The Strong Convexity of von Neumann's Entropy

Yao-Liang Yu
Department of Computing Science
University of Alberta, Canada
yaoliang@cs.ualberta.ca

June 27, 2013

Abstract

The purpose of this note is to give an (almost) self-contained proof of the strong convexity of von Neumann's entropy.

1 Preliminary

Let us begin with some definitions. Fix two normed spaces $(\mathcal{X},\|\cdot\|)$ and $(\mathcal{Y},\|\cdot\| \mathcal{Y})$. We use $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ to denote the space of all continuous linear operators from \mathcal{X} to \mathcal{Y}, equipped with the usual operator norm. We also use the abbreviation $\mathcal{X}^{\prime}:=\mathcal{L}(\mathcal{X}, \mathbb{R})$, and the dual pairing $\langle x ; f\rangle:=f(x)$ for $x \in \mathcal{X}, f \in \mathcal{X}^{\prime}$.

Definition 1 (Fréchet Derivative) Let \mathcal{O} be an open set of \mathcal{X}. The Fréchet derivative of $f: \mathcal{O} \rightarrow \mathcal{Y}$ at $x \in \mathcal{O}$ is the (continuous) linear operator $g \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ such that

$$
\begin{equation*}
\|f(x+w)-f(x)-g(w)\|_{\mathcal{Y}}=o(\|w\|) \tag{1}
\end{equation*}
$$

If f is differentiable in each point of \mathcal{O}, the derivatives collectively induce $f^{\prime}: \mathcal{O} \rightarrow \mathcal{L}(\mathcal{X}, \mathcal{Y})$. When $\mathcal{Y}=\mathbb{R}$, we have $f^{\prime}: \mathcal{O} \rightarrow \mathcal{X}^{\prime}$ and consequently the more familiar notation $\left[f^{\prime}(x)\right](w)=\left\langle w ; f^{\prime}(x)\right\rangle$. One can also iterate the definition to define even higher order derivatives. Essentially we need only the first order.

Importantly, we observe that by definition Fréchet derivative is a topological property. Therefore, if two norms $\|\cdot\|_{1}$ and $\|\|\cdot\|\|_{1}$ are equivalent on \mathcal{X}, and two norms $\|\cdot\|_{2}$ and $\|\|\cdot\|\|_{2}$ are equivalent on \mathcal{Y}, then we obtain the same Fréchet derivative of f under both $\left(X,\|\cdot\|_{1}\right) \rightarrow\left(Y,\|\cdot\|_{2}\right)$ and $\left(X,\| \| \cdot\| \|_{1}\right) \rightarrow\left(Y, \mid\|\cdot\| \|_{2}\right)$. Moreover, the induced norms on $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ are also equivalent. Iterating the argument we see that derivatives of all orders are the same under both $\left(X,\|\cdot\|_{1}\right) \rightarrow\left(Y,\|\cdot\|_{2}\right)$ and $\left(X,\| \| \cdot\| \|_{1}\right) \rightarrow\left(Y,\| \| \cdot\| \|_{2}\right)$. If the norm we are interested in is equivalent to a Hilbertian norm, then we can calculate the derivatives under the Hilbertian setting, which is much more convenient.

Definition 2 (Strong Convexity) The function $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{\infty\}$ is strongly convex iff there exists $\sigma>0$ such that for all $x, w \in \mathcal{X}, \lambda \in] 0,1[$, we have

$$
\begin{equation*}
\lambda f(x)+(1-\lambda) f(w) \geq f(\lambda x+(1-\lambda) w)+\frac{\sigma}{2} \lambda(1-\lambda)\|x-w\|^{2} \tag{2}
\end{equation*}
$$

When the above inequality holds with $\sigma=0$, we call f convex.
It is not hard to see that there exists the largest possible σ so that $\sqrt{2}$) is true (assuming $f \not \equiv \infty)$. This is usually referred to as the modulus of convexity and denoted as $\sigma(f)$. It is easy to verify that

$$
\begin{equation*}
\forall \alpha>0, \sigma(\alpha f)=\alpha \sigma(f), \quad \sigma(f+g) \geq \sigma(f)+\sigma(g) \tag{3}
\end{equation*}
$$

i.e., $\sigma(\cdot)$ is a positive homogeneous concave function. Moreover,

$$
\begin{equation*}
\sigma\left(\sup _{\alpha} f_{\alpha}\right) \geq \inf _{\alpha} \sigma\left(f_{\alpha}\right), \tag{4}
\end{equation*}
$$

thus pointwise supremum of σ-strongly convex functions is σ-strongly convex. It is clear that by definition strong convexity is a topological property ${ }^{1}$, although the moduli of convexity is not.

