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Abstract 
Implicit query systems examine a document 
and automatically conduct searches for the 
most relevant information.  In this paper, we 
offer three contributions to implicit query 
research.  First, we show how to use query 
logs from a search engine: by constraining 
results to commonly issued queries, we can get 
dramatic improvements.  Second, we describe 
a method for optimizing parameters for an 
implicit query system, by using logistic 
regression training.  The method is designed to 
estimate the probability that any particular 
suggested query is a good one.  Third, we 
show which features beyond standard TF-IDF 
features are most helpful in our logistic 
regression model: query frequency 
information, capitalization information, 
subject line information, and message length 
information.  Using the optimization method 
and the additional features, we are able to 
produce a system with up to 6 times better 
results on top-1 score than a simple TF-IDF 
system.   

 

1 Introduction 

In this paper, we examine implicit query systems for 
email: automatically finding good words or phrases in 
an email message to send to a search engine.  We will 
show three main results related to these efforts.  First, 
we show how to use the query logs from a large search 
engine.  By restricting queries to those commonly 
found in the logs, we can dramatically improve our 
results.  Second, we show that email-specific 
information, specifically giving large weight to subject 
line information, can also lead to improvements.  Third, 
we show that we can train a system to estimate 
probabilities that also has good performance on Top-1 
and Top-10 scores. 

Email is the number one activity people pursue online 
(Madden and Rainie, 2003), with Internet Search a very 

close second (ibid.)  Given people’s interests, it makes 
sense to combine these two technologies as much as 
possible.  In addition, search is very lucrative: Google, 
for instance, appears to earn over a billion dollars a year 
from search (Google SEC Filing, 2004), besides other 
revenues.  Anything we can do to encourage users to 
search is a win for both users and software producers. 

There are many ways to make it easier for users to 
search while reading email, such as including easily 
accessible search boxes, or allowing users to select text 
and then right-click select search as an option.  Easier 
still are single click solutions, such as converting likely 
words and phrases in a message to clickable links to 
search, or including such words and phrases in a 
sidebar.  The easiest of all for users is to have already 
executed the query and return the result, as has been 
done by Google’s Gmail system. These techniques in 
which likely queries are found and then turned into 
single-click or pre-retrieved solutions are known as 
implicit query systems.   

A large portion of the previous literature on implicit 
query has focused either on the user interface, or on a 
related problem, also known as implicit query, of 
finding related documents in a database.  For instance, 
when viewing an email message, you might be shown 
other related messages.  These other messages can be 
found by, e.g., examining the similarity between the 
current message and all messages previously received.  
In this paper, we will be concerned with the problem of 
finding the best queries to retrieve internet search 
results.  

We apply this research to the problem of finding good 
queries for email messages, but we expect variations 
could be used to find good queries for other document 
types, e.g. instant messaging, chat, or web pages.  In 
addition, the area of contextual advertising is starting to 
receive substantial attention, and presumably these 
techniques could also be applied to the area of finding 
keywords for contextual ads for email, or any of the 
other document types.  Much of the research in this 
paper focused on email-specific features.  
Disappointingly, in most cases, with the exception of 



subject line information, these features did not seem 
helpful.  On the other hand, this is good news, in the 
sense that it means that our results can probably be 
applied to other document types. 

In addition to finding the best queries, we also want to 
know how likely it is that each query is a relevant one.  
This gives us useful information for real applications.  
For instance, we may find that the most probable phrase 
found has only a .001 chance of being relevant.  In this 
case, we might choose to show no results at all, so as 
not to distract the user, or an advertisement, or a 
different kind of relevant information, such as a history 
of other messages sent by the sender.  We might also 
use the relative probabilities of various queries.  For 
instance, if the top ranked query has probablity .2 of 
being relevant, and the second ranked query has 
probability .19, we might show two search results for 
each query, instead of four results for the first one.   

Of course, we could have similar rules for, e.g., 
absolute or relative TF-IDF scores.  However, the use 
of probabilities seems simpler and easier to make 
decisions about.  In addition, it may be more robust to 
changes in the system.  For example, changing from 
unstemmed to stemmed words might change all of the 
important thresholds for a TF-IDF system, while a 
system directly trained to estimate probabilities, when 
retrained with the stemmed words, should mostly 
automatically learn new parameter values that 
compensate for any such changes. 

