The Strong Convexity of von Neumann's Entropy

Yao-Liang Yu Department of Computing Science University of Alberta, Canada yaoliang@cs.ualberta.ca

June 27, 2013

Abstract

The purpose of this note is to give an (almost) self-contained proof of the strong convexity of von Neumann's entropy.

1 Preliminary

Let us begin with some definitions. Fix two normed spaces $(\mathcal{X}, \|\cdot\|)$ and $(\mathcal{Y}, \|\cdot\|_{\mathcal{Y}})$. We use $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ to denote the space of all continuous linear operators from \mathcal{X} to \mathcal{Y} , equipped with the usual operator norm. We also use the abbreviation $\mathcal{X}' := \mathcal{L}(\mathcal{X}, \mathbb{R})$, and the dual pairing $\langle x; f \rangle := f(x)$ for $x \in \mathcal{X}, f \in \mathcal{X}'$.

Definition 1 (Fréchet Derivative) Let \mathcal{O} be an open set of \mathcal{X} . The Fréchet derivative of $f : \mathcal{O} \to \mathcal{Y}$ at $x \in \mathcal{O}$ is the (continuous) linear operator $g \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ such that

$$\|f(x+w) - f(x) - g(w)\|_{\mathcal{Y}} = o(\|w\|).$$
(1)

If f is differentiable in each point of \mathcal{O} , the derivatives collectively induce $f' : \mathcal{O} \to \mathcal{L}(\mathcal{X}, \mathcal{Y})$. When $\mathcal{Y} = \mathbb{R}$, we have $f' : \mathcal{O} \to \mathcal{X}'$ and consequently the more familiar notation $[f'(x)](w) = \langle w; f'(x) \rangle$. One can also iterate the definition to define even higher order derivatives. Essentially we need only the first order.

Importantly, we observe that by definition Fréchet derivative is a topological property. Therefore, if two norms $\|\cdot\|_1$ and $|||\cdot|||_1$ are equivalent on \mathcal{X} , and two norms $\|\cdot\|_2$ and $|||\cdot|||_2$ are equivalent on \mathcal{Y} , then we obtain the same Fréchet derivative of f under both $(X, \|\cdot\|_1) \to (Y, \|\cdot\|_2)$ and $(X, |||\cdot|||_1) \to (Y, |||\cdot|||_2)$. Moreover, the induced norms on $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ are also equivalent. Iterating the argument we see that derivatives of all orders are the same under both $(X, \|\cdot\|_1) \to (Y, \|\cdot\|_2)$ and $(X, |||\cdot|||_1) \to (Y, |||\cdot|||_2)$. If the norm we are interested in is equivalent to a Hilbertian norm, then we can calculate the derivatives under the Hilbertian setting, which is much more convenient.

Definition 2 (Strong Convexity) The function $f : \mathcal{X} \to \mathbb{R} \cup \{\infty\}$ is strongly convex iff there exists $\sigma > 0$ such that for all $x, w \in \mathcal{X}, \lambda \in]0, 1[$, we have

$$\lambda f(x) + (1-\lambda)f(w) \ge f(\lambda x + (1-\lambda)w) + \frac{o}{2}\lambda(1-\lambda)\|x-w\|^2.$$
⁽²⁾

When the above inequality holds with $\sigma = 0$, we call f convex.

It is not hard to see that there exists the largest possible σ so that (2) is true (assuming $f \neq \infty$). This is usually referred to as the modulus of convexity and denoted as $\sigma(f)$. It is easy to verify that

$$\forall \alpha > 0, \ \sigma(\alpha f) = \alpha \sigma(f), \qquad \sigma(f+g) \ge \sigma(f) + \sigma(g), \tag{3}$$

i.e., $\sigma(\cdot)$ is a positive homogeneous concave function. Moreover,

$$\sigma(\sup_{\alpha} f_{\alpha}) \ge \inf_{\alpha} \sigma(f_{\alpha}), \tag{4}$$

thus pointwise supremum of σ -strongly convex functions is σ -strongly convex. It is clear that by definition strong convexity is a topological property¹, although the moduli of convexity is not.

Interestingly, there is a simple relation between strong convexity and convexity in the Hilbertian setting:

Proposition 1 Suppose the norm $\|\cdot\|$ on \mathcal{X} is Hilbertian, then $f: \mathcal{X} \to \mathbb{R} \cup \{\infty\}$ is σ -strongly convex iff $f - \frac{\sigma}{2} \| \cdot \|^2$ is convex.