Interestingly, there is a simple relation between strong convexity and convexity in the Hilbertian setting:

Proposition 1 Suppose the norm $\|\cdot\|$ on \mathcal{X} is Hilbertian, then $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{\infty\}$ is σ-strongly convex iff $f-\frac{\sigma}{2}\|\cdot\|^{2}$ is convex.

Proof: Simply verify Definition 2 with the aid of the parallelogram law:

$$
\begin{equation*}
\|x+w\|^{2}+\|x-w\|^{2}=2\left(\|x\|^{2}+\|w\|^{2}\right) . \tag{5}
\end{equation*}
$$

Proposition 1 no longer holds when we equip \mathcal{X} with a non-Hilbertian norm; in fact, a strong converse is true, but we need a characterization of inner product spaces first.

Definition 3 The modulus of convexity of a normed space is defined for every $\epsilon \in[0,2]$ as:

$$
\begin{equation*}
\delta(\epsilon)=\inf _{\|x\|=\|w\|=1,\|x-w\|=\epsilon} 1-\left\|\frac{x+w}{2}\right\| . \tag{6}
\end{equation*}
$$

Clearly, $\delta(0)=0$, and $\delta(2)=1$. Intuitively, δ characterizes how round the unit ball of $\|\cdot\|$ is.
Proposition $2 \frac{1}{2}\|\cdot\|^{2}$ is 1-strongly convex (w.r.t. the norm $\|\cdot\|$) iff $\|\cdot\|$ is Hilbertian.
Proof: The if part follows immediately from Proposition 1. The only if part follows from Day 1947, or Chelidze 2009.

Example 1 We now show that Proposition 1 does not extend to any other norm. Firstly, for any abstract norm $\|\cdot\|$, clearly $\frac{\sigma}{2}\|\cdot\|^{2}-\frac{\sigma}{2}\|\cdot\|^{2} \equiv 0$ is convex, but according to Proposition $2, \frac{\sigma}{2}\|\cdot\|^{2}$ is σ-strongly convex iff $\|\cdot\|$ is Hilbertian.

Conversely, consider an abstract norm $\|\cdot\|$ on \mathbb{R}^{2}, with its unit ball C. Let B be the unique ellipsoid of maximum volume in C, i.e., John's ellipsoid. Note that B touches C at four points or more. Let $\|\cdot\|_{2}$ be the Hilbertian norm on \mathbb{R}^{2} whose unit ball is B. Since $B \subseteq C,\|x\|_{2} \geq\|x\|$ for all $x \in \mathbb{R}^{2}$, with equality at say $w \neq \pm z$. According to Theorem 3 below we know $f=\frac{1}{2}\|\cdot\|_{2}^{2}$ is 1 -strongly convex w.r.t. the norm $\|\cdot\|$. However, we show that $\frac{1}{2}\|\cdot\|_{2}^{2}-\frac{1}{2}\|\cdot\|^{2}$ is convex iff $\|\cdot\|=\|\cdot\|_{2}$. Indeed, from the definition of convexity:

$$
\begin{align*}
\left\|\frac{x+y}{2}\right\|_{2}^{2}-\left\|\frac{x+y}{2}\right\|^{2} & \leq \frac{1}{2}\left[\|x\|_{2}^{2}+\|y\|_{2}^{2}-\|x\|^{2}-\|y\|^{2}\right] \tag{7}\\
\Longleftrightarrow 2\left[\|x\|^{2}+\|y\|^{2}\right] & \leq\|x-y\|_{2}^{2}+\|x+y\|^{2} . \tag{8}
\end{align*}
$$

Plug in $x=w, y=z$ we have

$$
2\left[\|w\|_{2}^{2}+\|z\|_{2}^{2}\right]=2\left[\|w\|^{2}+\|z\|^{2}\right] \leq\|w-z\|_{2}^{2}+\|w+z\|^{2}
$$

implying $\|w+z\| \geq\|w+z\|_{2}$, but by construction $\|w+z\| \leq\|w+z\|_{2}$, hence $\|w+z\|=\|w+z\|_{2}$, i.e., B and C agree on the middle ray of w and z. Iterating the argument we know B and C agree on a dense subset of rays. By continuity we must have $B=C$, i.e., $\|\cdot\|=\|\cdot\|_{2}$. The result immediately extends to any space \mathcal{X} with dimension bigger than 2, since we can always restrict to a two-dimensional subspace.

Example 2 Not all norms whose square is strongly convex. Take, for instance, the ℓ_{1} norm:

$$
\frac{\frac{1}{2}\left\|e_{1}\right\|_{1}^{2}+\frac{1}{2}\left\|e_{2}\right\|_{1}^{2}}{2}=\frac{1}{2}=\frac{1}{2}\left\|\frac{e_{1}+e_{2}}{2}\right\|_{1}^{2} .
$$

Next we present some rules for checking strong convexity.

