

Implicit Queries for Email

Joshua Goodman
Machine Learning and Applied Statistics Group

Microsoft Research
One Microsoft Way

Redmond, WA 98052
joshuago@microsoft.com

Vitor R. Carvalho
Language Technologies Institute

School of Computer Science
 Carnegie Melon University

Pittsburgh, PA
vitor@cs.cmu.edu

Abstract
Implicit query systems examine a document
and automatically conduct searches for the
most relevant information. In this paper, we
offer three contributions to implicit query
research. First, we show how to use query
logs from a search engine: by constraining
results to commonly issued queries, we can get
dramatic improvements. Second, we describe
a method for optimizing parameters for an
implicit query system, by using logistic
regression training. The method is designed to
estimate the probability that any particular
suggested query is a good one. Third, we
show which features beyond standard TF-IDF
features are most helpful in our logistic
regression model: query frequency
information, capitalization information,
subject line information, and message length
information. Using the optimization method
and the additional features, we are able to
produce a system with up to 6 times better
results on top-1 score than a simple TF-IDF
system.

1 Introduction

In this paper, we examine implicit query systems for
email: automatically finding good words or phrases in
an email message to send to a search engine. We will
show three main results related to these efforts. First,
we show how to use the query logs from a large search
engine. By restricting queries to those commonly
found in the logs, we can dramatically improve our
results. Second, we show that email-specific
information, specifically giving large weight to subject
line information, can also lead to improvements. Third,
we show that we can train a system to estimate
probabilities that also has good performance on Top-1
and Top-10 scores.

Email is the number one activity people pursue online
(Madden and Rainie, 2003), with Internet Search a very

close second (ibid.) Given people’s interests, it makes
sense to combine these two technologies as much as
possible. In addition, search is very lucrative: Google,
for instance, appears to earn over a billion dollars a year
from search (Google SEC Filing, 2004), besides other
revenues. Anything we can do to encourage users to
search is a win for both users and software producers.

There are many ways to make it easier for users to
search while reading email, such as including easily
accessible search boxes, or allowing users to select text
and then right-click select search as an option. Easier
still are single click solutions, such as converting likely
words and phrases in a message to clickable links to
search, or including such words and phrases in a
sidebar. The easiest of all for users is to have already
executed the query and return the result, as has been
done by Google’s Gmail system. These techniques in
which likely queries are found and then turned into
single-click or pre-retrieved solutions are known as
implicit query systems.

A large portion of the previous literature on implicit
query has focused either on the user interface, or on a
related problem, also known as implicit query, of
finding related documents in a database. For instance,
when viewing an email message, you might be shown
other related messages. These other messages can be
found by, e.g., examining the similarity between the
current message and all messages previously received.
In this paper, we will be concerned with the problem of
finding the best queries to retrieve internet search
results.

We apply this research to the problem of finding good
queries for email messages, but we expect variations
could be used to find good queries for other document
types, e.g. instant messaging, chat, or web pages. In
addition, the area of contextual advertising is starting to
receive substantial attention, and presumably these
techniques could also be applied to the area of finding
keywords for contextual ads for email, or any of the
other document types. Much of the research in this
paper focused on email-specific features.
Disappointingly, in most cases, with the exception of

subject line information, these features did not seem
helpful. On the other hand, this is good news, in the
sense that it means that our results can probably be
applied to other document types.

In addition to finding the best queries, we also want to
know how likely it is that each query is a relevant one.
This gives us useful information for real applications.
For instance, we may find that the most probable phrase
found has only a .001 chance of being relevant. In this
case, we might choose to show no results at all, so as
not to distract the user, or an advertisement, or a
different kind of relevant information, such as a history
of other messages sent by the sender. We might also
use the relative probabilities of various queries. For
instance, if the top ranked query has probablity .2 of
being relevant, and the second ranked query has
probability .19, we might show two search results for
each query, instead of four results for the first one.

Of course, we could have similar rules for, e.g.,
absolute or relative TF-IDF scores. However, the use
of probabilities seems simpler and easier to make
decisions about. In addition, it may be more robust to
changes in the system. For example, changing from
unstemmed to stemmed words might change all of the
important thresholds for a TF-IDF system, while a
system directly trained to estimate probabilities, when
retrained with the stemmed words, should mostly
automatically learn new parameter values that
compensate for any such changes.