Proof: Simply verify Definition 2 with the aid of the parallelogram law:

$$\|x + w\|^{2} + \|x - w\|^{2} = 2(\|x\|^{2} + \|w\|^{2}).$$
(5)

Proposition 1 no longer holds when we equip \mathcal{X} with a non-Hilbertian norm; in fact, a strong converse is true, but we need a characterization of inner product spaces first.

Definition 3 The modulus of convexity of a normed space is defined for every $\epsilon \in [0, 2]$ as:

$$\delta(\epsilon) = \inf_{\|x\|=\|w\|=1, \|x-w\|=\epsilon} 1 - \|\frac{x+w}{2}\|.$$
(6)

Clearly, $\delta(0) = 0$, and $\delta(2) = 1$. Intuitively, δ characterizes how round the unit ball of $\|\cdot\|$ is.

Proposition 2 $\frac{1}{2} \| \cdot \|^2$ is 1-strongly convex (w.r.t. the norm $\| \cdot \|$) iff $\| \cdot \|$ is Hilbertian.

Proof: The if part follows immediately from Proposition 1. The only if part follows from Day [1947], or Chelidze [2009].

Example 1 We now show that Proposition 1 does not extend to any other norm. Firstly, for any abstract norm $\|\cdot\|$, clearly $\frac{\sigma}{2}\|\cdot\|^2 - \frac{\sigma}{2}\|\cdot\|^2 \equiv 0$ is convex, but according to Proposition 2, $\frac{\sigma}{2}\|\cdot\|^2$ is σ -strongly convex iff $\|\cdot\|$ is Hilbertian.

Conversely, consider an abstract norm $\|\cdot\|$ on \mathbb{R}^2 , with its unit ball C. Let B be the unique ellipsoid of maximum volume in C, i.e., John's ellipsoid. Note that B touches C at four points or more. Let $\|\cdot\|_2$ be the Hilbertian norm on \mathbb{R}^2 whose unit ball is B. Since $B \subseteq C$, $||x||_2 \ge ||x||$ for all $x \in \mathbb{R}^2$, with equality at say $w \neq \pm z$. According to Theorem 3 below we know $f = \frac{1}{2} \|\cdot\|_2^2$ is 1-strongly convex w.r.t. the norm $\|\cdot\|$. However, we show that $\frac{1}{2} \|\cdot\|_2^2 - \frac{1}{2} \|\cdot\|^2$ is convex iff $\|\cdot\| = \|\cdot\|_2$. Indeed, from the definition of convexity:

$$\left\|\frac{x+y}{2}\right\|_{2}^{2} - \left\|\frac{x+y}{2}\right\|^{2} \le \frac{1}{2} \left[\left\|x\right\|_{2}^{2} + \left\|y\right\|_{2}^{2} - \left\|x\right\|^{2} - \left\|y\right\|^{2}\right]$$

$$\tag{7}$$

$$\frac{\|\frac{2}{2}\|_{2}^{2} - \|\frac{2}{2}\|_{2}^{2}}{2} \|^{2} \leq \frac{1}{2} (\|x\|_{2}^{2} + \|y\|_{2}^{2} - \|x\|^{2} - \|y\|^{2})$$

$$\implies 2[\|x\|^{2} + \|y\|^{2}] \leq \|x - y\|_{2}^{2} + \|x + y\|^{2}.$$

$$(8)$$

Plug in x = w, y = z we have

$$2[||w||_{2}^{2} + ||z||_{2}^{2}] = 2[||w||^{2} + ||z||^{2}] \le ||w - z||_{2}^{2} + ||w + z||^{2},$$

implying $||w+z|| \ge ||w+z||_2$, but by construction $||w+z|| \le ||w+z||_2$, hence $||w+z|| = ||w+z||_2$, i.e., B and C agree on the middle ray of w and z. Iterating the argument we know B and C agree on a dense subset of rays. By continuity we must have B = C, i.e., $\|\cdot\| = \|\cdot\|_2$. The result immediately extends to any space \mathcal{X} with dimension bigger than 2, since we can always restrict to a two-dimensional subspace.