[^0]Theorem 1 (Zero Order Rule) The convex function $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{\infty\}$ is σ-strongly convex on core(dom f) iff for all $x, w \in \operatorname{core}(\operatorname{dom} f)$,

$$
\begin{equation*}
f(x) \geq f(w)+f^{\prime}(w ; x-w)+\frac{\sigma}{2}\|x-w\|^{2} \tag{9}
\end{equation*}
$$

Proof: Note first that on core $(\operatorname{dom} f)$, the directional derivative is finite and sublinear. By (2), we have

$$
f(x)-f(w) \geq \frac{f(w+\lambda(x-w))-f(w)}{\lambda}+\frac{\sigma}{2}(1-\lambda)\|x-w\|^{2} .
$$

Letting $\lambda \downarrow 0$, we obtain (9).
Conversely, let $z=\lambda x+(1-\lambda) w,(9)$ yields

$$
\begin{aligned}
& f(x) \geq f(z)+(1-\lambda) f^{\prime}(z ; x-w)+\frac{\sigma}{2}(1-\lambda)^{2}\|x-w\|^{2} \\
& f(w) \geq f(z)+\lambda f^{\prime}(z ; w-x)+\frac{\sigma}{2} \lambda^{2}\|x-w\|^{2}
\end{aligned}
$$

Taking convex combination, we have

$$
\lambda f(x)+(1-\lambda) f(w) \geq f(z)+\lambda(1-\lambda)\left(f^{\prime}(z ; x-w)+f^{\prime}(z ; w-x)\right)+\frac{\sigma}{2} \lambda(1-\lambda)\|x-w\|^{2}
$$

which leads to σ-strong convexity due to sublinearity of the directional derivative.
When $\operatorname{dom} f$ is open and f is continuous, $f^{\prime}(x ; d)=\max \left\{\left\langle d ; x^{*}\right\rangle: x^{*} \in \partial f(x)\right\}$. Therefore we can replace the directional derivative with any subdifferential.

Theorem 2 (First Order Rule) Let \mathcal{O} be an open convex set of \mathcal{X}. The Gateâux differentiable function $f: \mathcal{O} \rightarrow \mathbb{R}$ is σ-strongly convex iff for all $x, w \in \mathcal{O}$,

$$
\begin{equation*}
\left\langle x-w ; f^{\prime}(x)-f^{\prime}(w)\right\rangle \geq \sigma\|x-w\|^{2} \tag{10}
\end{equation*}
$$

Note that we have used the fact that f is real-valued so that $f^{\prime} \in \mathcal{X}^{\prime}$ (hence the notation $\left\langle w ; f^{\prime}(x)\right\rangle$).
Proof: By (9), we have

$$
\begin{aligned}
& f(x) \geq f(w)+\left\langle x-w ; f^{\prime}(w)\right\rangle+\frac{\sigma}{2}\|x-w\|^{2} \\
& f(w) \geq f(x)-\left\langle x-w ; f^{\prime}(x)\right\rangle+\frac{\sigma}{2}\|x-w\|^{2}
\end{aligned}
$$

Adding them we obtain (10).
Conversely, define $h(\lambda):=\frac{\sigma}{2} \lambda^{2}\|x-w\|^{2}$ and $g(\lambda):=f(w+\lambda(x-w))-\lambda\left\langle x-w ; f^{\prime}(w)\right\rangle$. Then by 10 $g^{\prime}(\lambda) \geq h^{\prime}(\lambda)$. By the mean value theorem, we have $g(1)-g(0) \geq h(1)-h(0)$, which is (9).

Theorem 3 (Second Order Rule) Let \mathcal{O} be an open convex set of \mathcal{X}. The twice Fréchet differentiable function $f: \mathcal{O} \rightarrow \mathbb{R}$ is σ-strongly convex iff $\forall x \in \mathcal{O}, w \in \mathcal{X}$

$$
\begin{equation*}
\left\langle w ;\left[f^{\prime \prime}(x)\right](w)\right\rangle \geq \sigma\|w\|^{2} \tag{11}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\inf _{x \in \mathcal{O}, w \in \mathcal{X}:\|w\|=1}\left\langle w ;\left[f^{\prime \prime}(x)\right](w)\right\rangle \geq \sigma \tag{12}
\end{equation*}
$$

Proof: Due to homogeneity of (11), we can assume w.l.o.g. that $x+w \in \mathcal{O}$. By 10 we have

$$
\left\langle w ; f^{\prime}(x+w)-f^{\prime}(x)\right\rangle \geq \sigma\|w\|^{2}
$$

Since f is twice Fréchet differentiable, $\left\langle w ; f^{\prime}(x+w)-f^{\prime}(x)\right\rangle=\left\langle w ;\left[f^{\prime \prime}(x)\right] w+o(\|w\|)\right\rangle$. Letting $\|w\| \rightarrow 0$ yields (11).

