bound cannot be improved (since it cannot even be improved in the vector case). We remark that our
proof is inspired by [Ball et al., 1994], whose main result will be reproduced in the next section.

We mention another extremely “short” proof of Theorem 6, first appearing in [Hiai et al., 1981]. The
proof is based on the following neat lemma:

Lemma 2 (Umegaki [1962], Lindblad [1975]) Let Φ : Sn → Sm be any completely positive trace-preserving
linear operator.

∀X,Y ∈ Sn+, D(Φ(X)‖Φ(Y )) ≤ D(X‖Y ). (20)

5We did not find an appropriate reference for this fact so we supply a proof: For A,B ∈ Sn++, define their arithmetic mean

A%B := A+B
2

, geometric mean A#B := A1/2(A−1/2BA−1/2)1/2A1/2 and harmonic mean A?B :=
(

A−1+B−1

2

)−1
. The

arithmetic-geometric-harmonic mean inequality can be again verified by diagonalizingA and thenB. Therefore (A?B)⊗(A?B) ≤
(A#B)⊗ (A#B) = (A⊗ A)#(B ⊗ B) ≤ (A⊗ A)%(B ⊗ B), whence follows the convexity of A 7→ A−1 ⊗ A−1. We have used
the fact that A � B � 0 =⇒ (A⊗A) � (B ⊗B) since (A+B)⊗ (A−B) + (A−B)⊗ (A+B) � 0.
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We observe that it is enough to prove Lemma 2 for density matrices (i.e. those with unit trace), due to a
simple scaling argument (and the assumption that Φ is trace-preserving). The rest of the proof amounts to
decomposing the completely positive (whatever that means) linear map Φ into the average of elementary
ones and then applying Jensen’s inequality since the quantum divergence D is known to be jointly convex
(which itself is a highly nontrivial fact!).

Equipped with Lemma 2, we can prove Theorem 6 with ease. Take some unitary matrix U that diago-
nalizes X−Y , i.e. X−Y = UΛU> where Λ is diagonal and nonnegative. Consider X̃ := diag(U>XU), Ỹ :=
diag(U>Y U) where the operator diag simply zeros out all off-diagonal entries. Importantly, diag : Sn → Sn

is completely positive and trace-preserving. Therefore

D(X‖Y ) = D(U>XU‖U>Y U) ≥ D(X̃‖Ỹ ) ≥ 1
2‖X̃ − Ỹ ‖

2
1 = 1

2‖X − Y ‖
2
tr,

where the first inequality follows from Lemma 2 and the second is due to Theorem 5.
Let us remark that the first proof we presented for Theorem 6 is a generic procedure while the second

proof seems only customized for the von Neumann entropy. This point is best illustrated with our next
example.

4 1
2‖ · ‖

2
p is (p− 1)-strongly convex w.r.t ‖ · ‖p

We will apply Theorem 3. Take the derivative of 1
2‖ · ‖

2
p (where w.l.o.g. assume x > 0):

∂i = xp−1i (xp1 + · · ·+ xpd)
2/p−1 (21)

∂ij = (2− p)xp−1i xp−1j (xp1 + · · ·+ xpd)
2/p−2 + 1i=j · (p− 1)xp−2i (xp1 + · · ·+ xpd)

2/p−1 (22)

Thus for ‖y‖p = 1:

〈
y · ∂2( 1

2‖x‖
2
p),y

〉
= (2− p)

(∑
i

xpi

) 2
p−2

(∑
i

xp−1i yi

)2

+ (p− 1)

(∑
i

xpi

) 2
p−1∑

i

xp−2i y2i . (23)

Using Hölder’s inequality, and noting that p
2 + 2−p

2 = 1:

(∑
i

xpi

) 2
p−1∑

i

xp−2i y2i ≥

(∑
i

(xp−2i y2i )p/2(xpi )
(2−p)/2

)2/p

=

(∑
i

ypi

)2/p

= 1. (24)

Plugging back to (23) we obtain

〈
y · ∂2( 1

2‖x‖
2
p),y

〉
≥ (2− p)

(∑
i

xpi

) 2
p−2

(∑
i

xp−1i yi

)2

+ p− 1 ≥ p− 1. (25)

The bound is tight, since by choosing the signs (and magnitudes) of y properly we can drive
∑
i x

p−1
i yi to 0.
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