Example 2 Not all norms whose square is strongly convex. Take, for instance, the ℓ_1 norm:

$$\frac{\frac{1}{2}\|e_1\|_1^2 + \frac{1}{2}\|e_2\|_1^2}{2} = \frac{1}{2} = \frac{1}{2}\left\|\frac{e_1 + e_2}{2}\right\|_1^2.$$

Next we present some rules for checking strong convexity.

¹Contrarily, convexity (*i.e.* $\sigma = 0$) itself does not even require a topology! From this one is hinted that strong convexity of f is not only about f, it also reveals something about the topology on \mathcal{X} .

Theorem 1 (Zero Order Rule) The convex function $f : \mathcal{X} \to \mathbb{R} \cup \{\infty\}$ is σ -strongly convex on core(dom f) iff for all $x, w \in \text{core}(\text{dom } f)$,

$$f(x) \ge f(w) + f'(w; x - w) + \frac{\sigma}{2} ||x - w||^2.$$
(9)

Proof: Note first that on core(dom f), the directional derivative is finite and sublinear. By (2), we have

$$f(x) - f(w) \ge \frac{f(w + \lambda(x - w)) - f(w)}{\lambda} + \frac{\sigma}{2}(1 - \lambda) ||x - w||^2.$$

Letting $\lambda \downarrow 0$, we obtain (9).

Conversely, let $z = \lambda x + (1 - \lambda)w$, (9) yields

$$f(x) \ge f(z) + (1 - \lambda)f'(z; x - w) + \frac{\sigma}{2}(1 - \lambda)^2 ||x - w||^2$$

$$f(w) \ge f(z) + \lambda f'(z; w - x) + \frac{\sigma}{2}\lambda^2 ||x - w||^2.$$

Taking convex combination, we have

$$\lambda f(x) + (1 - \lambda)f(w) \ge f(z) + \lambda(1 - \lambda)(f'(z; x - w) + f'(z; w - x)) + \frac{\sigma}{2}\lambda(1 - \lambda)\|x - w\|^2,$$

which leads to σ -strong convexity due to sublinearity of the directional derivative.

When dom f is open and f is continuous, $f'(x; d) = \max\{\langle d; x^* \rangle : x^* \in \partial f(x)\}$. Therefore we can replace the directional derivative with any subdifferential.

Theorem 2 (First Order Rule) Let \mathcal{O} be an open convex set of \mathcal{X} . The Gateâux differentiable function $f : \mathcal{O} \to \mathbb{R}$ is σ -strongly convex iff for all $x, w \in \mathcal{O}$,

$$\langle x - w; f'(x) - f'(w) \rangle \ge \sigma ||x - w||^2.$$
 (10)

Note that we have used the fact that f is real-valued so that $f' \in \mathcal{X}'$ (hence the notation $\langle w; f'(x) \rangle$). *Proof:* By (9), we have

$$f(x) \ge f(w) + \langle x - w; f'(w) \rangle + \frac{\sigma}{2} ||x - w||^2,$$

$$f(w) \ge f(x) - \langle x - w; f'(x) \rangle + \frac{\sigma}{2} ||x - w||^2.$$

Adding them we obtain (10).

Conversely, define $h(\lambda) := \frac{\sigma}{2}\lambda^2 ||x - w||^2$ and $g(\lambda) := f(w + \lambda(x - w)) - \lambda \langle x - w; f'(w) \rangle$. Then by (10) $g'(\lambda) \ge h'(\lambda)$. By the mean value theorem, we have $g(1) - g(0) \ge h(1) - h(0)$, which is (9).

Theorem 3 (Second Order Rule) Let \mathcal{O} be an open convex set of \mathcal{X} . The twice Fréchet differentiable function $f : \mathcal{O} \to \mathbb{R}$ is σ -strongly convex iff $\forall x \in \mathcal{O}, w \in \mathcal{X}$

$$\langle w; [f''(x)](w) \rangle \ge \sigma \|w\|^2, \tag{11}$$

or equivalently

$$\inf_{x \in \mathcal{O}, w \in \mathcal{X}: \|w\| = 1} \langle w; [f''(x)](w) \rangle \ge \sigma.$$
(12)

Proof: Due to homogeneity of (11), we can assume w.l.o.g. that $x + w \in \mathcal{O}$. By (10) we have

$$\langle w; f'(x+w) - f'(x) \rangle \ge \sigma \|w\|^2.$$

Since f is twice Fréchet differentiable, $\langle w; f'(x+w) - f'(x) \rangle = \langle w; [f''(x)]w + o(||w||) \rangle$. Letting $||w|| \to 0$ yields (11).