Conversely, let $h(\lambda):=\sigma \lambda\|x-w\|^{2}$ and $g(\lambda)=\left\langle x-w ; f^{\prime}(w+\lambda(x-w)\rangle\right.$. Then by 11) $g^{\prime}(\lambda) \geq h^{\prime}(\lambda)$. By the mean value theorem, we have $h(1)-h(0) \leq g(1)-g(0)$, which is 10).

Functions defined on the vector space $\mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$, consisting of all continuous linear operators from the Hilbert space \mathcal{H}_{1} to another Hilbert space \mathcal{H}_{2}, deserve some special attention. Equip $\mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ with a norm $\|\cdot\|$ (not necessarily the operator norm, which is Hilbertian in this case), and consider the function $f: \mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right) \rightarrow \mathbb{R} \cup\{\infty\}$.

Definition 4 (Unitary Invariance) $f: \mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right) \rightarrow \mathbb{R} \cup\{\infty\}$ is called unitarily invariant iff for all $L \in \mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$, isometries $U: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$ and $V: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$, we have $f(L)=f(U L V)$. In other words, f only depends on the singular values of its input.

If we equip $\mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ with the operator norm $\|\cdot\|_{\mathrm{op}}$, then it becomes very easy to check strong convexity, thanks to the next theorem:

Theorem 4 ([]) content...

2 Pinsker's Inequality

Consider the normed space $\mathcal{X}=\mathbb{R}^{n},\|\cdot\|=\ell_{1}^{n}$ and denote the (open) unit ball (restricted to the positive orthant) $\mathcal{B}_{+}^{n}:=\left\{x \in \mathbb{R}_{++}^{n}:\|x\|_{1}<1\right\}$. Recall that the unnormalized (negative) entropy is defined as

$$
\begin{equation*}
\forall x \in \mathbb{R}_{+}^{n}, \quad h(x):=\sum_{i} x_{i} \log x_{i}-x_{i}, \tag{13}
\end{equation*}
$$

under the convention ${ }^{2} 0 \log 0:=0$. For illustration purpose, let us first prove
Theorem 5 The unnormalized entropy $h: \mathcal{B}_{+}^{n} \rightarrow \mathbb{R}$ has moduli of convexity 1 with respect to the ℓ_{1}^{n} norm.
Proof: Not surprisingly, we are going to apply Theorem 3. As noted before, the Fréchet derivative is a topological property, so we can calculate it by changing the norm $\|\cdot\|$ to ℓ_{2}^{n}. After some usual elementary differentiation we arrive at

$$
\begin{equation*}
\inf _{x \in \mathcal{B}_{+}^{n}, y \in \mathbb{R}^{n}:\|y\|_{1}=1} \sum_{i=1}^{n} \frac{y_{i}^{2}}{x_{i}} \geq \inf _{x \in \mathcal{B}_{+}^{n}, y \in \mathbb{R}^{n}:\|y\|_{1}=1} \sum_{i=1}^{n} \frac{y_{i}^{2}}{x_{i}} \cdot \sum_{i=1}^{n} x_{i} \geq \inf _{x \in \mathcal{B}_{+}^{n}, y \in \mathbb{R}^{n}:\|y\|_{1}=1}\left(\sum_{i=1}^{n}\left|y_{i}\right|\right)^{2}=1 \tag{14}
\end{equation*}
$$

Clearly the lower bound cannot be improved.
Let us denote $\overline{\mathcal{B}}_{+}^{n}:=\left\{x \in \mathbb{R}_{+}^{n}:\|x\|_{1} \leq 1\right\}$. Under the usual convention $0 \log 0:=0$, we have
Corollary 1 The unnormalized entropy $h: \overline{\mathcal{B}}_{+}^{n} \rightarrow \mathbb{R}$ has moduli of convexity 1 with respect to the ℓ_{1}^{n} norm.
Proof: Apply Theorem 5, with a limiting argument, to (22).

Corollary 2 (Pinsker's Inequality) For all $x, y \in \mathcal{P}_{1}^{n}:=\left\{x \in \mathbb{R}_{+}^{n}:\|x\|_{1}=1\right\}$, the Kullback-Leibler divergence

$$
\begin{equation*}
d(x \| y):=\sum_{i} x_{i} \log x_{i}-x_{i} \log y_{i} \geq \frac{1}{2}\|x-y\|_{1}^{2} \tag{15}
\end{equation*}
$$

Proof: Clearly strong convexity is preserved under restricting the (effective) domain. Apply Corollary 1 and Theorem 1 .

Note that Pinsker's inequality, mostly known in information theory, usually comes with an extra factor $\frac{1}{\ln 2}$, which is simply due to scaling because information theory prefers $\log _{2}$ while we use $\log _{e}$.