Because of our goal to return absolute probabilities of 
relevance, we also experimented with the use of 
information not typically used in an implicit query 
system, what we will refer to as global features of a 
message.  For instance, we will use features such as 
whether the subject line starts with “Re:” or “Fwd:”.  
Messages that are replies tend to be of more interest to 
a user, and thus there tends to be a higher probability 
that they will contain queries relevant to a user.  In our 
system, the use of these features does not affect the 
relative ranking of possible query words, but it does 
affect their absolute probability, making the results 
more useful in real applications. 

2 Method 

2.1 Learning Algorithm  

Our desire to get actual probabilities of relevance 
impacts our choice of model.  Traditional choices for 
implicit query systems, such as TF-IDF, do not return 
quantities that are directly interpretable as probabilities.  
We chose to focus on logistic regression models, which, 
as we will show, can include TF-IDF and other 
traditional choices as special cases, but also naturally 
return probabilities.  Logistic regression models are also 
called maximum entropy models in some communities, 
and are equivalent to a certain kind of single layer 

neural network.  In particular, logistic regression 
models are of the form 
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In this equation, y is the variable being predicted (in 
this case, y takes the values 0 or 1, with 1 meaning that 
a particular word or phrase is a good query for a 
particular message.)  x  is a vector of numbers 
representing the features of a particular word or 
message in an email message.  For instance, our 
features might include the number of times that the 
word or phrase occurs in the subject; the number of 
times it occurs anywhere in the body; and 0 or 1 
representing whether the word or phrase is capitalized.  
Finally, w represents a set of weights.  These weights 
indicate the relative weights for each feature for each 
word or phrase; if subject words are twice as important 
as body words, w1 might have twice the value of w2.  
Typically, we learn these weights using training data, in 
this case, a corpus of messages for which we have hand 
labeled which words or phrases are relevant.  
Essentially, for every word or phrase (up to length 5) in 
each message, we have a training example, with value 
y=1 if the word was labeled as relevant, 0 otherwise.  
The vast majority of words are labeled as irrelevant.  
We then use a learning algorithm that maximizes the 
probability of the training data, assigning as large a 
probability as possible to those words or phrases that 
were relevant, and as small as possible to those that 
were not. 

The training algorithm we use is Sequential Conditional 
Generalized Iterative Scaling (SCGIS) (Goodman, 
2002), although because logistic regression models 
have a global optimum, the choice of learning 
algorithm is typically of little importance.  Once the 
data has been extracted for the learning algorithm, the 
actual learning takes only a few seconds.  One very 
important observation is that the algorithm must be run 
past the usual criteria for convergence: we use 100 
iterations instead of our usual 10.  The algorithm is fast, 
so even 100 iterations is not problematic. 

Logistic regression models, like many other kinds of 
machine learning, have a tendency to overfit the 
training data.  We use a Gaussian Prior (Chen et al., 
1999) with variance of 1 to prevent overfitting.   

2.2 Features 

We experimented with a large number of features that 
we thought might be helpful.  These included: 

• S: InSubject  How many times the word or 
phrase occurs in the subject. 

• A: Anywhere  How many times the word or 
phrase occurs anywhere in the body or subject 
of the message. 



• B: Body How many times the word or phrase 
occurs in the body of the message. 

• G: AtBeginning  How many times the word 
or phrase occurs at the beginning of the 
message (in the first 50 characters of the 
body.)  50 was selected semi-arbitrarily. 

• H: NearBeginning  How many times the 
word or phrase occurs near the beginning of 
the message (in the first 300 characters of the 
body.)  300 was selected semi-arbitrarily. 

• R: BodyNotReply  How many times the word 
or phrase occurs in the body of the message, 
not including replied-to sections.   

• SDF, ADF, BDF, GDF, HDF, RDF: DFInSubject, 
DFAnywhere, DFBody, DFAtBeginning, 
DFNearBeginning, DFBodyNotReply  These 
are the document frequencies for a given word 
or phrase, i.e. the total number of occurrences 
of that word or phrase occurred in in the 
corpus. 

• Q: QueryFrequency  This is the number of 
times the word or phrase occurred in a corpus 
of MSN Search queries, as described below. 

• L: LogQueryFrequency This is 
log(QueryFrequency + 1).  See below. 

• P: PhraseLength  How long is the query 
phrase, in words. 