Because of our goal to return absolute probabilities of
relevance, we also experimented with the use of
information not typically used in an implicit query
system, what we will refer to as global features of a
message. For instance, we will use features such as
whether the subject line starts with “Re:” or “Fwd:”.
Messages that are replies tend to be of more interest to
a user, and thus there tends to be a higher probability
that they will contain queries relevant to a user. In our
system, the use of these features does not affect the
relative ranking of possible query words, but it does
affect their absolute probability, making the results
more useful in real applications.

2 Method

2.1 Learning Algorithm

Our desire to get actual probabilities of relevance
impacts our choice of model. Traditional choices for
implicit query systems, such as TF-IDF, do not return
quantities that are directly interpretable as probabilities.
We chose to focus on logistic regression models, which,
as we will show, can include TF-IDF and other
traditional choices as special cases, but also naturally
return probabilities. Logistic regression models are also
called maximum entropy models in some communities,
and are equivalent to a certain kind of single layer

neural network. In particular, logistic regression
models are of the form

exp()
(|)

1 exp()

w x
P y x

w x

⋅=
+ ⋅

In this equation, y is the variable being predicted (in
this case, y takes the values 0 or 1, with 1 meaning that
a particular word or phrase is a good query for a
particular message.) x is a vector of numbers
representing the features of a particular word or
message in an email message. For instance, our
features might include the number of times that the
word or phrase occurs in the subject; the number of
times it occurs anywhere in the body; and 0 or 1
representing whether the word or phrase is capitalized.
Finally, w represents a set of weights. These weights
indicate the relative weights for each feature for each
word or phrase; if subject words are twice as important
as body words, w1 might have twice the value of w2.
Typically, we learn these weights using training data, in
this case, a corpus of messages for which we have hand
labeled which words or phrases are relevant.
Essentially, for every word or phrase (up to length 5) in
each message, we have a training example, with value
y=1 if the word was labeled as relevant, 0 otherwise.
The vast majority of words are labeled as irrelevant.
We then use a learning algorithm that maximizes the
probability of the training data, assigning as large a
probability as possible to those words or phrases that
were relevant, and as small as possible to those that
were not.

The training algorithm we use is Sequential Conditional
Generalized Iterative Scaling (SCGIS) (Goodman,
2002), although because logistic regression models
have a global optimum, the choice of learning
algorithm is typically of little importance. Once the
data has been extracted for the learning algorithm, the
actual learning takes only a few seconds. One very
important observation is that the algorithm must be run
past the usual criteria for convergence: we use 100
iterations instead of our usual 10. The algorithm is fast,
so even 100 iterations is not problematic.

Logistic regression models, like many other kinds of
machine learning, have a tendency to overfit the
training data. We use a Gaussian Prior (Chen et al.,
1999) with variance of 1 to prevent overfitting.

2.2 Features

We experimented with a large number of features that
we thought might be helpful. These included:

• S: InSubject How many times the word or
phrase occurs in the subject.

• A: Anywhere How many times the word or
phrase occurs anywhere in the body or subject
of the message.

• B: Body How many times the word or phrase
occurs in the body of the message.

• G: AtBeginning How many times the word
or phrase occurs at the beginning of the
message (in the first 50 characters of the
body.) 50 was selected semi-arbitrarily.

• H: NearBeginning How many times the
word or phrase occurs near the beginning of
the message (in the first 300 characters of the
body.) 300 was selected semi-arbitrarily.

• R: BodyNotReply How many times the word
or phrase occurs in the body of the message,
not including replied-to sections.

• SDF, ADF, BDF, GDF, HDF, RDF: DFInSubject,
DFAnywhere, DFBody, DFAtBeginning,
DFNearBeginning, DFBodyNotReply These
are the document frequencies for a given word
or phrase, i.e. the total number of occurrences
of that word or phrase occurred in in the
corpus.

• Q: QueryFrequency This is the number of
times the word or phrase occurred in a corpus
of MSN Search queries, as described below.

• L: LogQueryFrequency This is
log(QueryFrequency + 1). See below.

• P: PhraseLength How long is the query
phrase, in words.

• C: Capitalized Every time the word or phrase
occurs, is the first letter of every word in the
phrase capitalized? (Takes value 0 or 1 only)

• T: SentenceBeginning Does the word or
phrase occur at the beginning of a sentence,
somewhere in the message? (0 or 1 only)

• M: MessageLength This is the length of the
message. We hypothesize that the longer a
message is, the more difficult it is to find the
“good” keywords in the message, separating
them from bad ones. Also, see below about
length normalization.

