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Abstract. In this supplementary document, we provide additional ex-
amples, proofs, data descriptions, and experimental results, all of which
supplement the main paper [2].

A Example Dataset

Example 1 (Purchase History). Let R = Purchase(user, item, date, count), de-
picted in Figure 6a. Each tuple (u, i, d, c) in R indicates that user u purchased
c units of item i on date d. The first three attributes, A1 = user, A2 = item,
and A3 = date, are dimension attributes, and the other one, X = count, is the
measure attribute. Let B1 = {‘Tom’, ‘Sam’}, B2 = {‘A’,‘B’}, and B3 = {Mar-
11}. Then, B is the set of tuples regarding the purchases by ‘Tom’ or ‘Sam’
on ‘A’ or ‘B’ on Mar-11, and its mass MB = 19, the total units sold by such
purchases. Likewise, MB(‘Tom’) = Mass(B(‘Tom’)) = 7, the total units of ‘A’
or ‘B’ purchased by exactly ‘Tom’ on Mar-11. In the tensor representation, B
composes a subtensor in R, as depicted in Figure 6b.

User Item Date Count
Tom A Mar-11 3
Tom B Mar-11 4
Sam A Mar-11 5
Sam B Mar-11 7
Ann C Mar-12 2… … … …
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(b) Tensor Representation of R

Fig. 6: Pictorial description of Example 1. (a) Relation R (Purchase). The
shaded tuples compose block B. (b) Tensor representation of R. In the tensor
representation, B forms a subtensor of R.

B Proof of Theorem 3

Proof. Algorithm 2 in main paper requires O(N |R|) space for R and B; and

O(
∑N

n=1 |Rn|) space for min-heaps and the order by which attribute values are
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removed, as explained in Section 3.2 of the main paper. The sum is O(N |R| +∑N
n=1 |Rn|) = O(N |R|) since |Rn| ≤ |R|, ∀n ∈ [N ]. Since Algorithm 1 re-

quires additional O(kN |R|) for storing k blocks it finds, its space complexity is
O(N |R|+ kN |R|) = O(kN |R|).

C Proof of Theorem 5

Let B(r) be the relation B at the beginning of the r-th iteration of Algorithm 2,

and a
(r)
i ∈ B

(r)
i be the attribute value removed in the same iteration, as in the

main paper.

Lemma 4. For any α ∈ [0, 1], there exists a block B′ satisfying ∀ai ∈
⋃N

n=1 B
′
n,

Mass(B′(ai)) ≥ αρari(R,R)/N and Mass(B′) ≥ (1− α)Mass(R).

Proof. Let s be the first iteration in Algorithm 2 where Mass(B(s)(a
(s)
i )) ≥

αρari(R,R)/N . Such s exists, otherwise

Mass(R) =

Size(R)∑
r=1

Mass(B(r)(a
(r)
i )) <

αρari(R,R)

N
Size(R) = αMass(R),

which is a contradiction. Then,

Mass(R) =

Size(R)∑
r=1

Mass(B(r)(a
(r)
i ))

=

s−1∑
r=1

Mass(B(r)(a
(r)
i )) +

Size(R)∑
r=s

Mass(B(r)(a
(r)
i ))

≤ sαρari(R,R)/N +Mass(B(s))

≤ αSize(R)ρari(R,R)/N +Mass(B(s)) = αMass(R) +Mass(B(s))

Thus, Mass(B(s)) ≥ (1− α)Mass(R).

Proof of Theorem 5

Proof. Let α=N/(N + 1). By Lemma 4 (in the main paper), there exists a

block B̄ ⊂ B∗ satisfying ∀aj ∈
⋃N

n=1 B̄n, Mass(B̄(aj)) ≥ αρari(B
∗,B∗)/N =

αρari(B
∗,R)/N and Mass(B̄) ≥ (1− α)Mass(B∗). Let s be the first iteration

of Algorithm 2 (in the main paper) where a
(s)
i ∈

⋃N
n=1 B̄n. By Lemma 3 (in Ap-

pendix C of the main paper) and B(s) ⊃ B̄, ∀aj ∈
⋃N

n=1 B
(s)
n , Mass(B(s)(aj)) ≥

αρari(B
∗,R)/N and Mass(B(s)) ≥ (1− α)Mass(B∗). If Size(B(s)) ≥ Smin,

ρari(B
′,R) ≥ ρari(B(s),R) =

Mass(B(s))

Size(B(s))/N

=

∑
aj∈

⋃N
n=1 B

(s)
n
Mass(B(s)(aj))

Size(B(s))
≥ αSize(B(s))ρari(B

∗,R)/N

Size(B(s))
=
ρari(B

∗,R)

N + 1
.