Conversely, let $h(\lambda) := \sigma \lambda ||x - w||^2$ and $g(\lambda) = \langle x - w; f'(w + \lambda(x - w)) \rangle$. Then by (11) $g'(\lambda) \ge h'(\lambda)$. By the mean value theorem, we have $h(1) - h(0) \le g(1) - g(0)$, which is (10).

Functions defined on the vector space $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$, consisting of all continuous linear operators from the Hilbert space \mathcal{H}_1 to another Hilbert space \mathcal{H}_2 , deserve some special attention. Equip $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ with a norm $\|\cdot\|$ (not necessarily the operator norm, which is Hilbertian in this case), and consider the function $f: \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2) \to \mathbb{R} \cup \{\infty\}$.

Definition 4 (Unitary Invariance) $f : \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2) \to \mathbb{R} \cup \{\infty\}$ is called unitarily invariant iff for all $L \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$, isometries $U : \mathcal{H}_2 \to \mathcal{H}_2$ and $V : \mathcal{H}_1 \to \mathcal{H}_1$, we have f(L) = f(ULV). In other words, f only depends on the singular values of its input.

If we equip $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ with the operator norm $\|\cdot\|_{op}$, then it becomes very easy to check strong convexity, thanks to the next theorem:

Theorem 4 ([]) content...

2 Pinsker's Inequality

Consider the normed space $\mathcal{X} = \mathbb{R}^n$, $\|\cdot\| = \ell_1^n$ and denote the (open) unit ball (restricted to the positive orthant) $\mathcal{B}^n_+ := \{x \in \mathbb{R}^n_{++} : \|x\|_1 < 1\}$. Recall that the unnormalized (negative) entropy is defined as

$$\forall x \in \mathbb{R}^n_+, \ h(x) := \sum_i x_i \log x_i - x_i, \tag{13}$$

under the convention² $0 \log 0 := 0$. For illustration purpose, let us first prove

Theorem 5 The unnormalized entropy $h: \mathcal{B}^n_+ \to \mathbb{R}$ has moduli of convexity 1 with respect to the ℓ_1^n norm.

Proof: Not surprisingly, we are going to apply Theorem 3. As noted before, the Fréchet derivative is a topological property, so we can calculate it by changing the norm $\|\cdot\|$ to ℓ_2^n . After some usual elementary differentiation we arrive at

$$\inf_{x \in \mathcal{B}^n_+, y \in \mathbb{R}^n : \|y\|_1 = 1} \sum_{i=1}^n \frac{y_i^2}{x_i} \ge \inf_{x \in \mathcal{B}^n_+, y \in \mathbb{R}^n : \|y\|_1 = 1} \sum_{i=1}^n \frac{y_i^2}{x_i} \cdot \sum_{i=1}^n x_i \ge \inf_{x \in \mathcal{B}^n_+, y \in \mathbb{R}^n : \|y\|_1 = 1} \left(\sum_{i=1}^n |y_i|\right)^2 = 1.$$
(14)

Clearly the lower bound cannot be improved.

Let us denote $\bar{\mathcal{B}}^n_+ := \{x \in \mathbb{R}^n_+ : \|x\|_1 \leq 1\}$. Under the usual convention $0 \log 0 := 0$, we have

Corollary 1 The unnormalized entropy $h: \overline{\mathcal{B}}^n_+ \to \mathbb{R}$ has moduli of convexity 1 with respect to the ℓ_1^n norm.

Proof: Apply Theorem 5, with a limiting argument, to (2).

Corollary 2 (Pinsker's Inequality) For all $x, y \in \mathcal{P}_1^n := \{x \in \mathbb{R}^n_+ : ||x||_1 = 1\}$, the Kullback-Leibler divergence

$$d(x||y) := \sum_{i} x_i \log x_i - x_i \log y_i \ge \frac{1}{2} ||x - y||_1^2.$$
(15)

Proof: Clearly strong convexity is preserved under restricting the (effective) domain. Apply Corollary 1 and Theorem 1.

