Lecture 15: Applications of Graph Entropy

March 22, 2013

1 Recap

- Graph Entropy: Given $G=(V, E)$, we define $H(G)=\min I(X ; Y)$ over joint distributions (X, Y) where X is a uniformly random vertex in V, and Y is an independent subset of V that contains X.
- $H\left(G_{1} \cup G_{2}\right) \leq H\left(G_{1}\right)+H\left(G_{2}\right)$.
- $H\left(G_{1}\right) \leq H\left(G_{1} \cup G_{2}\right)$
- If G_{1}, \ldots, G_{k} are connected component of $G, H(G)=\sum_{i \in[k]} \rho_{i} H\left(G_{i}\right)$ where $\rho_{i}:=\frac{\left|V\left(G_{i}\right)\right|}{|V(G)|}$.

2 Number of bipartite graphs to cover the complete graph

Suppose that we have the complete graph $K_{n}=\left(V,\binom{V}{2}\right)$. We want to cover K_{n} by l bipartite graphs, G_{1}, \ldots, G_{l} in a sense that

- For each $i, G_{i}=\left(V, E_{i}\right)$ is a bipartite graph.
- For each $(u, v) \in\binom{V}{2},(u, v) \in E_{i}$ for some i. In other words, $K_{n}=G_{1} \cup \ldots \cup G_{l}$.

Question: What is the minimum number l of bipartite graphs needed to cover K_{n} ?
Construction: Identify each vertex with a binary string of length $\lceil\log n\rceil$. The i th bipartite graph connects every two vertices whose binary representations differ at the i th position. It is easy to see that these $\lceil\log n\rceil$ bipartite graphs cover all the pairs.

Lower bound: In the previous lecture, we saw that

- $H\left(K_{n}\right)=\log n$
- $K_{n}=G_{1} \cup \ldots \cup G_{l}$ implies $H\left(K_{n}\right) \leq \sum_{i} H\left(G_{i}\right)$
- $H\left(G_{i}\right) \leq 1$

Therefore, $\log n=H\left(K_{n}\right) \leq \sum_{i} H\left(G_{i}\right) \leq l \leq\lceil\log n\rceil$. Generally, given a graph $G=(V, E)$, the same upper and lower bound techniques work to show that $H(G) \leq l \leq\lceil\log \chi(G)\rceil$ (for the upper bound, identify each color with a binary string). $\log \chi(G)$, which is always at least $H(G)$, gives one intuition about $H(G)$, even though the difference can be made arbitrarily large.

3 Perfect Hash Families

Setting: A database where each file is an element of $[N]$. A hash function maps a file to a much smaller domain; $h:[N] \rightarrow[b]$ where $b \ll N$.

Suppose we have a hash family $\mathcal{H}=\left\{h_{1}, \ldots, h_{t}\right\}$ where for each $i, h_{i}:[N] \rightarrow[b]$ is a hash function. Our goals is to design \mathcal{H} such that it can differentiate between up to k files $(k<b)$. In other words,

$$
\forall S \subseteq[N],|S|=k: \exists h \in \mathcal{H} \text { such that } h \text { is injective on } S
$$

If we think \mathcal{H} as a $N \times t$ matrix (each row corresponds to a file x, each column corresponds to a hash function h, and $\mathcal{H}(x, h)=h(x))$, we require that for every choice of k rows $\left(x_{1}, \ldots, x_{k}\right)$, there exists a column h such that $h\left(x_{1}\right), \ldots, h\left(x_{k}\right)$ are pairwise distinct. We call $\mathcal{H} k$-perfect hash familiy if the above condition is satisfied. The question is, how small can t be?

3.1 Upper bound

Claim 3.1. Assume $b \geq k^{2}$. Then $t=O\left(k \log \frac{N}{k}\right)$ suffices.
Proof. Pick each $h_{i}:[N] \rightarrow[b]$ uniformly and independently at random. Fix $S \subseteq[N],|S|=k$.

$$
\begin{aligned}
& \operatorname{Pr}\left[h_{1} \text { is injective on } S\right]=1 \cdot \frac{b-1}{b} \cdot \ldots \cdot \frac{b-k+1}{b} \geq\left(1-\frac{k}{b}\right)^{k} \geq\left(1-\frac{1}{k}\right)^{k} \geq \frac{1}{4} \\
\Rightarrow & \operatorname{Pr}\left[\forall i, h_{i} \text { is not injective on } S\right] \leq\left(\frac{3}{4}\right)^{t} \\
\Rightarrow & \operatorname{Pr}[\mathcal{H} \text { is not } k \text {-perfect }] \leq\binom{ N}{k}\left(\frac{3}{4}\right)^{t} \leq\left(\frac{N e}{k}\right)^{k}\left(\frac{3}{4}\right)^{t}=2^{O(k \log (N / k))-\Omega(t)}
\end{aligned}
$$

The probability can be made less than 1 for some $t=O\left(k \log \frac{N}{k}\right)$.

3.2 Lower bound

Claim 3.2. For all $k \geq 2, t \geq \frac{\log N}{\log b}$
Proof. It follows from the pigeonhole principle: $\forall x_{1} \neq x_{2} \in[N]$, we must have $\left(h_{1}\left(x_{1}\right), \ldots, h_{t}\left(x_{1}\right)\right) \neq$ $\left(h_{2}\left(x_{1}\right), \ldots, h_{t}\left(x_{2}\right)\right)$. Therefore, $N \leq b^{t} \Rightarrow t \geq \frac{\log N}{\log b}$.

