
1

Multi-core architectures

Jernej Barbic
15-213, Spring 2007

May 3, 2007

2

Single-core computer

3

Single-core CPU chip
the single core

4

Multi-core architectures

• This lecture is about a new trend in
computer architecture:
Replicate multiple processor cores on a
single die.

Core 1 Core 2 Core 3 Core 4

Multi-core CPU chip

5

Multi-core CPU chip

• The cores fit on a single processor socket
• Also called CMP (Chip Multi-Processor)

c
o
r
e

1

c
o
r
e

2

c
o
r
e

3

c
o
r
e

4

6

The cores run in parallel

c
o
r
e

1

c
o
r
e

2

c
o
r
e

3

c
o
r
e

4

thread 1 thread 2 thread 3 thread 4

7

Within each core, threads are time-sliced
(just like on a uniprocessor)

c
o
r
e

1

c
o
r
e

2

c
o
r
e

3

c
o
r
e

4

several
threads

several
threads

several
threads

several
threads

8

Interaction with the
Operating System

• OS perceives each core as a separate processor

• OS scheduler maps threads/processes
to different cores

• Most major OS support multi-core today:
Windows, Linux, Mac OS X, …

9

Why multi-core ?
• Difficult to make single-core

clock frequencies even higher
• Deeply pipelined circuits:

– heat problems
– speed of light problems
– difficult design and verification
– large design teams necessary
– server farms need expensive

air-conditioning
• Many new applications are multithreaded
• General trend in computer architecture (shift

towards more parallelism)

10

Instruction-level parallelism

• Parallelism at the machine-instruction level
• The processor can re-order, pipeline

instructions, split them into
microinstructions, do aggressive branch
prediction, etc.

• Instruction-level parallelism enabled rapid
increases in processor speeds over the
last 15 years

11

Thread-level parallelism (TLP)
• This is parallelism on a more coarser scale
• Server can serve each client in a separate

thread (Web server, database server)
• A computer game can do AI, graphics, and

physics in three separate threads
• Single-core superscalar processors cannot

fully exploit TLP
• Multi-core architectures are the next step in

processor evolution: explicitly exploiting TLP

12

General context: Multiprocessors

• Multiprocessor is any
computer with several
processors

• SIMD
– Single instruction, multiple data
– Modern graphics cards

• MIMD
– Multiple instructions, multiple data

Lemieux cluster,
Pittsburgh

supercomputing
center

13

Multiprocessor memory types

• Shared memory:
In this model, there is one (large) common
shared memory for all processors

• Distributed memory:
In this model, each processor has its own
(small) local memory, and its content is not
replicated anywhere else

14

Multi-core processor is a special
kind of a multiprocessor:

All processors are on the same chip

• Multi-core processors are MIMD:
Different cores execute different threads
(Multiple Instructions), operating on different
parts of memory (Multiple Data).

• Multi-core is a shared memory multiprocessor:
All cores share the same memory

15

What applications benefit
from multi-core?

• Database servers
• Web servers (Web commerce)
• Compilers
• Multimedia applications
• Scientific applications,

CAD/CAM
• In general, applications with

Thread-level parallelism
(as opposed to instruction-
level parallelism)

Each can
run on its
own core

16

More examples

• Editing a photo while recording a TV show
through a digital video recorder

• Downloading software while running an
anti-virus program

• “Anything that can be threaded today will
map efficiently to multi-core”

• BUT: some applications difficult to
parallelize

17

A technique complementary to multi-core:
Simultaneous multithreading

• Problem addressed:
The processor pipeline
can get stalled:
– Waiting for the result

of a long floating point
(or integer) operation

– Waiting for data to
arrive from memory

Other execution units
wait unused BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Source: Intel

18

Simultaneous multithreading (SMT)

• Permits multiple independent threads to execute
SIMULTANEOUSLY on the SAME core

• Weaving together multiple “threads”
on the same core

• Example: if one thread is waiting for a floating
point operation to complete, another thread can
use the integer units

19

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROMBTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 1: floating point

Without SMT, only a single thread
can run at any given time

20

Without SMT, only a single thread
can run at any given time

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROMBTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 2:
integer operation

21

SMT processor: both threads can
run concurrently

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROMBTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 1: floating pointThread 2:
integer operation

22

But: Can’t simultaneously use the
same functional unit

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROMBTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 1 Thread 2

