Lecture 21: Set Disjointness lower bound via product distribution April 11, 2013
Lecturer: Venkatesan Guruswami Scribe: Shashank Singh

1 Recap

Last lecture we covered the following:

- Showed $R(I P)=\Theta(n)$ using the Discrepancy Method
- Indexing Problem: showed Alice must sent $\geq \Omega(n)$ bits using Information Theory

2 Set Disjointness lower bound via product distribution

Today we lower bound R (DISJ), where

$$
\operatorname{DISJ}(x, y)=\bigwedge_{i=1}^{n} \operatorname{NAND}\left(x_{i}, y_{i}\right)
$$

2.1 Preliminary Observations

Our goal is choose μ such that $D_{1 / 100}^{\mu}$ (DISJ) is large. Notice that if, for example, μ is uniform, then the probability that $\operatorname{DISJ}(x, y))=1$ is $(3 / 4)^{n}$, and so Alice and Bob can correctly guess "not disjoint" with high probability.

Thus, μ should be "balanced" in the sense that

$$
\mu\left(\operatorname{DISJ}^{-1}(0)\right), \mu\left(\operatorname{DISJ}^{-1}(1)\right)=\Omega(1) .
$$

Remark 1 Consider μ with $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \sim$ i.i.d. Bernoulli $(1 / \sqrt{n})$. This μ is "balanced", since

$$
\lim _{n \rightarrow \infty} \mathrm{P}(\operatorname{DISJ}(x, y)=1)=\lim _{n \rightarrow \infty}\left(1-\mathrm{P}\left(x_{i} \wedge y_{i}\right)\right)^{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}=1 / e
$$

Proposition 2 (Babai, Frankl, Simon, 1986) Consider μ with $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \sim$ i.i.d. Bernoulli $(1 / \sqrt{n})$. Then, $D_{1 / 100}^{\mu}($ DISJ $)=\Omega(\sqrt{n})\left(\right.$ in fact, $D_{1 / 100}^{\mu}($ DISJ $\left.)=\Theta(\sqrt{n})\right)$.

Corollary $3 R($ DISJ $) \geq \Omega(\sqrt{n})$.

2.2 Proof of Proposition 2

Suppose Π_{0} is a deterministic protocol such that

$$
\underset{(x, y) \sim \mu}{\mathrm{P}}\left(\operatorname{DISJ}(x, y)=\Pi_{0}(x, y)\right) \geq 0.99
$$

Let the random variable Π denote the transcript (log of bits sent) of Π_{0} on $(x, y) \sim \mu$. We know

$$
\begin{aligned}
C C\left(\Pi_{0}\right) & \geq \log _{2}|\operatorname{supp}(\Pi)| \\
& \geq H(\Pi(X, Y))=I(X, Y ; \Pi) \\
& =I\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} ; \Pi\right) \\
& \geq \sum_{i=1}^{n} I\left(x_{i}, y_{i} ; \Pi\right) .
\end{aligned}
$$

Definition 4

$$
\Pi_{a, b}^{i} \triangleq \Pi \text { conditioned on } x_{i}=a, y_{i}=b
$$

In Problem 6 of Problem Set 1, we showed

$$
I\left(x_{i}, y_{i} ; \Pi\right) \geq \underset{(a, b) \sim(\operatorname{Ber}(1 / \sqrt{n}))^{2}}{\mathbb{E}}\left[\Delta_{T V}^{2}\left(\Pi_{a, b}^{i}, \Pi\right)\right],
$$

where

$$
\Delta_{T V}(A, B) \triangleq \frac{1}{2} \sum_{\ell}|\mathrm{P}(A=\ell)-\mathrm{P}(B=\ell)|
$$

Thus, noting $\frac{1}{\sqrt{n}}\left(1-\frac{1}{\sqrt{n}}\right) \geq \frac{1}{2 \sqrt{n}}$,

$$
\begin{aligned}
I\left(x_{i}, y_{i} ; \Pi\right) & \geq \frac{1}{\sqrt{n}}\left(1-\frac{1}{\sqrt{n}}\right)\left[\Delta_{T V}^{2}\left(\Pi_{1,0}^{i}, \Pi\right)+\Delta_{T V}^{2}\left(\Pi_{0,1}^{i}, \Pi\right)\right] \\
& \geq \frac{1}{4 \sqrt{n}}\left[\Delta_{T V}\left(\Pi_{1,0}^{i}, \Pi\right)+\Delta_{T V}\left(\Pi_{0,1}^{i}, \Pi\right)\right]^{2} \\
& \geq \frac{1}{4 \sqrt{n}}\left[\Delta_{T V}\left(\Pi_{1,0}^{i}, \Pi_{0,1}^{i}\right)\right]^{2},
\end{aligned}
$$

where the last inequality is by the Triangle Inequality, since $\Delta_{T V}$ is a metric. Thus, we've shown so far that

$$
\begin{aligned}
C C\left(\Pi_{0}\right) & \geq n \underset{i}{\mathbb{E}}\left[I\left(x_{i}, y_{i} ; \Pi\right)\right] \\
& \geq \frac{n}{4 \sqrt{n}} \underset{i}{\mathbb{E}}\left[\Delta_{T V}^{2}\left(\Pi_{1,0}^{i}, \Pi_{0,1}^{i}\right)\right] \\
& \geq \frac{\sqrt{n}}{4} \underset{i}{\mathbb{E}}\left[\Delta_{T V}\left(\Pi_{1,0}^{i}, \Pi_{0,1}^{i}\right)\right]^{2} .
\end{aligned}
$$

Now, it suffices to show that

$$
\underset{i}{\mathbb{E}}\left[\Delta_{T V}\left(\Pi_{1,0}^{i}, \Pi_{0,1}^{i}\right)\right]^{2} \geq \Omega(1) .
$$

We break the proof of this into two lemmas:

Lemma 5 Since Π_{0} computes DISJ with high accuracy,

$$
\underset{i}{\mathbb{E}}\left[\Delta_{T V}\left(\Pi_{0,0}^{i}, \Pi_{1,1}^{i}\right)\right]=\Omega(1) .
$$

Lemma 6 If $\Delta_{T V}\left(\Pi_{0,0}^{i}, \Pi_{1,1}^{i}\right) \geq \Omega(1)$, then $\Delta_{T V}\left(\Pi_{0,1}^{i}, \Pi_{1,0}^{i}\right) \geq \Omega(1)$.