• C: Capitalized  Every time the word or phrase 
occurs, is the first letter of every word in the 
phrase capitalized? (Takes value 0 or 1 only) 

• T: SentenceBeginning Does the word or 
phrase occur at the beginning of a sentence, 
somewhere in the message? (0 or 1 only) 

• M: MessageLength This is the length of the 
message.  We hypothesize that the longer a 
message is, the more difficult it is to find the 
“good” keywords in the message, separating 
them from bad ones.  Also, see below about 
length normalization. 

• F, E: HasFWSubject, HasRESubject  
Whether the subject line starts with FW or RE 
respectively (0 or 1 only). 

For a feature occurring fi times in a message, we 
actually use the value xi = log(fi+1) instead of xi=fi.  
This has commonly been found to be useful in areas 
such as information retrieval and text classification.  
(Because of the model form, the base of the logarithm 
does not matter.)  

Many machine learning and information retrieval 
techniques use length normalization.  Rather than 
explicitly perform length normalization, we allow the 

system to weight the length if desired, which provides 
an excellent approximation.  For instance, imagine the 
ideal weights are  

   3 × log((insubject+1)/(messagelength+1))  
+ 2 × log((body +1)/(messagelength+1)) 

where insubject and body represent the number of times 
a particular word or phrase occurs in the subject or 
body respectively.  Since we do not provide length 
normalized features, it may not be obvious that the 
system can learn this model.  But in fact, by not 
normalizing, and providing message length as a 
learnable feature, it can learn 

   3 × log(insubject +1)  
+ 2 × log(body +1) 
- 5 × log(message-length+1) 

which is equivalent.  This provides our learning system 
flexibility, essentially allowing it to learn which 
features to normalize and which not to.  In the end, 
because of the model form, it does not matter exactly 
which features are length normalized: the normaliz-
ations are implicitly summed.   

Similary, we do not explicity use the formula 
TermFrequency/DocumentFrequency.  Instead, we 
allow the system to learn the ideal weightings.  We 
provide both TF and DF scores for each field, and allow 
the system to learn the appropriate weights; they may 
be, e.g. 1 and -1, yielding the conventional TF/DF = TF 
× IDF measure; or they may lead to other values. 

We also used a corpus of the 7.5 million most common 
english language queries from MSN Search.  In most of 
our experiments, we limited ourselves to returning 
queries that are in those 7.5 million.  This made many 
experiments much more efficient: rather than 
considering all words and phrases in each message, we 
only considered those that were moderately likely to be 
queried by users.  Among other things, since we extract 
both positive and negative examples of words or 
phrases as training data, it drastically reduced the 
number of negative training examples.  It also, as we 
will show, dramatically improves the accuracy of the 
results, since it prevents us from returning words or 
phrases that would never be queried by real users. 

We used the query frequency as an additional input to 
our system.  Our reasoning was that perhaps if users 
queried for words or phrases more, they were more 
likely to be good phrases for implicit queries.  This is 
the QueryFrequency feature described above.  We 
thought, however, that QueryFrequency might be too 
blunt an instrument, and that distinguishing very high 
frequency queries from very low frequency queries 
might be more important.  We thus also included a 
feature LogQueryFrequency, which was set to 
log(QueryFrequency + 1). As we’ve mentioned, since 
we add 1 and take the log of features before passing 
them to the logistic regression model, the actual values 



for x in the logistic regression model were not 
QueryFrequency and log(QueryFrequency + 1), but 
were instead log(QueryFrequency+1) and 
log(log(QueryFrequency+1)+1).  Because of this 
transformation, for the LogQueryFrequency feature, 
there is very little difference between, say, a query 
occurring 100,000 times and one occurring 200,000 
times; effectively, all very high frequency queries 
receive a similar value.  On the other hand, there is a 
relatively large difference between features occurring 
say 20 times versus 40 times.  This means that this 
feature is mostly sensitive to changes in frequency at 
the low end.  By combining the two features, the 
learning system can control weights separately for high 
frequency and low frequency queries. 

3 Experimental Results 

3.1 Data and Evaluation Criteria 

We initially planned to use the Enron corpus for these 
experiments, so that we could make our labeling of the 
corpus publicly available.  However, a brief inspection 
of the Enron corpus showed that most of the messages 
were from one Enron user to another, and about 
projects specific to Enron: there would be little of 
interest to search for on the internet.  A possible area of 
future research would be implicit query of email 
messages for intranet use, or for a desktop search 
application; see related work by Dumais et al. (2004), 
for an example of this. 

