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INSTRUCTIONS

• You are allowed to collaborate with up to two other students taking the class in solving
problem sets. But here are some rules concerning such collaboration:

1. You should think about each problem by yourself for at least 30 minutes before com-
mencing any collaboration.

2. Collaboration is defined as discussion of the lecture material and solution approaches
to the problems. Please note that you are not allowed to share any written material and you
must write up solutions on your own without any “collaboration notes” as an aid.

3. You must clearly acknowledge your collaborator(s) in the write-up of your solutions.

4. Of course, if you prefer, you can also work alone (see the last bullet item for some
“credit” for doing so).

• Solutions typeset in LATEX are strongly preferred.

• You should not search for solutions on the web. More generally, you are urged to try and
solve the problems without consulting any reference material other than the course notes
and what we cover in class. If for some reason you feel the need to consult some source,
please acknowledge the source and try to articulate the difficulty you couldn’t overcome before
consulting the source and how it helped you overcome that difficulty. Alternatively, before
turning to any such material, we encourage you to ask us for hints or clarifications.

• Please start work on the problem set early. The problem set has four problems and is worth
a total of 100 points. As a rather rough guess/estimate, scoring around 80% of the points, or
70% of the points if you work by yourself, might suffice for an A on this problem set.

1. No bit reversal please (20 points)

The polarization property from class stated the following. If UN−1
0 is a uniform N -bit string

for N = 2n, XN−1
0 = G⊗n2 BnU

N−1
0 , and Y N−1

0 denotes the outputs of a binary input sym-
metric memoryless channel W on inputs XN−1

0 is, then ∀ε > 0,

lim
n→∞

Pri[H(Ui|U i−1
0 , Y N−1

0 ) ∈ (ε, 1− ε)] = 0 .

Here G2 = ( 1 1
0 1 ) and Bn is the permutation matrix for the n-bit bit reversal permutation.

Prove that the same claim holds even without the bit reversal permutation in the encoding,
i.e., when XN−1

0 = G⊗n2 UN−1
0

Hint: Prove that G⊗n2 and Bn commute, and then argue why this implies the claim.



2. Squaring and Doubling Bhattacharyya (25 points)

Recall the 2-dimension linear transformation (X0, X1) → (U0, U1) defined in lecture: U0 =
X0⊕X1 and U1 = X1. Let Yi be a random variable correlated with Xi such that (X0, Y0) and
(X1, Y1) are i.i.d (in our setting, Yi is the output of some memoryless channel W when input
bit is Xi).

For a correlated random variables (A,B) withA taking values in {0, 1} and joint distribution
pAB(a, b), define the quantity

Z(A | B) = 2
∑

b∈supp(B)

√
pAB(0, b)pAB(1, b)

where supp(B) is the support of B.

Prove that

(a) Z(U0 | (Y0, Y1)) ≤ 2Z(X0 | Y0).

(b) Z(U1 | (Y0, Y1, U0)) = Z(X0 | Y0)2.

Note: These bounds provide the basis for the generalization of our analysis for the BEC case
to general channels. Instead of tracking the probabilility that say Ui is not determined given
Y N−1

0 and U i−1
0 , we track the value Z(Ui | Y N−1

0 , U i−1
0 ) which evolve recursively following

above constraints.

3. Moser re-analyzed (30 points)

In this problem, we will revisit the result about satisfiability of bounded-overlap k-SAT from
lecture, and obtain a quantitatively better bound. Specifically, you will prove that the fol-
lowing algorithm will always terminate in expected polynomial time and find a satisfying
assignment for any instance I of k-SAT (assume for convenience that each clause has exactly
k literals) in which each clause intersects at most ∆ < 2k/e clauses (including itself). Note
that this is sharper than the 2k−O(1) upper bound on overlap we argued in class.

(a) Pick a random assignment to the variables by setting each variable to be 0 or 1 inde-
pendently with probability 1/2 each.

(b) While there is some clause that is not satisfied:

• Pick an arbitrary clause that is not satisfied, and assign fresh random values to all
its variables.

To analyze the algorithm, consider the sequence of unsatisfied clauses visited by the algo-
rithm, C1, C1, . . . (where Ci, Cj for i 6= j may refer to the same clause). We visualize part of
the execution of the algorithm for t steps as a tree Tt labeled by clauses. The tree Tt = T

(1)
t is

constructed iteratively as follows: For i = t down to 1:

• T (t)
t consists of the single node Ct

• For 1 ≤ i < t, T (i)
t is derived from T

(i+1)
t as follows: If Ci does not intersect any of the

clauses in T (i+1)
t , then T (i)

t = T
(i+1)
t . Otherwise, Ci is appended to the clause Cj deepest

in the tree T (i+1)
t sharing a variable with Ci.