Note that Pinsker's inequality, mostly known in information theory, usually comes with an extra factor $\frac{1}{\ln 2}$, which is simply due to scaling because information theory prefers \log_2 while we use \log_e .

²Clearly h is continuous under this convention.

3 Matrix Pinsker's Inequality

Now let us move on to the matrix case. Let $\mathcal{X} = \mathbb{S}^n$, the space of all Hermitian $n \times n$ matrices, and equip the trace norm $\|\cdot\| = \|\cdot\|_{\mathrm{tr}}$ (*i.e.* the sum of the singular values). Denote $\mathbb{S}^n_+ \subseteq \mathbb{S}^n$ as the cone of all $n \times n$ positive semidefinite matrices and \mathbb{S}^n_{++} its interior. Clearly for $X \in \mathbb{S}^n_+, \|X\|_{\mathrm{tr}} = \mathrm{tr}(X)$.

Define similarly as before $\mathcal{B}^n_+ := \{X \in \mathbb{S}^n_{++} : \operatorname{tr}(X) < 1\}, \overline{\mathcal{B}}^n_+ := \{X \in \mathbb{S}^n_+ : \operatorname{tr}(X) \le 1\}$ and $\mathcal{P}^n_{\operatorname{tr}} := \{X \in \mathbb{S}^n_+ : \operatorname{tr}(X) = 1\}$. The following "generalization"³ of the unnormalized (negative) entropy is due to von Neumann [1927]:

$$\forall X \in \mathbb{S}^n_+, \ H(X) := \operatorname{tr}(X \log X - X), \tag{16}$$

where the convention $0 \log 0 := 0$ is again adopted. Our main goal is to prove

Theorem 6 The unnormalized entropy $H: \mathcal{B}^n_+ \to \mathbb{R}$ has moduli of convexity 1 under the trace norm.

Before delving into the proof, let us lay down the immediate consequences (as we saw previously):

Corollary 3 The unnormalized entropy $H: \overline{\mathcal{B}}^n_+ \to \mathbb{R}$ has moduli of convexity 1 under the trace norm.

Corollary 4 For all $X, Y \in \mathcal{P}_{tr}^n$, $D(X||Y) := tr(X \log X - X \log Y) \ge \frac{1}{2} ||X - Y||_{tr}^2$.

Not surprisingly, we are going to apply again Theorem 3 to prove Theorem 6. For this, we need to compute the derivatives.

As a gentle start, we claim that $H'(X) = \langle \cdot; \log X \rangle$, which may or may not be trivial depending on the reader's background. We will not present the proof but mention only that H is a (real-valued) spectral function (*i.e.* depends only on the spectrum of its input), whose differential rules are well-understood, see for example [Borwein and Lewis, 2006, page 105].

Next, we need to differentiate H'(X). By changing the trace norm to the Frobenius norm (so that $(\mathbb{S}^n)' \cong \mathbb{S}^n$) we may identify the (first order) Fréchet derivative H' with the function $\log : \mathbb{S}^n_{++} \to \mathbb{S}^n$. We need the following lemma to proceed:

Lemma 1 Let $f \in C^1(I)$ where I is an open interval of \mathbb{R} . For $X \in \mathbb{S}^n$ whose spectrum lies in I, we have

$$\forall W \in \mathbb{S}^n, \quad [f'(X)](W) = U\left[f^{[1]}(\Lambda) \circ (U^\top W U)\right] U^\top, \tag{17}$$

where U is some unitary matrix that diagonalizes X, i.e. $X = U\Lambda U^{\top}$ with $\Lambda_{ii} = \lambda_i \in \mathbb{R}$; $f^{[1]}(\Lambda) \in \mathbb{S}^n$ with its ij-th element being

$$\begin{cases} \frac{f(\lambda_i) - f(\lambda_j)}{\lambda_i - \lambda_j}, & \text{if } \lambda_i \neq \lambda_j \\ f'(\lambda_i), & \text{otherwise} \end{cases};$$
(18)

and \circ denotes the Hadamard (elementwise) product.

This lemma, however complicated it might appear at a first glance, is actually quite natural. Its proof is also (in some sense) straightforward: Start with polynomials and then extend by continuity to all C^1 functions⁴. For those who are determined, consult, say [Bhatia, 1997, page 124] for a complete proof.