For our data set, we used a corpus collected from 20 
Hotmail volunteers from the general population (not 
Microsoft employees.)  The volunteers had been 
directed to save all of their email, and to then hand-
classify it into three sets: “spam,” “subs”, and 
“wanted.”  Some words, such as users’ names, local 
words (e.g. about Redmond, WA and environs, where 
the users lived), and some company names had been 
removed from the corpus.  The subs set was for mail 
that was not spam, but that the user did not particularly 
care about; this was primarily commercial mail for 
which the users had opted in, or for which they had a 
pre-existing business relationship, and had not opted 
out, as well as some mailing list mail.  We focused on 
the “wanted” set, reasoning that this was the kind of 
mail where implicit query would be most useful.  Of the 
wanted messages, we hand labeled approximately 1143 
messages.  For each message, our 6 annotators were 
instructed roughly as follows: 

These are mail messages from real Hotmail users.  
Imagine that you were the recipient of each 
message.  If your email program were to 
automatically perform a query to a search engine 
like MSN Search or Google, for you, what words 
or phrases would you want the engine to search 
for? In some messages, there may be no words 

worth searching for.  In others, there may be 
several. When possible, the words or phrases 
should actually occur in the messages you 
annotate. 

For experimental purposes we eliminated any words or 
phrases that annotators entered that did not appear in a 
message.  Since all methods we consider in this paper 
only return words and phrases actually present in the 
message, this affects all our methods equally. 

All experiments were done with 10-way cross 
validation.  The training data was split into ten pieces; 
we used nine for training any parameters that needed to 
be optimized, and one for test; this was repeated on 
each of the ten sets, and the results were averaged.  In 
our experiments, no preprocessing was done: 
attachments, multiple MIME parts and HTML were all 
included. 

We will present three kinds of results.  The first type is 
the average entropy of test data.  For each test item, we 
compute the -log2 P(y| x ) – the log of the probability of 
the training data.  A test item is a word or a phrase (up 
to length 5) in a message.  The entropy will be large if 
the model does a bad job of predicting which words and 
phrases are good matches (according to our labelers), 
and small if the model does a good job.  The ideal 
entropy is 0, which happens when the model is perfect 
at predicting which words and phrases are good 
matches.  Entropy is a useful measure if we care about 
getting probabilities right, e.g. if we might display no 
matches to a user if none are sufficiently likely.  Note 
that logistic regression models are trained to minimize 
entropy. 

We will also compute the Top-1 score.  For the Top-1 
score, we compute for each message the best word or 
phrase.  If the word or phrase is on the list provided by 
the annotators, we get 1 point.  We divide this by the 
maximum Top-1 score, which is the number of test 
messages for which there was at least one word 
provided by the annotators.  Notice that unlike entropy, 
Top-1 score cares about the order of results, but not 
about absolute values.  In messages for which there is 
no correct answer, the Top-1 score is unaffected by the 
probabilities a system returns, while entropy measures 
give better scores to systems that return all low 
probabilities.  

Finally, we compute the Top-10 score.  The Top-10 
score is the number of words and phrases in the Top-10 
which matched some word or phrase provided by the 
annotators, divided by the best possible Top-10 score 
(which is also the total number of annotations provided, 
since no message was given more than 10 words or 
phrases.) 



3.2 Query Data Experiments 

In this section, we present experiments showing that 
search engine query frequency data can dramatically 
improve our results.  In particular, we used a restriction 
that all words returned were in the top 7.5 million most 
common queries to MSN Search.     We tried several 
different model types, with and without the query 
frequency restriction.   The different model types will 
be explained below.   

In all of our results, we use a * to indicate statistical 
significance at the 95% level, and ** to indicate 
significance at the 99% level.  We use a “B” to indicate 
that a result is a baseline result for the results below it 
(until the next “B”).  Significance is tested with a two-
tailed paired t-test.  In Table 1, the test is done between 
the “query” result and the corresponding “no query” 
result.  We do not show average entropy results in 
Table, because the number of test instances is different 
with and without the query: with the query restriction, 
there are many more test instances.  This makes the 
entropies incomparable. 