Imagine the random bits used by the algorithm as arranged in a matrix with M rows (think
ofM as very large) and n columns indexed by the variables. Each time the algorithm needs a
fresh random value for a variable, it uses the first unused entry in the corresponding column.

(i) Argue that if two clauses Ci and Cj with i < j are at the same depth in Tt, then they must
be disjoint.

(ii) Prove that the tree Tt determines from which locations in R the algorithms picks random
values for the variables in Ci, for all clauses Ci in Tt.

We now make two definitions:

• Let us say that a legally labeled tree Tt is consistent with R if all clauses in Tt are not
satisfied by the respective values in R.

• Let us say that a rooted tree T is legally labeled if it is labeled by clauses of the k-SAT
instance I, every two adjacent nodes are labeled by overlapping clauses, and no two
nodes in the same level are labeled by overlapping clauses.

(iii) Given R and a positive integer M , if the algorithm runs for mM steps, then there must
be a legally labeled tree with at least M clauses that is consistent with R.

(iv) Prove that the number of legally labeled trees with M nodes is at most m(∆e)M , where
m denotes the number of clauses in the original k-SAT instance. (Hint: Show the upper
bound m

(
∆M
M−1

)
.)

(v) Prove that the probability over R that there is a legally labeled tree of size ≥ M that is
consistent with R is at most m(∆2−ke)M/(1−∆2−ke).

(vi) Combine the above three parts to conclude that when ∆ < 2k/e, the algorithm finds a
satisfying assignment in expected O(m logm) steps (the constant in the big-Oh can depend
on k).

4. Wozencraft and Justesen Codes (25 points)

From the theory of finite fields, it is possible to define addition and multiplication operations
over the space {0, 1}n, where addition is the bit-wise XOR and multiplication of u, v ∈ {0, 1}n
satisfies the following natural properties:

• u · v ∈ {0, 1}n,

• u · (v + w) = u · v + u · w,

• u · v = 0⇔ u = 0 or v = 0,

for all w ∈ {0, 1}n and 0 := (0, . . . , 0). The Wozencraft ensemble,W := {Cα : α ∈ {0, 1}n \ 0}, is
an ensemble of codes of length 2n, where each code Cα in the ensemble is parametrized by a
vector α ∈ {0, 1}n \ 0 and is defined by the encoding function

x ∈ {0, 1}n 7→ (x, α · x) ∈ {0, 1}2n.

Thus, the rate of each code in this ensemble is 1/2. In this exercise, we show that most codes
in this ensemble are capacity achieving (we will focus on the erasure channel).

(a) Show that every non-zero vector v ∈ {0, 1}2n belongs to exactly one code inW .



(b) Suppose Cα has been used for communication over BECp, for some fixed erasure prob-
ability p < 1/2. Let J ⊆ [2n] denote a particular erasure pattern induced by the channel
(that is, the channel happens to erase exactly the positions picked by J). Show that
the erased bits can be recovered (regardless of the sent message) if and only if Cα con-
tains no non-zero codewords entirely supported on J . You may consider a decoder that
tries to find a unique codeword matching the unerased positions and fails if no unique
solution is found (Hint: First, observe that Cα is a linear code).

(c) Now, fix an erasure pattern J of size n(1− γ), for any fixed constant γ > 0. Show that,
for large enough n, the fraction of codes in W that are unable to correct the erasure
pattern induced by J (for one or more possible messages) is at most 2−cn, where c > 0
is a constant depending on γ.

(d) Conclude that the error probability of all but at most a 2−c
′n fraction of the codes inW

over BECp (p < 1/2) is at most 2−c
′n, where c′ > 0 is a constant depending on p, and n

is large enough. (Hint: Use the result in the previous part combined with Markov and
Chernoff bounds.)

(e) Now we describe Justesen’s code, which is a concatenated code with varying inner
codes. Consider the concatenated coding scheme as described in the lecture, where the
block size for the inner codes is set to be b := n (that is, each inner code encodes b bits
into b′ = 2n bits). Moreover, suppose the number of inner blocks is set to be 2n − 1;
that is, the final concatenated code is of length N := b′(2n − 1) = 2n(2n − 1) bits and
rate R = (1 − ε)/2, where the rate of the outer code is 1 − ε for some sufficiently small
ε > 0 depending on p (as described in the lecture). Instead of using brute force for
the right choice of the inner blocks, Justesen’s concatenation encodes each inner block
with a distinct code Cα from the Wozencraft’s ensemble. Show that for large enough
n, and appropriate choice of the parameter ε, Justesen’s explicit construction achieves
arbitrarily small error probability over BECp. It suffices to sketch how the analysis of
this construction differs from the original Forney’s construction that was presented in
the class.
Side note: The fact that the inner block size is logarithmic inN in Justesen’s construction makes
it possible to use classical algebraic codes such as the Reed-Solomon code for the outer code.