Title Suppressed Due to Excessive Length 3

If Size(B(s)) < Smin, we consider B(q) where Size(B(q)) = Smin and thus q < s.
Then,

ρari(B
′,R) ≥ ρari(B(q),R) =

Mass(B(q))

Size(B(q))/N
≥ Mass(B(s))

Size(B(q))/N

≥ (1− α)Mass(B∗)

Size(B(q))/N
=
Mass(B∗)/(N + 1)

Smin/N
≥ Mass(B∗)/(N + 1)

Size(B∗)/N
=
ρari(B

∗,R)

N + 1
.

Hence, regardless of Size(B(s)), ρari(B
′,R) ≥ ρari(B∗,R)/(N + 1).

We remark that the above proof of Theorem 5 is a multi-dimensional gener-
alization of the proof of Theorem 1 in [1].

D Description of AirForce Dataset

The descriptions of the attributes in AirForce Dataset are as follows:

– protocol (A1): type of protocol (e.g. tcp, udp, etc.)
– service (A2): type of network service on destination (e.g., http, telnet, etc)
– src bytes (A3): amount of data bytes from source to destination
– dst bytes (A4): amount of data bytes from destination to source
– flag (A5): normal or error status of each connection
– host count (A6): number of connections to the same host in the past two

seconds
– srv count (A7): number of connections to the same service in the past two

seconds
– #connections (X): number of connections with the corresponding dimension

attribute values.

E Additional Experiments

E.1 Running Time and Accuracy of M-Zoom with Different
Density Measures

As in Section 4.2 of the main paper, we compare the speed of different methods
and the densities of the blocks found by the methods in real-world datasets. In
this section, however, ρgeo and ρsusp (Definitions 2 and 3 in the main paper) were
used as the density metrics instead of ρari. For each metric, we measured time
taken to find three blocks and the maximum density among the three blocks.

Figure 7 shows the result when ρgeo was used as the density metric. M-Zoom
provided a significantly better trade-off between speed and accuracy than the
other methods in most datasets. For example, in YahooM. Dataset, M-Zoom was
110 times faster than CrossSpot but still found blocks with similar densities.
In addition, in the same dataset, M-Zoom detected blocks twice as dense as
those detected by CPD and was still 2.8 times faster than CPD. The similar
results were obtained using ρsusp as the density measure, as seen in Figure 8.
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Fig. 7: M-Zoom outperforms its competitors when ρgeo is used as the density
measure. In each plot, points represent the speed of different methods and the
highest density (ρgeo) of three blocks found by the methods. Upper-left region
indicates better performance. In most datasets, M-Zoom is the only method
that achieves both speed and accuracy.

E.2 Diversity of Blocks Found by M-Zoom with Different Density
Measures

As in Section 4.3 of the main paper, we compare the diversity of dense blocks
found by each method. In this section, however, ρgeo and ρsusp (Definitions 2 and
3 in the main paper) were used as the density metrics instead of ρari. For each
density metric, the diversity of the blocks found by each method was measured
in the same way as in the main paper.

As seen in Figure 9, in all real-world datasets, M-Zoom and CPD successfully
detected distinct dense blocks regardless of the density measure used. However,
in many datasets, CrossSpot found the same block repeatedly or blocks with
slight difference, even when it started from different seed blocks.
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Fig. 8: M-Zoom outperforms its competitors when ρsusp is used as the density
measure. In each plot, points represent the speed of different methods and the
highest density (ρsusp) of three blocks found by the methods. Upper-left region
indicates better performance. In most datasets, M-Zoom is the only method
that achieves both speed and accuracy.
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(a) Geometric Average Mass (ρgeo)
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(b) Suspiciousness (ρsusp)

Fig. 9: M-Zoom detects many different dense blocks regardless of the density
measure used. The dense blocks found by M-Zoom and CPD have high diversity
in all datasets, while the dense blocks found by CrossSpot are almost same in
many datasets.


	M-Zoom: Fast Dense-Block Detection in Tensors with Quality Guarantees  - Supplementary Document
	Example Dataset
	Proof of Theorem 3
	Proof of Theorem 5
	Description of AirForce Dataset
	Additional Experiments
	Running Time and Accuracy of M-Zoom with Different Density Measures
	Diversity of Blocks Found by M-Zoom with Different Density Measures