We now explain the models tested in Table 1.  The first 
two lines compare “AADF-fixed query” to  “AADF-fixed 

no query.”  “AADF” is a model that approximates a 
traditional TF-IDF model.  We used the Anywhere and 
DFAnywhere features (AADF). Fixed means that the 
parameters were set to +1 and -1, making this 
essentially a TF-IDF model.  “Query” means that the 
results were restricted to those in the top 7.5 million, 
while no query means that all results were allowed.  As 
can be seen, the AADF-fixed query model significantly 
outperforms the no query model on both Top-1 and 
Top-10 measures.  In the next two lines, we show 
results of training the parameters using logistic 
regression.  AADF query is just like AADF-fixed query, 
except that the parameters are set with logistic 
regression, rather than being fixed at +1 and -1.  Again, 
AADF query outperforms AADF no query.  Next, we 
tried another model with all features (All), as will be 
described later, except for the query frequency features 
(QL), which we call All-QL.  All-QL query (with the 
restriction) substantially outperforms All-QL no query 
(without the restriction.)   Parameters were set with 
logistic regression. 

In all cases but one, algorithms with the query 
restriction outperform algorithms without the restriction 
by at least a factor of 2 (and in that case, by a factor of 
1.5)  Because of both the increased speed, and the 
increased accuracy, all remaining experiments were 
done with the query file restriction. 

3.3 Trained versus Fixed Parameters 

Our next intuition was that setting parameters using 
training would be better than ad-hoc intuitive parameter 
settings.  Logistic regression models are trained to 
optimize the entropy of training data, which is also 
equivalent to making the training data as likely as 
possible.  Another way of saying this is that they try to 
do as good a job as possible of estimating the 
probabilities.  The hope is that these results will also be 
good on Top-1 and Top-10 scores.   

We ran three experiments comparing hand-set to 
automatically trained parameter settings.  The first 
experiment used AADF as in the previous experiments.  
The second used AADFS with settings of 1 for A, -1 for 
ADF and 1 for S (subject line counts), similar to TF-IDF, 
but with a boost for words in the subject line.  Finally, 
we tried AADFSSDF with a value of –1 for SDF, similar 
to combining TF-IDF for all features, and TF-IDF for 
the subject.   

The results are shown in Table 2.  In all three cases, the 
entropy is much improved, which is what the training 
optimized.  In addition, the Top-1 and Top-10 scores 
are also improved.  (Astute readers might notice that the 
Top-1 and Top-10 scores for AADF-fixed no query are 
better than the scores for AADF no query.  The “no 
query” case is extremely skewed, with a huge number 
of negative examples compared to a small number of 
positive examples.  Because of this, training this well 

 
 Top-1 Top-10 
AADF-fixed 
query 

10.86 B 30.56 B 

AADF-fixed 
no query 

  4.87**   9.86** 

AADF  
query 

11.83B 31.99 B 

AADF  

no query 
  1.45**   9.65** 

All-QL 
query 20.22B 41.05B 

All –QL  
no query 

10.07** 27.54** 

Table 1: Query Restriction versus No Query 

 
 
 
 Entropy Top-1 Top-10 
AADF 
fixed  

0.3623 B 10.86 B 30.56 B 

AADF  0.0279** 11.83 31.99* 
AADFS 
fixed 

0.3670 B 12.684 B 32.141 B 

AADFS 0.0267** 15.13 33.35 
AADFSSDF 

fixed 
0.3524B 11.61 B 28.64 B 

AADFSSDF 0.0267** 15.32** 33.02** 

Table 2: Fixed versus Automatic Parameters 



requires additional techniques, an area that will be 
described in future research.) 

3.4 Individual Feature Contributions 

Next, we performed a large number of experiments to 
show the contributions of individual features.  We tried 
two sets of experiments.  First, we started with a system 
combining all features, and then did ablation studies, 
removing various features, singly or in groups.  
Statistical significance of differences is measured 
relative to this baseline.  Next, we started with a system 
with A and ADF features (Standard TF-IDF features, 
with optimized weights), and then tried adding features. 

Table 3 shows our results.  In our ablation studies, no 
features, other than the query features, log query 
features, and in one case, the capitalization feature, had 
a statistically significant result on Top-1 or Top-10 

score.  Many of these features capture redundant 
information, and removing them one at a time has only 
a small impact.  Also, Top-1 and Top-10 are somewhat 
noisy scores, and achieving siginificance is difficult.  
On the other hand, on the more sensitive entropy 
measure, we see that subject, query frequency, 
capitalization, phrase length, and message length all 
lead to statistically significant improvements.  Of these, 
capitalization lead to the largest improvements. 