[^1]
3 Matrix Pinsker's Inequality

Now let us move on to the matrix case. Let $\mathcal{X}=\mathbb{S}^{n}$, the space of all Hermitian $n \times n$ matrices, and equip the trace norm $\|\cdot\|=\|\cdot\|_{\text {tr }}$ (i.e. the sum of the singular values). Denote $\mathbb{S}_{+}^{n} \subseteq \mathbb{S}^{n}$ as the cone of all $n \times n$ positive semidefinite matrices and \mathbb{S}_{++}^{n} its interior. Clearly for $X \in \mathbb{S}_{+}^{n},\|X\|_{\operatorname{tr}}=\operatorname{tr}(X)$.

Define similarly as before $\mathcal{B}_{+}^{n}:=\left\{X \in \mathbb{S}_{++}^{n}: \operatorname{tr}(X)<1\right\}, \overline{\mathcal{B}}_{+}^{n}:=\left\{X \in \mathbb{S}_{+}^{n}: \operatorname{tr}(X) \leq 1\right\}$ and $\mathcal{P}_{\operatorname{tr}}^{n}:=$ $\left\{X \in \mathbb{S}_{+}^{n}: \operatorname{tr}(X)=1\right\}$. The following "generalization" ${ }^{3}$ of the unnormalized (negative) entropy is due to von Neumann 1927:

$$
\begin{equation*}
\forall X \in \mathbb{S}_{+}^{n}, \quad H(X):=\operatorname{tr}(X \log X-X) \tag{16}
\end{equation*}
$$

where the convention $0 \log 0:=0$ is again adopted. Our main goal is to prove
Theorem 6 The unnormalized entropy $H: \mathcal{B}_{+}^{n} \rightarrow \mathbb{R}$ has moduli of convexity 1 under the trace norm.
Before delving into the proof, let us lay down the immediate consequences (as we saw previously):
Corollary 3 The unnormalized entropy $H: \overline{\mathcal{B}}_{+}^{n} \rightarrow \mathbb{R}$ has moduli of convexity 1 under the trace norm.
Corollary 4 For all $X, Y \in \mathcal{P}_{\mathrm{tr}}^{n}, D(X \| Y):=\operatorname{tr}(X \log X-X \log Y) \geq \frac{1}{2}\|X-Y\|_{\mathrm{tr}}^{2}$.
Not surprisingly, we are going to apply again Theorem 3 to prove Theorem 6. For this, we need to compute the derivatives.

As a gentle start, we claim that $H^{\prime}(X)=\langle\cdot ; \log X\rangle$, which may or may not be trivial depending on the reader's background. We will not present the proof but mention only that H is a (real-valued) spectral function (i.e. depends only on the spectrum of its input), whose differential rules are well-understood, see for example Borwein and Lewis, 2006, page 105].

Next, we need to differentiate $H^{\prime}(X)$. By changing the trace norm to the Frobenius norm (so that $\left(\mathbb{S}^{n}\right)^{\prime} \cong \mathbb{S}^{n}$) we may identify the (first order) Fréchet derivative H^{\prime} with the function $\log : \mathbb{S}_{++}^{n} \rightarrow \mathbb{S}^{n}$. We need the following lemma to proceed:

Lemma 1 Let $f \in C^{1}(I)$ where I is an open interval of \mathbb{R}. For $X \in \mathbb{S}^{n}$ whose spectrum lies in I, we have

$$
\begin{equation*}
\forall W \in \mathbb{S}^{n}, \quad\left[f^{\prime}(X)\right](W)=U\left[f^{[1]}(\Lambda) \circ\left(U^{\top} W U\right)\right] U^{\top} \tag{17}
\end{equation*}
$$

where U is some unitary matrix that diagonalizes X, i.e. $X=U \Lambda U^{\top}$ with $\Lambda_{i i}=\lambda_{i} \in \mathbb{R} ; f^{[1]}(\Lambda) \in \mathbb{S}^{n}$ with its ij-th element being

$$
\begin{cases}\frac{f\left(\lambda_{i}\right)-f\left(\lambda_{j}\right)}{\lambda_{i}-\lambda_{j}}, & \text { if } \lambda_{i} \neq \lambda_{j} \tag{18}\\ f^{\prime}\left(\lambda_{i}\right), & \text { otherwise }\end{cases}
$$

and \circ denotes the Hadamard (elementwise) product.
This lemma, however complicated it might appear at a first glance, is actually quite natural. Its proof is also (in some sense) straightforward: Start with polynomials and then extend by continuity to all C^{1} functions 4^{4}. For those who are determined, consult, say Bhatia, 1997, page 124] for a complete proof.