This scenario is
impossible with SMT
on a single core
(assuming a single
integer unit)IMPOSSIBLE

23

SMT not a “true” parallel processor

• Enables better threading (e.g. up to 30%)
• OS and applications perceive each

simultaneous thread as a separate
“virtual processor”

• The chip has only a single copy
of each resource

• Compare to multi-core:
each core has its own copy of resources

24

Multi-core:
threads can run on separate cores

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 1 Thread 2

25

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 3 Thread 4

Multi-core:
threads can run on separate cores

26

Combining Multi-core and SMT

• Cores can be SMT-enabled (or not)
• The different combinations:

– Single-core, non-SMT: standard uniprocessor
– Single-core, with SMT
– Multi-core, non-SMT
– Multi-core, with SMT: our fish machines

• The number of SMT threads:
2, 4, or sometimes 8 simultaneous threads

• Intel calls them “hyper-threads”

27

SMT Dual-core: all four threads can
run concurrently

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTBL2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 1 Thread 3 Thread 2 Thread 4

28

Comparison: multi-core vs SMT

• Advantages/disadvantages?

29

Comparison: multi-core vs SMT

• Multi-core:
– Since there are several cores,

each is smaller and not as powerful
(but also easier to design and manufacture)

– However, great with thread-level parallelism
• SMT

– Can have one large and fast superscalar core
– Great performance on a single thread
– Mostly still only exploits instruction-level

parallelism

30

The memory hierarchy

• If simultaneous multithreading only:
– all caches shared

• Multi-core chips:
– L1 caches private
– L2 caches private in some architectures

and shared in others
• Memory is always shared

31

“Fish” machines

• Dual-core
Intel Xeon processors

• Each core is
hyper-threaded

• Private L1 caches
• Shared L2 caches

memory

L2 cache

L1 cache L1 cacheC
 O

 R
 E

 1

C
 O

 R
 E

 0

hyper-threads

32

Designs with private L2 caches

memory

L2 cache

L1 cache L1 cacheC
 O

 R
 E

 1

C
 O

 R
 E

 0

L2 cache

memory

L2 cache

L1 cache L1 cacheC
 O

 R
 E

 1

C
 O

 R
 E

 0

L2 cache

Both L1 and L2 are private

Examples: AMD Opteron,
AMD Athlon, Intel Pentium D

L3 cache L3 cache

A design with L3 caches

Example: Intel Itanium 2

33

Private vs shared caches?

• Advantages/disadvantages?

34

Private vs shared caches

• Advantages of private:
– They are closer to core, so faster access
– Reduces contention

• Advantages of shared:
– Threads on different cores can share the

same cache data
– More cache space available if a single (or a

few) high-performance thread runs on the
system

35

The cache coherence problem
• Since we have private caches:

How to keep the data consistent across caches?
• Each core should perceive the memory as a

monolithic array, shared by all the cores

36

The cache coherence problem
Suppose variable x initially contains 15213

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=15213

multi-core chip

37

The cache coherence problem
Core 1 reads x

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=15213

multi-core chip

38

The cache coherence problem
Core 2 reads x

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=15213

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=15213

multi-core chip

39

The cache coherence problem
Core 1 writes to x, setting it to 21660

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=21660

multi-core chip
assuming
write-through
caches

40

The cache coherence problem
Core 2 attempts to read x… gets a stale copy

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=21660

multi-core chip

41

Solutions for cache coherence

• This is a general problem with
multiprocessors, not limited just to multi-core

• There exist many solution algorithms,
coherence protocols, etc.

• A simple solution:
invalidation-based protocol with snooping

42

Inter-core bus

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

Main memory

multi-core chip

inter-core
bus

43

Invalidation protocol with snooping

• Invalidation:
If a core writes to a data item, all other
copies of this data item in other caches
are invalidated

• Snooping:
All cores continuously “snoop” (monitor)
the bus connecting the cores.

44

The cache coherence problem
Revisited: Cores 1 and 2 have both read x

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=15213

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=15213

multi-core chip

45

The cache coherence problem
Core 1 writes to x, setting it to 21660

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=21660

multi-core chip
assuming
write-through
caches

INVALIDATEDsends
invalidation
request

inter-core
bus

46

The cache coherence problem
After invalidation:

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of
cache

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=21660

multi-core chip

47

The cache coherence problem
Core 2 reads x. Cache misses, and loads the new copy.