There is a stronger lower bound due to Fredman Komlós in 1984.
Theorem 3.3. $t \geq \frac{b^{k-1}}{b(b-1) \ldots(b-k+2)} \frac{\log (N-k+2)}{\log (b-k+2)}$
Proof. Assume $b \mid N$. Define $G=(V, E)$ such that

- $V=\{(D, x): D \subseteq[N],|D|=k-2, x \in[N]-D\}$.
- $E=\left\{\left(\left(D, x_{1}\right),\left(D, x_{2}\right)\right): \forall D, x_{1} \neq x_{2}\right\}$.
G has $\binom{N}{k-2}$ connected components, each is a clique (of size $N-k+2$) corresponding to some D. From the last lecture, $H(G)=H$ (each component) $=\log (N-k+2)$.

Given a k-perfect hash family \mathcal{H}, we construct $\left\{G_{h}\right\}$ such that $G=\cup_{h \in \mathcal{H}} G_{h}$. The construction is as the following.

- $V\left(G_{h}\right)=V(G)$.
- $E=\left\{\left(\left(D, x_{1}\right),\left(D, x_{2}\right)\right): h\right.$ is injective on $\left.D \cup\left\{x_{1}, x_{2}\right\}\right\}$.

Every $\left\{\left(D, x_{1}\right),\left(D, x_{2}\right)\right\} \in E(G)$ is covered by G_{h} where h is injective on $D \cup\left\{x_{1}, x_{2}\right\}$, so $G=\cup_{h \in \mathcal{H}} G_{h}$.

Now we want to argue that each $H\left(G_{h}\right)$ is small. Fix h. For a choice of D,

- If h is not injective on $D, H\left(G_{h, D}\right)=0$ where $G_{h, D}$ indicates the connected component of G_{h} corresponding to D.
- If h is injective on $D, G_{h, D}$ is $(b-k+2)$-partite. This can be shown by defining $A_{i}:=$ $\{(D, x): h(x)=i\}$ for each $i \notin h(D)$. Since h is injective there are exactly $b-k+2$ choices of i, and there is no edge between $\left(D, x_{1}\right)$ and $\left(D, x_{2}\right)$ if $h\left(x_{1}\right)=h\left(x_{2}\right)$. From the last lecture, $H\left(G_{h}, D\right) \leq \log (b-k+2)$.

In any case, $H\left(G_{h}, D\right) \leq \log (b-k+2)$ and $H\left(G_{h}\right) \leq \log (b-k+2)$. Together with $H(G)=$ $\log (N-k+2)$, we can conclude that $t \geq \frac{\log (N-k+2)}{\log (b-k+2)}$.

To get a better bound, we want to show that G_{h} has a large fraction of isolated vertices. Define p the probability that a uniform random vertex of G_{h} is isolated. Let \mathcal{E} be the set of isolated vertices. The same argument shows that $H\left(G_{h}-\mathcal{E}\right) \leq \log (b-k+2)$ as well, so we have

$$
H\left(G_{h}\right)=p H(\mathcal{E})+(1-p) H\left(G_{h}-\mathcal{E}\right) \leq(1-p) \log (b-k+2)
$$

Therefore, an upper bound of $1-p$ is needed to achieve a better lower bound on $t .(D, x)$ is isolated if and only if h is not injective on $D \cup\{x\}$, so p is the probability over uniformly chosen $(k-1)$-subset S that h is not injective on S.
Claim 3.4. Without loss of generality, we can assume that $\left|h^{-1}(1)\right|=\ldots=\left|h^{-1}(b)\right|=\frac{N}{b}$. In other words, maximum $p($ minimum $1-p)$ is achieved by $\left|h^{-1}(1)\right|=\ldots=\left|h^{-1}(b)\right|=\frac{N}{b}$.

Proof. Assume that $\left|h^{-1}(1)\right|>\left|h^{-1}(2)\right|+1$. Take any x such that $h(x)=1$ and change h such that $h(x)=2$.

$$
\begin{aligned}
p=\operatorname{Pr}_{S}[h \text { is injective on } S]= & \operatorname{Pr}(x \in S) \operatorname{Pr}_{S}[h \text { is injective on } S \mid x \in S]+ \\
& \operatorname{Pr}(x \notin S) \operatorname{Pr}_{S}[h \text { is injective on } S \mid x \notin S]
\end{aligned}
$$

Since we only changed $h(x)$, the second term does not change. The first term increases since given that $x \in S, S-\{x\}$ needs to be disjoint from $h^{-1}(h(x))$ and the size of it became smaller.

Now, $1-p \leq 1 \cdot \frac{b-1}{b} \cdot \ldots \cdot \frac{b-k+2}{b}$ and $H\left(G_{h}\right) \leq(1-p) \log (b-k+2)$ Therefore,

$$
t \geq \frac{H(G)}{\max _{h} H\left(G_{h}\right)} \geq \frac{\log (N-k+2)}{(1-p) \log (b-k+2)} \geq \frac{b^{k-1}}{b(b-1) \ldots(b-k+2)} \frac{\log (N-k+2)}{\log (b-k+2)}
$$