Next, we started with a TF-IDF-like system (AADF) and 
tried adding features.  Again, the largest improvements 
are from query frequency and capitalization.  Message 
length has one of the largest impacts on entropy: for 
long messages, it can be difficult to pick out the few 
relevant keywords.  Subject information is also 
noteworthy, leading to a moderate entropy reduction 
and a good-sized improvement on Top-1 score.  Most 
of the other features lead to some small improvement 



4 Related Work 

There has been a moderate amount of related work in 
implicit query selection.  The most used implicit query 
system in practice is probably Google’s Gmail service, 
which in the past provided implicit queries for an email 
system: when reading Gmail messages, one used to be 
be presented with relevant advertisements or search 
results.  (Today, only advertisements are shown.)  
However, to our knowledge, nothing has been made 
public about the workings of this system.  Brin et al. 
(1998) state “A current very early prototype scans 
through email and retrieves relevant Web pages” 
although nothing else is said of the system.  There is 
however, a more recent Google publication  (Henzinger 

et al., 2003) on implicit queries for broadcast news 
services, using closed captioning information.   

Henzinger et al. broke news stories into 15 second 
chunks, and tried to find print news articles relevant to 
the segment.  They tried a number of techniques, 
including using IDF2 instead of IDF; using stemming; 
and using a history feature.  None of these features 
consistently improved performance.  One fairly 
consistent improvement came from first trying three 
word queries, and then trying shorter queries if no 
results were returned.  Our use of common queries may 
achieve something similar: users are unlikely to make 
queries that they expect will return no results. 

Henzinger et al. also report research on postprocessing: 
taking the results of one or more searches and selecting 

 Entropy Top-1 Top-10 Comments 

all 0.0211B 28.85B 49.45B Baseline – all features 

noADFSDFBDFRDFGDFHDF 0.0241** 22.84** 39.66** No Document Frequency  

noAADF 0.0211 29.19 49.42 No “all”  

noSSDF 0.0215** 27.67 48.7 No Subject  

noBBDF 0.0211 28.55 49.25 No Body Only (not subject)  

noRRDF 0.0212 28.82 49.45 No Body-not-Reply  

noGGDF 0.0212 29.6 48.7 No At Beginning  

noHHDF 0.0212* 29.04 49.14 No Near Beginning  
noQ 0.0234** 21.31** 44.04** No Query Frequency  
noL 0.0213** 28.86 48.96* No Log-Query Frequency  

noQL 0.0239** 20.22** 41.05** No Query Frequency or Log-Query Frequency 

noC 0.0221** 27.34 46.51* No Capitalization 

noT 0.0211 28.84 49.51 No Sentence Beginning 

noP 0.0218** 27.73 47.23 No Phrase Length 

noM 0.0217** 27.56 48.8 No Message Length 

noF 0.0211 29.03 49.35 No Forward Subject 

noE 0.0212 29.03 49.62 No Reply Subject 

AADF 0.0279B 11.83B 31.99B Baseline – normal TF and DF features 

AADFSSDF 0.0267** 15.32* 33.02 Add Subject features 

AADFBBDF 0.0279 11.52 31.41 Add Body only features 

AADFRRDF 0.0277** 11.35 31.55 Add Body-not-Reply features 

AADFGGDF 0.0276** 11.62 31.61 Add At Beginning features 

AADFHHDF 0.0271** 12.79 32.04 Add Near Beginning features 

AADFQ 0.0249** 24.82** 41.17** Add Query features 

AADFL 0.0268** 18.55** 37.83** Add Log Query features 

AADFC 0.0271** 13.29 36.14** Add capitalization features 

AADFT 0.0276** 12.47 31.39 Add Sentence Beginning features 

AADFP 0.0276** 11.89 31.71 Add phrase length features 

AADFM 0.0261** 13.26* 32.12 Add message length features 

AADFF 0.0279* 11.83 31.99 Add has Forward Subject features 

AADFE 0.0279 11.35 31.64 Add has Reply Subject features 

Table 3: Contributions of Features 



the best results based on additional criteria that may 
include inspection of each returned document. They 
conclude that postprocessing is more important than 
query selection.  In this paper, we do not examine 
postprocessing.  For their application, finding queries 
for broadcast news, there would be a relatively small 
number of queries that need to be done, since at any 
given time, there are a relatively small number of 
broadcast news feeds.  For our application, if widely 
deployed, there would be hundreds of millions, or 
perhaps even a billion queries a day performed; 
performing more queries than necessary and then doing 
time-consuming post processing is probably not 
practical.  Still, some postprocessing and filtering, e.g. 
based on the summaries of the returned results, is an 
area for future research. 