The rest is computation (what is not?). Apply Lemma 1:

$$\langle W; [f'(X)](W) \rangle = \operatorname{tr}\left(U\left[\log^{[1]}(\Lambda) \circ (U^{\top}WU)\right]U^{\top}W\right) = \operatorname{tr}\left(\left[\log^{[1]}(\Lambda) \circ (U^{\top}WU)\right]U^{\top}WU\right).$$

Recall that in the vector case (corresponding to $U^{\top}WU$ diagonal), we calculated the infimum by applying simply the Cauchy-Schwarz inequality. The matrix case seems genuinely harder, but not much if we have the following integral representation:

$$\forall \lambda \in \mathcal{B}^n_+, \quad \frac{\log \lambda_i - \log \lambda_j}{\lambda_i - \lambda_j} = \int_0^\infty \frac{1}{(t + \lambda_i)(t + \lambda_j)} \mathrm{d}t,\tag{19}$$

 $^{^{3}}$ The reason to put a quotation mark can be understood by checking the year when von Neumann published his result!

 $^{^{4}}$ We have deliberately not mentioned what do we mean by the logarithm of a matrix so that if one has no difficulty in arriving here, s/he should recognize this standard proof technique in functional calculus.

where the left hand side is interpreted as $\frac{1}{\lambda_i}$ in case $\lambda_i = \lambda_j$. This last interpretation should always be kept in mind from now on (so that we do not have to cumbersomely split the sum). Therefore

$$\langle W; [f'(X)](W) \rangle = \sum_{ij} \frac{\log \lambda_i - \log \lambda_j}{\lambda_i - \lambda_j} (U^\top W U)_{ij}^2$$

$$\geq \int_0^\infty \sum_{ij} \frac{(U^\top W U)_{ij}^2}{(t + \lambda_i)(t + \lambda_j)} dt$$

$$= \int_0^\infty \operatorname{tr} \left(\frac{1}{t + X} W \frac{1}{t + X} W\right) dt.$$

where we note that all terms involved are nongegative (so that there is no worry about integrability).

Fix t and W. Consider the function $g(X) := \operatorname{tr}\left(\frac{1}{t+X}W\frac{1}{t+X}W\right) = \operatorname{vec}(W)(\frac{1}{t+X}\otimes\frac{1}{t+X})\operatorname{vec}(W)$. We make two important observations: 1) g is convex on \mathbb{S}^{n}_{++} , which follows from the (operator) convexity of the map $A \mapsto A^{-1} \otimes A^{-1}$ on \mathbb{S}^{n}_{++} 5; 2) $g(V^{\top}XV) = g(X)$ for any unitary V that commutes with W.

We can now continue our computation. Diagonalize $W = V\Delta V^{\top}$ and define the **random** diagonal matrix Γ whose diagonal entries are sampled independently from $\{1, -1\}$ with equal odds. Note that $V\Gamma V^{\top}$ commutes with W hence $g(V\Gamma V^{\top}XV\Gamma V^{\top}) = g(X)$. Therefore due to the convexity of g,

$$\mathsf{E}\left(g(V\Gamma V^{\top}XV\Gamma V^{\top})\right) \geq g(\mathsf{E}(V\Gamma V^{\top}XV\Gamma V^{\top})) = g(V\operatorname{diag}(V^{\top}XV)V^{\top}),$$

where diag : $\mathbb{S}^n \to \mathbb{S}^n$ is the diagonal operator, *i.e.* zeroing out all off-diagonal entries. Therefore