• F, E: HasFWSubject, HasRESubject
Whether the subject line starts with FW or RE
respectively (0 or 1 only).

For a feature occurring fi times in a message, we
actually use the value xi = log(fi+1) instead of xi=fi.
This has commonly been found to be useful in areas
such as information retrieval and text classification.
(Because of the model form, the base of the logarithm
does not matter.)

Many machine learning and information retrieval
techniques use length normalization. Rather than
explicitly perform length normalization, we allow the

system to weight the length if desired, which provides
an excellent approximation. For instance, imagine the
ideal weights are

 3 × log((insubject+1)/(messagelength+1))
+ 2 × log((body +1)/(messagelength+1))

where insubject and body represent the number of times
a particular word or phrase occurs in the subject or
body respectively. Since we do not provide length
normalized features, it may not be obvious that the
system can learn this model. But in fact, by not
normalizing, and providing message length as a
learnable feature, it can learn

 3 × log(insubject +1)
+ 2 × log(body +1)
- 5 × log(message-length+1)

which is equivalent. This provides our learning system
flexibility, essentially allowing it to learn which
features to normalize and which not to. In the end,
because of the model form, it does not matter exactly
which features are length normalized: the normaliz-
ations are implicitly summed.

Similary, we do not explicity use the formula
TermFrequency/DocumentFrequency. Instead, we
allow the system to learn the ideal weightings. We
provide both TF and DF scores for each field, and allow
the system to learn the appropriate weights; they may
be, e.g. 1 and -1, yielding the conventional TF/DF = TF
× IDF measure; or they may lead to other values.

We also used a corpus of the 7.5 million most common
english language queries from MSN Search. In most of
our experiments, we limited ourselves to returning
queries that are in those 7.5 million. This made many
experiments much more efficient: rather than
considering all words and phrases in each message, we
only considered those that were moderately likely to be
queried by users. Among other things, since we extract
both positive and negative examples of words or
phrases as training data, it drastically reduced the
number of negative training examples. It also, as we
will show, dramatically improves the accuracy of the
results, since it prevents us from returning words or
phrases that would never be queried by real users.

We used the query frequency as an additional input to
our system. Our reasoning was that perhaps if users
queried for words or phrases more, they were more
likely to be good phrases for implicit queries. This is
the QueryFrequency feature described above. We
thought, however, that QueryFrequency might be too
blunt an instrument, and that distinguishing very high
frequency queries from very low frequency queries
might be more important. We thus also included a
feature LogQueryFrequency, which was set to
log(QueryFrequency + 1). As we’ve mentioned, since
we add 1 and take the log of features before passing
them to the logistic regression model, the actual values

for x in the logistic regression model were not
QueryFrequency and log(QueryFrequency + 1), but
were instead log(QueryFrequency+1) and
log(log(QueryFrequency+1)+1). Because of this
transformation, for the LogQueryFrequency feature,
there is very little difference between, say, a query
occurring 100,000 times and one occurring 200,000
times; effectively, all very high frequency queries
receive a similar value. On the other hand, there is a
relatively large difference between features occurring
say 20 times versus 40 times. This means that this
feature is mostly sensitive to changes in frequency at
the low end. By combining the two features, the
learning system can control weights separately for high
frequency and low frequency queries.

3 Experimental Results

3.1 Data and Evaluation Criteria

We initially planned to use the Enron corpus for these
experiments, so that we could make our labeling of the
corpus publicly available. However, a brief inspection
of the Enron corpus showed that most of the messages
were from one Enron user to another, and about
projects specific to Enron: there would be little of
interest to search for on the internet. A possible area of
future research would be implicit query of email
messages for intranet use, or for a desktop search
application; see related work by Dumais et al. (2004),
for an example of this.

For our data set, we used a corpus collected from 20
Hotmail volunteers from the general population (not
Microsoft employees.) The volunteers had been
directed to save all of their email, and to then hand-
classify it into three sets: “spam,” “subs”, and
“wanted.” Some words, such as users’ names, local
words (e.g. about Redmond, WA and environs, where
the users lived), and some company names had been
removed from the corpus. The subs set was for mail
that was not spam, but that the user did not particularly
care about; this was primarily commercial mail for
which the users had opted in, or for which they had a
pre-existing business relationship, and had not opted
out, as well as some mailing list mail. We focused on
the “wanted” set, reasoning that this was the kind of
mail where implicit query would be most useful. Of the
wanted messages, we hand labeled approximately 1143
messages. For each message, our 6 annotators were
instructed roughly as follows:

These are mail messages from real Hotmail users.
Imagine that you were the recipient of each
message. If your email program were to
automatically perform a query to a search engine
like MSN Search or Google, for you, what words
or phrases would you want the engine to search
for? In some messages, there may be no words

worth searching for. In others, there may be
several. When possible, the words or phrases
should actually occur in the messages you
annotate.