Dumais et al. (2004) examined implicit queries, in the 
context of an email system.  Their work focused on user 
interface aspects of email implicit query.  Interestingly, 
while email was the primary application of their work, 
they used a simple TF-IDF system that was not 
customized to email, e.g. not upweighting the 
importance of the subject. 

Czerwinski et al. (1999) looked at implicit queries for 
web pages for retrieving related pages in a user’s 
favorites; the primary emphasis was on the user 
interface aspects.  They used two techniques to 
establish similarity: hand labelings of documents into 
clusters; and a simple cosine similarity between the 
word vectors after HTML and stopword removal. 

Rhodes and Maes (2000) also examined the user 
interface aspects of an implicit query system.  Their 
description of query matching is short and somewhat 
ambiguous, but it appears that they also use document 
similarity between query documents and target 
documents, weighted by IDF.  This kind of matching 
can be done for small databases, but does not create a 
query that can be sent to a search engine like MSN 
Search or Google, nor is it easy to achieve for web-
scale databases.  Rhodes and Maes mention some of the 
problems email creates, such as signature lines, and 
possibly replies, but their solution is to remove such 
data before the query, in contrast to our solution of 
weighting different sections. 

Budzik et al. (2001) examined an implicit query system 
for web pages and word processing documents.  They 
primarily used word frequency to generate their queries.  
They used heuristics to augment the frequency metric, 
including removing stop words, valuing emphasized 
words, valuing words that occur at the beginning, and 
trying to ignore words in non-content sections (e.g. 
navigation bars on web pages.)  No results are given 
showing whether these heuristics lead to improvements 
in practice.  Note that Budzik et al. found a list of 20 
words to submit to a search engine, relying on search 
engine behavior that would return the “best” match 

even if all words were not present.  This functionality is 
not available in some modern search engines.  Budzik 
used stop-words; which we did not, because we did not 
find stopwords to be a problem in our early 
experiments.  However, some of the baseline systems 
we used might have benefited from stopwords. 

5 Discussion 

In this paper, we have made three main contributions.   

First, we have shown the critical importance of 
including query frequency information, which appears 
to be a new idea.  The query file restriction actually 
improved the Top-1 score by at least a factor of 2, and 
improved the Top-10 score typically by a factor of 1.5 
or more.  Also, it makes our code much more efficient: 
it is much easier to examine only the subset of words 
and phrases that are common queries than to examine 
all words.  This is especially true if parameters are 
trained, since it substantially reduces the number of 
training examples. 

Second, we have identified the most important set of 
features for an email implicit query system.  This 
include the query frequency, message length, 
capitalization, and subject line information.  All of 
these except for the subject line information could 
easily be applied to other document types.  All of these 
except for the query frequency could be applied to other 
targets, such as relevant ads for a content-targeted 
advertising system.  (For a content-targeted advertising 
system, we could presumably substitute the list of 
available ads and expected revenue or click-through 
rate for each ad.)   

Third, we have shown how to optimize these 
parameters using logistic regression.  This works at 
least as well as intuitive fixed values for the parameters, 
and allows us to combine the many features we have 
found to be helpful.   

We see a large number of areas for future work.  First, 
we believe that even more useful features can be found.  
Second, we are interested in exploring other learning 
algorithms.  The learning for this case is somewhat 
different than typical classification problems for two 
reasons.  First, the distribution is highly skewed, with 
thousands of negative examples for each positive one.  
Second, we are interested in Top-1 or Top-10 
performance, rather than accuracy.  Both of these 
problems open up opportunities for improved learning. 

In addition, we focused here only on selecting the 
correct keywords.  For an end-to-end application, 
retrieving the correct documents is also important.  
Henzinger et al. (2003) found that there were many 
potential improvements in this area, based on 
postprocessing.  We are also interested in exploring this 
area in future work. 



Overall, our results lead to large improvements.  A 
reasonable baseline might be the “AADF-fixed no 
query” setting in Table 1, which achieves 4.9% and 
9.9% Top-1 and Top-10 accuracy.  The combination of 
our improvements leads to the “all” system of Table 3, 
which combines the query restriction, all features 
except phrase-length, and our machine learning system.  
It achieves 28.85% and 49.45% respectively on Top-1 
and Top-10 measure – five or six times better than the 
baseline!  In addition, our method returns the 
probabilities that queries are correct, which can be 
useful in real applications. 
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