$$\begin{split} \inf_{X \in \mathcal{B}_{+}^{n}, W \in \mathbf{S}^{n} : \|W\|_{\mathrm{tr}}=1} \left\langle W; [f'(X)](W) \right\rangle &= \inf_{X \in \mathcal{B}_{+}^{n}, W \in \mathbf{S}^{n} : \|W\|_{\mathrm{tr}}=1} \operatorname{tr} \left(\left\lfloor \log^{[1]}(\Lambda) \circ (U^{\top}WU) \right\rfloor U^{\top}WU \right) \\ &\geq \inf_{X \in \mathcal{B}_{+}^{n}, W \in \mathbf{S}^{n} : \|W\|_{\mathrm{tr}}=1} \int_{0}^{\infty} \operatorname{tr} \left(\frac{1}{t+X}W\frac{1}{t+X}W \right) \mathrm{d}t \\ &\geq \inf_{X \in \mathcal{B}_{+}^{n}, W \in \mathbf{S}^{n} : \|W\|_{\mathrm{tr}}=1} \int_{0}^{\infty} \operatorname{tr} \left(V\frac{1}{t+\operatorname{diag}(V^{\top}XV)}V^{\top}WV\frac{1}{t+\operatorname{diag}(V^{\top}XV)}V^{\top}W \right) \mathrm{d}t \\ &= \inf_{X \in \mathcal{B}_{+}^{n}, W \in \mathbf{S}^{n} : \|W\|_{\mathrm{tr}}=1} \int_{0}^{\infty} \sum_{i=1}^{n} \frac{\Delta_{ii}^{2}}{(t+(V^{\top}XV)_{ii})^{2}} \mathrm{d}t \\ &= \inf_{X \in \mathcal{B}_{+}^{n}, W \in \mathbf{S}^{n} : \|W\|_{\mathrm{tr}}=1} \sum_{i=1}^{n} \frac{\Delta_{ii}^{2}}{(V^{\top}XV)_{ii}} \\ &\geq \inf_{X \in \mathcal{B}_{+}^{n}, W \in \mathbf{S}^{n} : \|W\|_{\mathrm{tr}}=1} \frac{1}{\sum_{i=1}^{n} (V^{\top}XV)_{ii}} \\ &= \inf_{X \in \mathcal{B}_{+}^{n}, W \in \mathbf{S}^{n} : \|W\|_{\mathrm{tr}}=1} \frac{1}{t \operatorname{r}(V^{\top}XV)} \\ &= 1, \end{split}$$

where the last inequality is due to Cauchy-Schwarz (recall the diagonalization $W = V\Delta V^{\top}$). Clearly the lower bound cannot be improved (since it cannot even be improved in the vector case). We remark that our proof is inspired by [Ball et al., 1994], whose main result will be reproduced in the next section.

We mention another extremely "short" proof of Theorem 6, first appearing in [Hiai et al., 1981]. The proof is based on the following neat lemma:

Lemma 2 (Umegaki [1962], Lindblad [1975]) Let $\Phi : \mathbb{S}^n \to \mathbb{S}^m$ be any completely positive trace-preserving linear operator.

$$\forall X, Y \in \mathbb{S}^n_+, \quad D(\Phi(X) \| \Phi(Y)) \le D(X \| Y).$$

$$\tag{20}$$

⁵We did not find an appropriate reference for this fact so we supply a proof: For $A, B \in \mathbb{S}_{++}^n$, define their arithmetic mean $A\%B := \frac{A+B}{2}$, geometric mean $A\#B := A^{1/2}(A^{-1/2}BA^{-1/2})^{1/2}A^{1/2}$ and harmonic mean $A?B := \left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1}$. The arithmetic-geometric-harmonic mean inequality can be again verified by diagonalizing A and then B. Therefore $(A?B)\otimes(A?B) \leq (A\#B) \otimes (A\#B) = (A \otimes A)\#(B \otimes B) \leq (A \otimes A)\%(B \otimes B)$, whence follows the convexity of $A \mapsto A^{-1} \otimes A^{-1}$. We have used the fact that $A \succeq B \succeq 0 \implies (A \otimes A) \succeq (B \otimes B)$ since $(A+B) \otimes (A-B) + (A-B) \otimes (A+B) \succeq 0$.

We observe that it is enough to prove Lemma 2 for density matrices (*i.e.* those with unit trace), due to a simple scaling argument (and the assumption that Φ is trace-preserving). The rest of the proof amounts to decomposing the completely positive (whatever that means) linear map Φ into the average of elementary ones and then applying Jensen's inequality since the quantum divergence D is known to be jointly convex (which itself is a highly nontrivial fact!).

Equipped with Lemma 2, we can prove Theorem 6 with ease. Take some unitary matrix U that diagonalizes X - Y, *i.e.* $X - Y = U\Lambda U^{\top}$ where Λ is diagonal and nonnegative. Consider $\tilde{X} := \text{diag}(U^{\top}XU), \tilde{Y} := \text{diag}(U^{\top}YU)$ where the operator diag simply zeros out all off-diagonal entries. Importantly, diag : $\mathbb{S}^n \to \mathbb{S}^n$ is completely positive and trace-preserving. Therefore

$$D(X||Y) = D(U^{\top}XU||U^{\top}YU) \ge D(\tilde{X}||\tilde{Y}) \ge \frac{1}{2}||\tilde{X} - \tilde{Y}||_{1}^{2} = \frac{1}{2}||X - Y||_{tr}^{2},$$

where the first inequality follows from Lemma 2 and the second is due to Theorem 5.