Proof: (of Lemma 5) Since $\mathrm{P}\left(\operatorname{DISJ}(X, Y)=1 \mid X_{i}=Y_{i}=0\right) \geq 1 / 4$,

$$
\mathrm{P}\left(\Pi_{0}\left(\Pi_{0,0}^{i}\right)=1\right) \geq 1 / 5,
$$

where $\Pi_{0}\left(\Pi_{0,0}^{i}\right)$ is the output of Π_{0} given the transcript $\Pi_{0,0}^{i}$. Since $X_{i}=Y_{i}=1 \Rightarrow \operatorname{DISJ}(X, Y)=0$,

$$
\mathrm{P}\left(\Pi_{0}\left(\Pi_{1,1}^{i}\right)=1\right) \leq 1 / 6 .
$$

Thus,

$$
\Delta_{T V}\left(\Pi_{0,0}^{i}, \Pi_{1,1}^{i}\right) \geq 1 / 5-1 / 6=1 / 30 .
$$

Hence, Π_{0} is, on average, a good distinguisher of $\Pi_{0,0}^{i}$ and $\Pi_{1,1}^{i}$.

Proof: (of Lemma 6) We make use of the Hellinger distance:
Definition 7 The Hellinger distance between two random variables A and B is

$$
\Delta_{\mathrm{Hel}} \triangleq \sqrt{1-\sum_{\ell} \sqrt{\mathrm{P}(A=\ell) \mathrm{P}(B=\ell)}}=\sqrt{1-Z(A, B)},
$$

where $Z(A, B)$ denotes the Bhattacharya coefficient.
Exercise Use Cauchy-Schwarz to show

$$
\Delta_{\mathrm{Hel}}^{2}(A, B) \leq \Delta_{T V}(A, B) \leq \sqrt{2} \Delta_{\mathrm{Hel}}(A, B)
$$

By this Exercise, it suffices to show that

$$
\Delta_{\mathrm{Hel}}^{2}\left(\Pi_{0,0}^{i}, \Pi_{1,1}^{i}\right)=\Delta_{\mathrm{Hel}}^{2}\left(\Pi_{0,0}^{i}, \Pi_{1,1}^{i}\right)
$$

and hence it suffices to show, for each i,

$$
\mathrm{P}\left(\Pi_{0,0}^{i}=\tau\right) \mathrm{P}\left(\Pi_{1,1}^{i}=\tau\right)=\mathrm{P}\left(\Pi_{0,1}^{i}=\tau\right) \mathrm{P}\left(\Pi_{1,0}^{i}=\tau\right) .
$$

Fix i and recall the following Rectangle Property:

- Inputs $X^{-i}:=\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, X_{n}\right), Y^{-i}:=\left(Y_{1}, \ldots, Y_{i-1}, Y_{i+1}, Y_{n}\right)$ leading to a transcript τ form a rectangle $R_{\tau}=S_{\tau} \times T_{\tau}$. Since $X \perp Y$,

$$
\mathrm{P}\left(\Pi_{a, b}^{i}=\tau\right)=\mathrm{P}\left(X^{-i} \in S_{\tau} \wedge Y^{-i} \in T_{\tau}\right)=\mathrm{P}\left(X^{-i} \in S_{\tau}\right) \mathrm{P}\left(Y^{-i} \in T_{\tau}\right)=A_{a}(\tau) B_{b}(\tau) .
$$

Importantly, $\mathrm{P}\left(\Pi_{a, b}^{i}=\tau\right)$ factors into non-negative functions $A_{0}, A_{1}, B_{0}, B_{1}$. Thus,

$$
\begin{aligned}
\mathrm{P}\left(\Pi_{0,0}^{i}=\tau\right) \mathrm{P}\left(\Pi_{1,1}^{i}=\tau\right) & =A_{0}(\tau) B_{0}(\tau) A_{1}(\tau) B_{1}(\tau) \\
& =A_{0}(\tau) B_{1}(\tau) A_{1}(\tau) B_{0}(\tau) \\
& =\mathrm{P}\left(\Pi_{0,1}^{i}=\tau\right) \mathrm{P}\left(\Pi_{1,0}^{i}=\tau\right) .
\end{aligned}
$$

Remark 8 Babai, Frankl, and Simon (1986) also showed that, for any μ which can be factored as a product distribution (meaning $\mu(x, y)=\mu_{A}(x) \cdot \mu_{B}(y)$),

$$
D^{\mu}(\mathrm{DISJ})=O(\sqrt{n} \log n)
$$

Thus, getting a substantially better lower bound requires adding correlation between X and Y.

3 Next Time

Next time, we will show $R($ DISJ $)=\Omega(n)$.

- This result was first shown by Kalyanasundaram and Schnitger (1987).
- Razborov (1990) "simplified" the proof.
- We'll see an Information Theory based proof by Bar-Yossef, Jayram, Kumar, Sivakumar (2004).

