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1 Recap

• KL Divergence for two dist. p and q, the KL divergence is D(p||q) = E(log p(x)
p(y) )

• Gibbs’ inequality D(p||q) ≥ 0, with equality holding if p = q

• If X,Y are correlated random variables, I(X;Y ) = D(p(x, y)||p(x)p(y))

2 More viewpoints on KL Divergence

Three viewpoints were discussed in the previous lecture. “As if three weren’t enough, here are two
more”

2.4 A Lemma

Lemma 2.1. If p is a distribution on the universe U , H(p) = log |U | − D(p||u), where u is the
uniform distribution

This lemma states partly what we already knew, that H(X) ≤ log |support(X)| and the equality
is achieved when X is distributed uniformly. When X is not so, the difference equals to the KL
divergence between the distribution of X and a uniform distribution.

2.5 KL divergence and Chernoff Bound

Firstly, a brief introduction to the Chernoff Bound:
If a fair coin is tossed n times, on an average ‘heads’ will be observed n/2 times, and ‘tails’

n/2 times. However, Pr[seeing (0.5+ε) heads] ≤ 2−
ε2n
4 . This bound can be rewritten using the KL

divergence. In fact, this bound is tight:

2−nD(p||u)

n2
≤ Pr[seeing pn heads] ≤ 2−nD(p||u)

Given n i.i.d. random variables X1, X2, ..., Xn drawn according to a distribution q over the
universe U = {1, 2, ...,m}, the following holds:

2−D(p||q)

(n+ 1)m
≤ Pr[frequency of symbols we see are according to p] ≤ 2−D(p||q)

where p is a probability distribution. The term measures the probability that there are exactly pin
i’s for i = 1, 2, . . . ,m among the n symbols.
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3 Data Processing Inequality

Definition 3.1 (Markov Chain). Three random variables X,Y, Z are said to form a Markov
Chain, denoted by X → Y → Z if the conditional distribution of Z depends only on Y and is
independent of X.

Example: Z = g(Y ), where g() is some function.

Theorem 3.2. If X → Y → Z, then I(X;Y ) ≥ I(X;Z)

Proof. The joint probability of x, y, z:

p(x, y, z) = p(x)p(y|x)p(z|x, y)

Since, Z is independent of X, we have p(z|x, y) = p(z|y) and the joint probability becomes:

p(x, y, z) = p(x)p(y|x)p(z|y)

Now, we have the following observation:

p(x, z|y) =
p(x, y, z)

p(y)
=
p(x)p(y|x)p(z|y)

p(y)
= p(x|y)p(z|y)

i.e. X,Z are conditionally independent given Y .
Now, we expand I(X;Y,Z) applying the Chain-Rule:

I(X;Y,Z) = I(X;Z) + I(X;Y |Z)

Again, expanding in a different order,

I(X;Y,Z) = I(X;Y ) + I(X;Z|Y )

The second term on the R.H.S of the above equation is 0 since we concluded that X,Z are
conditionally independent given Y .

So, we have:

I(X;Z) + I(X;Y |Z) = I(X;Y,Z) = I(X;Y ) + 0 = I(X;Y )

Rearranging the above equation:

I(X;Y ) = I(X;Z) + I(X;Y |Z) ≥ I(X;Z)

since I(X;Y |Z) ≥ 0.

Corollary 3.3. If X → Y → Z, then I(X;Y |Z) ≤ I(X;Y )

Corollary 3.4. If X → Y → Z, then I(X;Y |g(Y )) ≤ I(X;Y )

Recall that, in general, it is possible that I(X;Y |Z) > I(X;Y )
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4 Fano’s Inequality

Situation: We know a random variable Y and we want to guess the valus of a correlated r.v. X

Exercise 4.1. If X is a function of Y , then the degree of surprise in X given Y is 0 and vice
versa. Mathematically:

X = g(Y )⇔ H(X|Y ) = 0

Fano’s inequality is a quantitative version of the above.

Theorem 4.2. Given Y and a function g(), which is used to estimate X, i.e. X̃ = g(Y ), where
the error of this estimation is given by Perr = Pr[X̃ 6= X], then

h(Perr) + Perr log(n− 1) ≥ H(X|Y )

where n = |support(X)| and function h() is defined as h(x) = x log 1
x + (1− x) log 1

1−x

Proof. Let E = 1 denote the event that there is an error in the estimation: X̃ 6= X, so, Pr[E =
1] = Perr.