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of
cache

x=21660

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=21660

multi-core chip

48

Alternative to invalidate protocol:
update protocol

Core 1 writes x=21660:

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache
x=21660

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=21660

multi-core chip
assuming
write-through
caches

UPDATED

broadcasts
updated
value inter-core

bus

49

Which do you think is better?
Invalidation or update?

50

Invalidation vs update

• Multiple writes to the same location
– invalidation: only the first time
– update: must broadcast each write

(which includes new variable value)

• Invalidation generally performs better:
it generates less bus traffic

51

Invalidation protocols

• This was just the basic
invalidation protocol

• More sophisticated protocols
use extra cache state bits

• MSI, MESI
(Modified, Exclusive, Shared, Invalid)

52

Programming for multi-core

• Programmers must use threads or
processes

• Spread the workload across multiple cores

• Write parallel algorithms

• OS will map threads/processes to cores

53

Thread safety very important

• Pre-emptive context switching:
context switch can happen AT ANY TIME

• True concurrency, not just uniprocessor
time-slicing

• Concurrency bugs exposed much faster
with multi-core

54

However: Need to use synchronization
even if only time-slicing on a uniprocessor
int counter=0;

void thread1() {
int temp1=counter;
counter = temp1 + 1;

}

void thread2() {
int temp2=counter;
counter = temp2 + 1;

}

55

Need to use synchronization even if only
time-slicing on a uniprocessor

temp1=counter;
counter = temp1 + 1;
temp2=counter;
counter = temp2 + 1

temp1=counter;
temp2=counter;
counter = temp1 + 1;
counter = temp2 + 1

gives counter=2

gives counter=1

56

Assigning threads to the cores

• Each thread/process has an affinity mask

• Affinity mask specifies what cores the
thread is allowed to run on

• Different threads can have different masks

• Affinities are inherited across fork()

57

Affinity masks are bit vectors

• Example: 4-way multi-core, without SMT

1011

core 3 core 2 core 1 core 0

• Process/thread is allowed to run on
cores 0,2,3, but not on core 1

58

Affinity masks when multi-core and
SMT combined

• Separate bits for each simultaneous thread
• Example: 4-way multi-core, 2 threads per core

1

core 3 core 2 core 1 core 0

1 0 0 1 0 1 1

thread
1

• Core 2 can’t run the process
• Core 1 can only use one simultaneous thread

thread
0

thread
1

thread
0

thread
1

thread
0

thread
1

thread
0

59

Default Affinities

• Default affinity mask is all 1s:
all threads can run on all processors

• Then, the OS scheduler decides what
threads run on what core

• OS scheduler detects skewed workloads,
migrating threads to less busy processors

60

Process migration is costly

• Need to restart the execution pipeline
• Cached data is invalidated
• OS scheduler tries to avoid migration as

much as possible:
it tends to keeps a thread on the same core

• This is called soft affinity

61

Hard affinities

• The programmer can prescribe her own
affinities (hard affinities)

• Rule of thumb: use the default scheduler
unless a good reason not to

62

When to set your own affinities

• Two (or more) threads share data-structures in
memory
– map to same core so that can share cache

• Real-time threads:
Example: a thread running
a robot controller:
- must not be context switched,
or else robot can go unstable

- dedicate an entire core just to this thread
Source: Sensable.com

63

Kernel scheduler API
#include <sched.h>
int sched_getaffinity(pid_t pid,
unsigned int len, unsigned long * mask);

Retrieves the current affinity mask of process ‘pid’ and
stores it into space pointed to by ‘mask’.

‘len’ is the system word size: sizeof(unsigned int long)

64

Kernel scheduler API
#include <sched.h>
int sched_setaffinity(pid_t pid,

unsigned int len, unsigned long * mask);

Sets the current affinity mask of process ‘pid’ to *mask
‘len’ is the system word size: sizeof(unsigned int long)

To query affinity of a running process:
[barbic@bonito ~]$ taskset -p 3935
pid 3935's current affinity mask: f

65

Windows Task Manager

core 2

core 1

66

Legal licensing issues

• Will software vendors charge a separate
license per each core or only a single
license per chip?

• Microsoft, Red Hat Linux, Suse Linux will
license their OS per chip, not per core

67

Conclusion

• Multi-core chips an
important new trend in
computer architecture

• Several new multi-core
chips in design phases

• Parallel programming techniques
likely to gain importance