For experimental purposes we eliminated any words or
phrases that annotators entered that did not appear in a
message. Since all methods we consider in this paper
only return words and phrases actually present in the
message, this affects all our methods equally.

All experiments were done with 10-way cross
validation. The training data was split into ten pieces;
we used nine for training any parameters that needed to
be optimized, and one for test; this was repeated on
each of the ten sets, and the results were averaged. In
our experiments, no preprocessing was done:
attachments, multiple MIME parts and HTML were all
included.

We will present three kinds of results. The first type is
the average entropy of test data. For each test item, we
compute the -log2 P(y| x) – the log of the probability of
the training data. A test item is a word or a phrase (up
to length 5) in a message. The entropy will be large if
the model does a bad job of predicting which words and
phrases are good matches (according to our labelers),
and small if the model does a good job. The ideal
entropy is 0, which happens when the model is perfect
at predicting which words and phrases are good
matches. Entropy is a useful measure if we care about
getting probabilities right, e.g. if we might display no
matches to a user if none are sufficiently likely. Note
that logistic regression models are trained to minimize
entropy.

We will also compute the Top-1 score. For the Top-1
score, we compute for each message the best word or
phrase. If the word or phrase is on the list provided by
the annotators, we get 1 point. We divide this by the
maximum Top-1 score, which is the number of test
messages for which there was at least one word
provided by the annotators. Notice that unlike entropy,
Top-1 score cares about the order of results, but not
about absolute values. In messages for which there is
no correct answer, the Top-1 score is unaffected by the
probabilities a system returns, while entropy measures
give better scores to systems that return all low
probabilities.

Finally, we compute the Top-10 score. The Top-10
score is the number of words and phrases in the Top-10
which matched some word or phrase provided by the
annotators, divided by the best possible Top-10 score
(which is also the total number of annotations provided,
since no message was given more than 10 words or
phrases.)

3.2 Query Data Experiments

In this section, we present experiments showing that
search engine query frequency data can dramatically
improve our results. In particular, we used a restriction
that all words returned were in the top 7.5 million most
common queries to MSN Search. We tried several
different model types, with and without the query
frequency restriction. The different model types will
be explained below.

In all of our results, we use a * to indicate statistical
significance at the 95% level, and ** to indicate
significance at the 99% level. We use a “B” to indicate
that a result is a baseline result for the results below it
(until the next “B”). Significance is tested with a two-
tailed paired t-test. In Table 1, the test is done between
the “query” result and the corresponding “no query”
result. We do not show average entropy results in
Table, because the number of test instances is different
with and without the query: with the query restriction,
there are many more test instances. This makes the
entropies incomparable.

We now explain the models tested in Table 1. The first
two lines compare “AADF-fixed query” to “AADF-fixed

no query.” “AADF” is a model that approximates a
traditional TF-IDF model. We used the Anywhere and
DFAnywhere features (AADF). Fixed means that the
parameters were set to +1 and -1, making this
essentially a TF-IDF model. “Query” means that the
results were restricted to those in the top 7.5 million,
while no query means that all results were allowed. As
can be seen, the AADF-fixed query model significantly
outperforms the no query model on both Top-1 and
Top-10 measures. In the next two lines, we show
results of training the parameters using logistic
regression. AADF query is just like AADF-fixed query,
except that the parameters are set with logistic
regression, rather than being fixed at +1 and -1. Again,
AADF query outperforms AADF no query. Next, we
tried another model with all features (All), as will be
described later, except for the query frequency features
(QL), which we call All-QL. All-QL query (with the
restriction) substantially outperforms All-QL no query
(without the restriction.) Parameters were set with
logistic regression.

In all cases but one, algorithms with the query
restriction outperform algorithms without the restriction
by at least a factor of 2 (and in that case, by a factor of
1.5) Because of both the increased speed, and the
increased accuracy, all remaining experiments were
done with the query file restriction.