So, we can say:
H(E) = h(Perr)

Again, knowing X,Y completely determines the event E. Hence,

H(E|X,Y ) = 0

Adding H(X|Y ) to both sides of the equation, we get:

H(E|X,Y ) +H(X|Y ) = H(X|Y )

Applying chain rule to compress the L.H.S

H(X,E|Y ) = H(X|Y )

Applying chain rule again to the L.H.S., but in a different order:

H(E|Y ) +H(X|E, Y ) = H(X|Y )

Since conditioning can never increase entropy, H(E|Y ) ≤ H(E). Applying this to the above
equation:

H(X|Y ) ≤ H(E) +H(X|E, Y )

Since H(E) = h(Perr)
H(X|Y ) ≤ h(Perr) +H(X|E, Y )

Now,
H(X|E, Y ) = Pr[E = 0]H(X|Y,E = 0) + Pr[E = 1]H(X|Y,E = 1)

Given Y and E = 0, i.e. there is no error in estimating X from g(Y ), X is determined, implying
H(X|Y,E = 0) = 0. Pr[E = 1] is known to be Perr, and H(X|Y,E = 1) ≤ H(X) since conditioning
can never increase entropy. Again H(X) ≤ log n as n = |support(X)|. Additionally, knowing that
E = 1, i.e., there is an error in the estimation, we can be certain that X 6= g(Y ). This reduces the
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maximum possible entropy of X conditioned on Y and E = 1, i.e., H(X|Y,E = 1) to be at most
log2(n− 1). So, we obtain:

H(X|Y ) ≤ h(Perr) + Perr log2(n− 1)

as claimed.

Exercise 4.3. Analyze the optimal “maximum likelihood decoding” strategy.

5 Asymptotic Equipartition Property (AEP)

First, we state the following law, since proof of AEP will require it:

Law 5.1 (Weak Law of Large Numbers). Given n i.i.d. draws {Z1, Z2, ..., Zn} of a r.v. Z
with E(Z) = µ,

∀ ε ∃ n0 s.t. ∀n ≥ n, Pr

[∣∣∣Z1 + Z2 + ...+ Zn
n

− µ
∣∣∣ > ε

]
≤ ε

Property 5.2. If X is a random variable drawn from the distribution P and X1, X2, ..., Xn are n
i.i.d samples of X, then

Pr[p(a1, a2, ..., an) ' 2−nH(X)]→ 1

where a1, a2, ..., an are values taken up by X1, X2, ..., Xn respectively.

In other words, AEP states that “Almost all events are almost equally surprising”.

Proof. AEP follows by applying the weak law of large numbers to the following variable:

Z = log
1

p(a)
with probability p(a)

Again:

E(Z) =
∑
a

p(a) log
1

p(a)
= H(X)

Applying the weak law of large numbers to Z, we get:

Pr

[∣∣∣ 1
n

n∑
i=1

log
1

p(ai)
−H(X)

∣∣∣ > ε

]
≤ ε

Pr

[∣∣∣− log p(a1, a2, ..., an)

n
−H(X)

∣∣∣ > ε

]
≤ ε

Pr

[∣∣∣ log p(a1, a2, ..., an)

n
+H(X)

∣∣∣ > ε

]
≤ ε

Pr

[∣∣∣ log p(a1, a2, ..., an)

n
+H(X)

∣∣∣ < ε

]
≥ 1− ε

Pr

[
− ε <

( log p(a1, a2, ..., an)

n
+H(X)

)
< ε

]
≥ 1− ε
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Pr

[
−H(X)− ε <

( log p(a1, a2, ..., an)

n

)
< −H(X) + ε

]
≥ 1− ε

Pr

[
− n(H(X) + ε) <

(
log p(a1, a2, ..., an)

)
< −n(H(X)− ε)

]
≥ 1− ε

Pr

[
2−n(H(X)+ε) < p(a1, a2, ..., an) < 2−n(H(X)−ε)

]
≥ 1− ε

6 Postscript

The sequences whose probability are close to the 2−nH(X) bound are the typical ones, and so we
define the following set.

Definition 6.1 (Typical Set). A typical set A
(n)
ε w.r.t. p(X) is the set {X1, X2, ..., Xn} ∈ Σn

such that 2−n(H(X)+ε) < p(a1, a2, ..., an) < 2−n(H(X)−ε)

The following is just a restatement of the AEP we proved above.

Lemma 6.2. If a1, a2, ..., an are drawn i.i.d. according to X, then Pr[(a1, a2, ..., an) ∈ A(n)
ε ] ≥ 1−ε

A simple counting argument yields that the size of the typical set is ≈ 2H(X)n.

Lemma 6.3. (1− ε)2n(H(X)−ε) ≤ |A(n)
ε | ≤ 2n(H(X)+ε)
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