Let us remark that the first proof we presented for Theorem 6 is a generic procedure while the second proof seems only customized for the von Neumann entropy. This point is best illustrated with our next example.

4 $\frac{1}{2} \| \cdot \|_p^2$ is (p-1)-strongly convex w.r.t $\| \cdot \|_p$

We will apply Theorem 3. Take the derivative of $\frac{1}{2} \| \cdot \|_p^2$ (where w.l.o.g. assume $\mathbf{x} > 0$):

$$\partial_i = x_i^{p-1} (x_1^p + \dots + x_d^p)^{2/p-1}$$
(21)

$$\partial_{ij} = (2-p)x_i^{p-1}x_j^{p-1}(x_1^p + \dots + x_d^p)^{2/p-2} + \mathbf{1}_{i=j} \cdot (p-1)x_i^{p-2}(x_1^p + \dots + x_d^p)^{2/p-1}$$
(22)

Thus for $\|\mathbf{y}\|_p = 1$:

$$\left\langle \mathbf{y} \cdot \partial^2 (\frac{1}{2} \| \mathbf{x} \|_p^2), \mathbf{y} \right\rangle = (2-p) \left(\sum_i x_i^p \right)^{\frac{2}{p}-2} \left(\sum_i x_i^{p-1} y_i \right)^2 + (p-1) \left(\sum_i x_i^p \right)^{\frac{2}{p}-1} \sum_i x_i^{p-2} y_i^2.$$
(23)

Using Hölder's inequality, and noting that $\frac{p}{2} + \frac{2-p}{2} = 1$:

$$\left(\sum_{i} x_{i}^{p}\right)^{\frac{2}{p}-1} \sum_{i} x_{i}^{p-2} y_{i}^{2} \ge \left(\sum_{i} (x_{i}^{p-2} y_{i}^{2})^{p/2} (x_{i}^{p})^{(2-p)/2}\right)^{2/p} = \left(\sum_{i} y_{i}^{p}\right)^{2/p} = 1.$$
(24)

Plugging back to (23) we obtain

$$\left\langle \mathbf{y} \cdot \partial^2 (\frac{1}{2} \| \mathbf{x} \|_p^2), \mathbf{y} \right\rangle \ge (2-p) \left(\sum_i x_i^p \right)^{\frac{2}{p}-2} \left(\sum_i x_i^{p-1} y_i \right)^2 + p - 1 \ge p - 1.$$

$$(25)$$

The bound is tight, since by choosing the signs (and magnitudes) of **y** properly we can drive $\sum_{i} x_{i}^{p-1} y_{i}$ to 0.

References

Keith Ball, Eric A. Carlen, and Elliott H. Lieb. Sharp uniform convexity and smoothness inequalities for trace norms. *Inventiones Mathematicae*, 115:463–482, 1994.

Rajendra Bhatia. Matrix Analysis. Springer, 1997.

- Jonathan M. Borwein and Adrian S. Lewis. Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, 2nd edition, 2006.
- George Z. Chelidze. On Nordlanders conjecture in the three-dimensional case. Arkiv för Matematik, 47(2): 267–272, 2009.

- Mahlon M. Day. Some characterizations of inner-product spaces. Transactions of the American Mathematical Society, 62(2):320–337, 1947.
- Fumio Hiai, Masanori Ohya, and Makoto Tsukada. Sufficiency, KMS condition and relative entropy in von Neumann algebras. *Pacific Journal of Mathematics*, 96(1):147–151, 1981.
- Göran Lindblad. Completely positive maps and entropy inequalities. *Commun. Math. Phys.*, 40:147–151, 1975.
- Hisaharu Umegaki. Conditional expectation in an operator algebra, iv. Kodai Math. Sem. Rep., 14(2):59–85, 1962.
- John von Neumann. Thermodynamik quantenmechanischer gesamtheiten. *Göttingen Nachr.*, pages 273–291, 1927.