3.3 Trained versus Fixed Parameters

Our next intuition was that setting parameters using
training would be better than ad-hoc intuitive parameter
settings. Logistic regression models are trained to
optimize the entropy of training data, which is also
equivalent to making the training data as likely as
possible. Another way of saying this is that they try to
do as good a job as possible of estimating the
probabilities. The hope is that these results will also be
good on Top-1 and Top-10 scores.

We ran three experiments comparing hand-set to
automatically trained parameter settings. The first
experiment used AADF as in the previous experiments.
The second used AADFS with settings of 1 for A, -1 for
ADF and 1 for S (subject line counts), similar to TF-IDF,
but with a boost for words in the subject line. Finally,
we tried AADFSSDF with a value of –1 for SDF, similar
to combining TF-IDF for all features, and TF-IDF for
the subject.

The results are shown in Table 2. In all three cases, the
entropy is much improved, which is what the training
optimized. In addition, the Top-1 and Top-10 scores
are also improved. (Astute readers might notice that the
Top-1 and Top-10 scores for AADF-fixed no query are
better than the scores for AADF no query. The “no
query” case is extremely skewed, with a huge number
of negative examples compared to a small number of
positive examples. Because of this, training this well

 Top-1 Top-10
AADF-fixed
query

10.86 B 30.56 B

AADF-fixed
no query

 4.87** 9.86**

AADF
query

11.83B 31.99 B

AADF

no query
 1.45** 9.65**

All-QL
query 20.22B 41.05B

All –QL
no query

10.07** 27.54**

Table 1: Query Restriction versus No Query

 Entropy Top-1 Top-10
AADF
fixed

0.3623 B 10.86 B 30.56 B

AADF 0.0279** 11.83 31.99*
AADFS
fixed

0.3670 B 12.684 B 32.141 B

AADFS 0.0267** 15.13 33.35
AADFSSDF

fixed
0.3524B 11.61 B 28.64 B

AADFSSDF 0.0267** 15.32** 33.02**

Table 2: Fixed versus Automatic Parameters

requires additional techniques, an area that will be
described in future research.)

3.4 Individual Feature Contributions

Next, we performed a large number of experiments to
show the contributions of individual features. We tried
two sets of experiments. First, we started with a system
combining all features, and then did ablation studies,
removing various features, singly or in groups.
Statistical significance of differences is measured
relative to this baseline. Next, we started with a system
with A and ADF features (Standard TF-IDF features,
with optimized weights), and then tried adding features.

Table 3 shows our results. In our ablation studies, no
features, other than the query features, log query
features, and in one case, the capitalization feature, had
a statistically significant result on Top-1 or Top-10

score. Many of these features capture redundant
information, and removing them one at a time has only
a small impact. Also, Top-1 and Top-10 are somewhat
noisy scores, and achieving siginificance is difficult.
On the other hand, on the more sensitive entropy
measure, we see that subject, query frequency,
capitalization, phrase length, and message length all
lead to statistically significant improvements. Of these,
capitalization lead to the largest improvements.

Next, we started with a TF-IDF-like system (AADF) and
tried adding features. Again, the largest improvements
are from query frequency and capitalization. Message
length has one of the largest impacts on entropy: for
long messages, it can be difficult to pick out the few
relevant keywords. Subject information is also
noteworthy, leading to a moderate entropy reduction
and a good-sized improvement on Top-1 score. Most
of the other features lead to some small improvement

4 Related Work

There has been a moderate amount of related work in
implicit query selection. The most used implicit query
system in practice is probably Google’s Gmail service,
which in the past provided implicit queries for an email
system: when reading Gmail messages, one used to be
be presented with relevant advertisements or search
results. (Today, only advertisements are shown.)
However, to our knowledge, nothing has been made
public about the workings of this system. Brin et al.
(1998) state “A current very early prototype scans
through email and retrieves relevant Web pages”
although nothing else is said of the system. There is
however, a more recent Google publication (Henzinger

et al., 2003) on implicit queries for broadcast news
services, using closed captioning information.

Henzinger et al. broke news stories into 15 second
chunks, and tried to find print news articles relevant to
the segment. They tried a number of techniques,
including using IDF2 instead of IDF; using stemming;
and using a history feature. None of these features
consistently improved performance. One fairly
consistent improvement came from first trying three
word queries, and then trying shorter queries if no
results were returned. Our use of common queries may
achieve something similar: users are unlikely to make
queries that they expect will return no results.