The rest is computation (what is not?). Apply Lemma 1 :

$$
\left\langle W ;\left[f^{\prime}(X)\right](W)\right\rangle=\operatorname{tr}\left(U\left[\log ^{[1]}(\Lambda) \circ\left(U^{\top} W U\right)\right] U^{\top} W\right)=\operatorname{tr}\left(\left[\log ^{[1]}(\Lambda) \circ\left(U^{\top} W U\right)\right] U^{\top} W U\right)
$$

Recall that in the vector case (corresponding to $U^{\top} W U$ diagonal), we calculated the infimum by applying simply the Cauchy-Schwarz inequality. The matrix case seems genuinely harder, but not much if we have the following integral representation:

$$
\begin{equation*}
\forall \lambda \in \mathcal{B}_{+}^{n}, \quad \frac{\log \lambda_{i}-\log \lambda_{j}}{\lambda_{i}-\lambda_{j}}=\int_{0}^{\infty} \frac{1}{\left(t+\lambda_{i}\right)\left(t+\lambda_{j}\right)} \mathrm{d} t \tag{19}
\end{equation*}
$$

[^2]where the left hand side is interpreted as $\frac{1}{\lambda_{i}}$ in case $\lambda_{i}=\lambda_{j}$. This last interpretation should always be kept in mind from now on (so that we do not have to cumbersomely split the sum). Therefore
\[

$$
\begin{aligned}
\left\langle W ;\left[f^{\prime}(X)\right](W)\right\rangle & =\sum_{i j} \frac{\log \lambda_{i}-\log \lambda_{j}}{\lambda_{i}-\lambda_{j}}\left(U^{\top} W U\right)_{i j}^{2} \\
& \geq \int_{0}^{\infty} \sum_{i j} \frac{\left(U^{\top} W U\right)_{i j}^{2}}{\left(t+\lambda_{i}\right)\left(t+\lambda_{j}\right)} \mathrm{d} t \\
& =\int_{0}^{\infty} \operatorname{tr}\left(\frac{1}{t+X} W \frac{1}{t+X} W\right) \mathrm{d} t
\end{aligned}
$$
\]

where we note that all terms involved are nongegative (so that there is no worry about integrability).
Fix t and W. Consider the function $g(X):=\operatorname{tr}\left(\frac{1}{t+X} W \frac{1}{t+X} W\right)=\operatorname{vec}(W)\left(\frac{1}{t+X} \otimes \frac{1}{t+X}\right) \operatorname{vec}(W)$. We make two important observations: 1) g is convex on \mathbb{S}_{++}^{n}, which follows from the (operator) convexity of the map $A \mapsto A^{-1} \otimes A^{-1}$ on $\mathbb{S}_{++}^{n}{ }^{5}$ 2) $g\left(V^{\top} X V\right)=g(X)$ for any unitary V that commutes with W.

We can now continue our computation. Diagonalize $W=V \Delta V^{\top}$ and define the random diagonal matrix $\boldsymbol{\Gamma}$ whose diagonal entries are sampled independently from $\{1,-1\}$ with equal odds. Note that $V \boldsymbol{\Gamma} V^{\top}$ commutes with W hence $g\left(V \boldsymbol{\Gamma} V^{\top} X V \boldsymbol{\Gamma} V^{\top}\right)=g(X)$. Therefore due to the convexity of g,

$$
\mathrm{E}\left(g\left(V \boldsymbol{\Gamma} V^{\top} X V \boldsymbol{\Gamma} V^{\top}\right)\right) \geq g\left(\mathrm{E}\left(V \boldsymbol{\Gamma} V^{\top} X V \boldsymbol{\Gamma} V^{\top}\right)\right)=g\left(V \operatorname{diag}\left(V^{\top} X V\right) V^{\top}\right)
$$

where diag : $\mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ is the diagonal operator, i.e. zeroing out all off-diagonal entries. Therefore