Henzinger et al. also report research on postprocessing:
taking the results of one or more searches and selecting

 Entropy Top-1 Top-10 Comments

all 0.0211B 28.85B 49.45B Baseline – all features

noADFSDFBDFRDFGDFHDF 0.0241** 22.84** 39.66** No Document Frequency

noAADF 0.0211 29.19 49.42 No “all”

noSSDF 0.0215** 27.67 48.7 No Subject

noBBDF 0.0211 28.55 49.25 No Body Only (not subject)

noRRDF 0.0212 28.82 49.45 No Body-not-Reply

noGGDF 0.0212 29.6 48.7 No At Beginning

noHHDF 0.0212* 29.04 49.14 No Near Beginning
noQ 0.0234** 21.31** 44.04** No Query Frequency
noL 0.0213** 28.86 48.96* No Log-Query Frequency

noQL 0.0239** 20.22** 41.05** No Query Frequency or Log-Query Frequency

noC 0.0221** 27.34 46.51* No Capitalization

noT 0.0211 28.84 49.51 No Sentence Beginning

noP 0.0218** 27.73 47.23 No Phrase Length

noM 0.0217** 27.56 48.8 No Message Length

noF 0.0211 29.03 49.35 No Forward Subject

noE 0.0212 29.03 49.62 No Reply Subject

AADF 0.0279B 11.83B 31.99B Baseline – normal TF and DF features

AADFSSDF 0.0267** 15.32* 33.02 Add Subject features

AADFBBDF 0.0279 11.52 31.41 Add Body only features

AADFRRDF 0.0277** 11.35 31.55 Add Body-not-Reply features

AADFGGDF 0.0276** 11.62 31.61 Add At Beginning features

AADFHHDF 0.0271** 12.79 32.04 Add Near Beginning features

AADFQ 0.0249** 24.82** 41.17** Add Query features

AADFL 0.0268** 18.55** 37.83** Add Log Query features

AADFC 0.0271** 13.29 36.14** Add capitalization features

AADFT 0.0276** 12.47 31.39 Add Sentence Beginning features

AADFP 0.0276** 11.89 31.71 Add phrase length features

AADFM 0.0261** 13.26* 32.12 Add message length features

AADFF 0.0279* 11.83 31.99 Add has Forward Subject features

AADFE 0.0279 11.35 31.64 Add has Reply Subject features

Table 3: Contributions of Features

the best results based on additional criteria that may
include inspection of each returned document. They
conclude that postprocessing is more important than
query selection. In this paper, we do not examine
postprocessing. For their application, finding queries
for broadcast news, there would be a relatively small
number of queries that need to be done, since at any
given time, there are a relatively small number of
broadcast news feeds. For our application, if widely
deployed, there would be hundreds of millions, or
perhaps even a billion queries a day performed;
performing more queries than necessary and then doing
time-consuming post processing is probably not
practical. Still, some postprocessing and filtering, e.g.
based on the summaries of the returned results, is an
area for future research.

Dumais et al. (2004) examined implicit queries, in the
context of an email system. Their work focused on user
interface aspects of email implicit query. Interestingly,
while email was the primary application of their work,
they used a simple TF-IDF system that was not
customized to email, e.g. not upweighting the
importance of the subject.

Czerwinski et al. (1999) looked at implicit queries for
web pages for retrieving related pages in a user’s
favorites; the primary emphasis was on the user
interface aspects. They used two techniques to
establish similarity: hand labelings of documents into
clusters; and a simple cosine similarity between the
word vectors after HTML and stopword removal.

Rhodes and Maes (2000) also examined the user
interface aspects of an implicit query system. Their
description of query matching is short and somewhat
ambiguous, but it appears that they also use document
similarity between query documents and target
documents, weighted by IDF. This kind of matching
can be done for small databases, but does not create a
query that can be sent to a search engine like MSN
Search or Google, nor is it easy to achieve for web-
scale databases. Rhodes and Maes mention some of the
problems email creates, such as signature lines, and
possibly replies, but their solution is to remove such
data before the query, in contrast to our solution of
weighting different sections.