$$
\begin{aligned}
& \inf _{X \in \mathcal{B}_{+}^{n}, W \in \mathbb{S}^{n}:\|W\|_{\mathrm{tr}}=1}\left\langle W ;\left[f^{\prime}(X)\right](W)\right\rangle=\inf _{X \in \mathcal{B}_{+}^{n}, W \in \mathbb{S}^{n}:\|W\|_{\mathrm{tr}}=1} \operatorname{tr}\left(\left[\log ^{[1]}(\Lambda) \circ\left(U^{\top} W U\right)\right] U^{\top} W U\right) \\
& \geq_{X \in \mathcal{B}_{+}^{n}, W \in \mathbb{S}^{n}:\|W\|_{\mathrm{tr}}=1} \int_{0}^{\infty} \operatorname{tr}\left(\frac{1}{t+X} W \frac{1}{t+X} W\right) \mathrm{d} t \\
& \geq_{X \in \mathcal{B}_{+}^{n}, W \in \mathbb{S}^{n}:\|W\|_{\mathrm{tr}}=1} \int_{0}^{\infty} \operatorname{tr}\left(V \frac{1}{t+\operatorname{diag}\left(V^{\top} X V\right)} V^{\top} W V \frac{1}{t+\operatorname{diag}\left(V^{\top} X V\right)} V^{\top} W\right) \mathrm{d} t \\
& =\inf _{X \in \mathcal{B}_{+}^{n}, W \in \mathbb{S}^{n}:\|W\|_{\mathrm{tr}}=1} \int_{0}^{\infty} \sum_{i=1}^{n} \frac{\Delta_{i i}^{2}}{\left(t+\left(V^{\top} X V\right)_{i i}\right)^{2}} \mathrm{~d} t \\
& =\inf _{X \in \mathcal{B}_{+}^{n}, W \in \mathbb{S}^{n}:\|W\|_{\mathrm{tr}}=1} \sum_{i=1}^{n} \frac{\Delta_{i i}^{2}}{\left(V^{\top} X V\right)_{i i}} \\
& \geq_{X \in \mathcal{B}_{+}^{n}, W \in \mathbb{S}^{n}:\|W\|_{\mathrm{tr}}=1} \frac{1}{\sum_{i=1}^{n}\left(V^{\top} X V\right)_{i i}} \\
& =\inf _{X \in \mathcal{B}_{+}^{n}, W \in \mathbb{S}^{n}:\|W\|_{\text {tr }}=1} \frac{1}{\operatorname{tr}\left(V^{\top} X V\right)} \\
& =1 \text {, }
\end{aligned}
$$

where the last inequality is due to Cauchy-Schwarz (recall the diagonalization $W=V \Delta V^{\top}$). Clearly the lower bound cannot be improved (since it cannot even be improved in the vector case). We remark that our proof is inspired by Ball et al., 1994, whose main result will be reproduced in the next section.

We mention another extremely "short" proof of Theorem 6, first appearing in Hiai et al. 1981. The proof is based on the following neat lemma:
Lemma 2 (Umegaki 1962, Lindblad 1975]) Let $\Phi: \mathbb{S}^{n} \rightarrow \mathbb{S}^{m}$ be any completely positive trace-preserving linear operator.

$$
\begin{equation*}
\forall X, Y \in \mathbb{S}_{+}^{n}, \quad D(\Phi(X) \| \Phi(Y)) \leq D(X \| Y) \tag{20}
\end{equation*}
$$

[^3]We observe that it is enough to prove Lemma 2 for density matrices (i.e. those with unit trace), due to a simple scaling argument (and the assumption that Φ is trace-preserving). The rest of the proof amounts to decomposing the completely positive (whatever that means) linear map Φ into the average of elementary ones and then applying Jensen's inequality since the quantum divergence D is known to be jointly convex (which itself is a highly nontrivial fact!).

Equipped with Lemma 2 , we can prove Theorem 6 with ease. Take some unitary matrix U that diagonalizes $X-Y$, i.e. $X-Y=U \Lambda U^{\top}$ where Λ is diagonal and nonnegative. Consider $\tilde{X}:=\operatorname{diag}\left(U^{\top} X U\right), \tilde{Y}:=$ $\operatorname{diag}\left(U^{\top} Y U\right)$ where the operator diag simply zeros out all off-diagonal entries. Importantly, diag : $\mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ is completely positive and trace-preserving. Therefore

$$
D(X \| Y)=D\left(U^{\top} X U \| U^{\top} Y U\right) \geq D(\tilde{X} \| \tilde{Y}) \geq \frac{1}{2}\|\tilde{X}-\tilde{Y}\|_{1}^{2}=\frac{1}{2}\|X-Y\|_{\mathrm{tr}}^{2}
$$

where the first inequality follows from Lemma 2 and the second is due to Theorem 5
Let us remark that the first proof we presented for Theorem 6 is a generic procedure while the second proof seems only customized for the von Neumann entropy. This point is best illustrated with our next example.

$4 \frac{1}{2}\|\cdot\|_{p}^{2}$ is $(p-1)$-strongly convex w.r.t $\|\cdot\|_{p}$

We will apply Theorem 3. Take the derivative of $\frac{1}{2}\|\cdot\|_{p}^{2}$ (where w.l.o.g. assume $\mathbf{x}>0$):

$$
\begin{align*}
\partial_{i} & =x_{i}^{p-1}\left(x_{1}^{p}+\cdots+x_{d}^{p}\right)^{2 / p-1} \tag{21}\\
\partial_{i j} & =(2-p) x_{i}^{p-1} x_{j}^{p-1}\left(x_{1}^{p}+\cdots+x_{d}^{p}\right)^{2 / p-2}+\mathbf{1}_{i=j} \cdot(p-1) x_{i}^{p-2}\left(x_{1}^{p}+\cdots+x_{d}^{p}\right)^{2 / p-1} \tag{22}
\end{align*}
$$