Budzik et al. (2001) examined an implicit query system
for web pages and word processing documents. They
primarily used word frequency to generate their queries.
They used heuristics to augment the frequency metric,
including removing stop words, valuing emphasized
words, valuing words that occur at the beginning, and
trying to ignore words in non-content sections (e.g.
navigation bars on web pages.) No results are given
showing whether these heuristics lead to improvements
in practice. Note that Budzik et al. found a list of 20
words to submit to a search engine, relying on search
engine behavior that would return the “best” match

even if all words were not present. This functionality is
not available in some modern search engines. Budzik
used stop-words; which we did not, because we did not
find stopwords to be a problem in our early
experiments. However, some of the baseline systems
we used might have benefited from stopwords.

5 Discussion

In this paper, we have made three main contributions.

First, we have shown the critical importance of
including query frequency information, which appears
to be a new idea. The query file restriction actually
improved the Top-1 score by at least a factor of 2, and
improved the Top-10 score typically by a factor of 1.5
or more. Also, it makes our code much more efficient:
it is much easier to examine only the subset of words
and phrases that are common queries than to examine
all words. This is especially true if parameters are
trained, since it substantially reduces the number of
training examples.

Second, we have identified the most important set of
features for an email implicit query system. This
include the query frequency, message length,
capitalization, and subject line information. All of
these except for the subject line information could
easily be applied to other document types. All of these
except for the query frequency could be applied to other
targets, such as relevant ads for a content-targeted
advertising system. (For a content-targeted advertising
system, we could presumably substitute the list of
available ads and expected revenue or click-through
rate for each ad.)

Third, we have shown how to optimize these
parameters using logistic regression. This works at
least as well as intuitive fixed values for the parameters,
and allows us to combine the many features we have
found to be helpful.

We see a large number of areas for future work. First,
we believe that even more useful features can be found.
Second, we are interested in exploring other learning
algorithms. The learning for this case is somewhat
different than typical classification problems for two
reasons. First, the distribution is highly skewed, with
thousands of negative examples for each positive one.
Second, we are interested in Top-1 or Top-10
performance, rather than accuracy. Both of these
problems open up opportunities for improved learning.

In addition, we focused here only on selecting the
correct keywords. For an end-to-end application,
retrieving the correct documents is also important.
Henzinger et al. (2003) found that there were many
potential improvements in this area, based on
postprocessing. We are also interested in exploring this
area in future work.

Overall, our results lead to large improvements. A
reasonable baseline might be the “AADF-fixed no
query” setting in Table 1, which achieves 4.9% and
9.9% Top-1 and Top-10 accuracy. The combination of
our improvements leads to the “all” system of Table 3,
which combines the query restriction, all features
except phrase-length, and our machine learning system.
It achieves 28.85% and 49.45% respectively on Top-1
and Top-10 measure – five or six times better than the
baseline! In addition, our method returns the
probabilities that queries are correct, which can be
useful in real applications.

References

S. Brin, R. Motwani, L. Page, and T. Winograd (1998).
What can you do with a web in your pocket? Data
Engineering Bulletin, 21(2):37–47.

Budzik, J., Hammond, K. and Birnbaum, L. (2001).
Information access in context. Knowledge based
systems, 14(1-2), 37-53.

Czerwinski, M., Dumais, S., Robertson, G., Dziadosz,
S., Tiernan, S. and van Dantzich, M. (1999).
“Visualizing implicit queries for information
management and retrieval” In Proceedings of CHI’99,
560-567.

Chen, S. and Rosenfeld, R.. (1999) “A Gaussian prior
for smoothing maximum entropy models.” Technical
Report CMUCS -99-108, Carnegie Mellon University.

Dumais, S., Cutrell, E., Sarin R., and Horvitz, E. (2004)
“Implicit Queries (IQ) for Contextualized Search”,
Annual ACM Conference on Research and
Development in Information Retrieval, Sheffield, UK.

Goodman, J. “Sequential Conditional Generalized
Iterative Scaling” (2002), Association for
Computational Linguistics, Philadelphia, Pennsylvania.

Google SEC Filing, August 2004.

Henzinger, M., Chang, B. W., Milch, B., and Brin, S.
(2003) "Query-Free News Search". Proc. 12th
International World Wide Web Conference.

Madden, M. and Rainie, L. (2003), “America’s Online
Pursuits”. Pew Internet and American Life Project.

Rhodes, B. & Maes, P. (2000). “Just-in-time
information retrieval agents” IBM Systems Journal,
39(3-4), 685-704.

O. Dekel, C. Manning, Y. Singer. (2003) Log-Linear
Models for Label Ranking. NIPS 2003.