Thus for $\|\mathbf{y}\|_{p}=1$:

$$
\begin{equation*}
\left\langle\mathbf{y} \cdot \partial^{2}\left(\frac{1}{2}\|\mathbf{x}\|_{p}^{2}\right), \mathbf{y}\right\rangle=(2-p)\left(\sum_{i} x_{i}^{p}\right)^{\frac{2}{p}-2}\left(\sum_{i} x_{i}^{p-1} y_{i}\right)^{2}+(p-1)\left(\sum_{i} x_{i}^{p}\right)^{\frac{2}{p}-1} \sum_{i} x_{i}^{p-2} y_{i}^{2} \tag{23}
\end{equation*}
$$

Using Hölder's inequality, and noting that $\frac{p}{2}+\frac{2-p}{2}=1$:

$$
\begin{equation*}
\left(\sum_{i} x_{i}^{p}\right)^{\frac{2}{p}-1} \sum_{i} x_{i}^{p-2} y_{i}^{2} \geq\left(\sum_{i}\left(x_{i}^{p-2} y_{i}^{2}\right)^{p / 2}\left(x_{i}^{p}\right)^{(2-p) / 2}\right)^{2 / p}=\left(\sum_{i} y_{i}^{p}\right)^{2 / p}=1 \tag{24}
\end{equation*}
$$

Plugging back to 23 we obtain

$$
\begin{equation*}
\left\langle\mathbf{y} \cdot \partial^{2}\left(\frac{1}{2}\|\mathbf{x}\|_{p}^{2}\right), \mathbf{y}\right\rangle \geq(2-p)\left(\sum_{i} x_{i}^{p}\right)^{\frac{2}{p}-2}\left(\sum_{i} x_{i}^{p-1} y_{i}\right)^{2}+p-1 \geq p-1 \tag{25}
\end{equation*}
$$

The bound is tight, since by choosing the signs (and magnitudes) of \mathbf{y} properly we can drive $\sum_{i} x_{i}^{p-1} y_{i}$ to 0 .

References

Keith Ball, Eric A. Carlen, and Elliott H. Lieb. Sharp uniform convexity and smoothness inequalities for trace norms. Inventiones Mathematicae, 115:463-482, 1994.

Rajendra Bhatia. Matrix Analysis. Springer, 1997.
Jonathan M. Borwein and Adrian S. Lewis. Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, 2nd edition, 2006.

George Z. Chelidze. On Nordlanders conjecture in the three-dimensional case. Arkiv för Matematik, 47(2): 267-272, 2009.

Mahlon M. Day. Some characterizations of inner-product spaces. Transactions of the American Mathematical Society, 62(2):320-337, 1947.

Fumio Hiai, Masanori Ohya, and Makoto Tsukada. Sufficiency, KMS condition and relative entropy in von Neumann algebras. Pacific Journal of Mathematics, 96(1):147-151, 1981.

Göran Lindblad. Completely positive maps and entropy inequalities. Commun. Math. Phys., 40:147-151, 1975.

Hisaharu Umegaki. Conditional expectation in an operator algebra, iv. Kodai Math. Sem. Rep., 14(2):59-85, 1962.

John von Neumann. Thermodynamik quantenmechanischer gesamtheiten. Göttingen Nachr., pages 273-291, 1927.

[^0]: ${ }^{1}$ Contrarily, convexity (i.e. $\sigma=0$) itself does not even require a topology! From this one is hinted that strong convexity of f is not only about f, it also reveals something about the topology on \mathcal{X}.

[^1]: ${ }^{2}$ Clearly h is continuous under this convention.

[^2]: ${ }^{3}$ The reason to put a quotation mark can be understood by checking the year when von Neumann published his result!
 ${ }^{4}$ We have deliberately not mentioned what do we mean by the logarithm of a matrix so that if one has no difficulty in arriving here, $s /$ he should recognize this standard proof technique in functional calculus.

[^3]: ${ }^{5}$ We did not find an appropriate reference for this fact so we supply a proof: For $A, B \in \mathbb{S}_{++}^{n}$, define their arithmetic mean $A \% B:=\frac{A+B}{2}$, geometric mean $A \# B:=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2}$ and harmonic mean $A ? B:=\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1}$. The arithmetic-geometric-harmonic mean inequality can be again verified by diagonalizing A and then B. Therefore $(A ? B) \otimes(A$? $B) \leq$ $(A \# B) \otimes(A \# B)=(A \otimes A) \#(B \otimes B) \leq(A \otimes A) \%(B \otimes B)$, whence follows the convexity of $A \mapsto A^{-1} \otimes A^{-1}$. We have used the fact that $A \succeq B \succeq 0 \Longrightarrow(A \otimes A) \succeq(B \otimes B)$ since $(A+B) \otimes(A-B)+(A-B) \otimes(A+B) \succeq 0$.

