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1 Channels { their e�ects

Ionic channels appear throughout membranes in neurons and are responsible for most of the interesting

dynamic behavior. They play a fundamental role in the properties and connections of neurons and neural

nets. So far, we have viewed the membrane as a passive cable with inputs and inhomogeneities. However,

as we have seen, cables can transmit information only in a very analog fashion and for long distances would

require an enormous diameter. (Homework: Given Rm = 100000
cm2 and Ra = 100
cm what diameter

would you need to get a length constant of a meter? { This is less than the distance traveled to the spinal

cord from nerves in the foot. )

This problem can be resolved if there is a means to keep the potential of the cable localized and high.

This is exactly the problem that action potentials solve. In a real nerve cell there are many species of

ions, calcium, potassium, sodium, chloride, magnesium, to name a few of the most common. The basis for

the resting membrane potential is the balance of these ions in the cell and outside of the cell. There are

basically two forces at work in absence of ionically selective channels: (i) passive di�usion in which case high

concentrations tend to move toward low concentrations and (ii) electric forces which attempt to balance the

charges on either side of the membrane.

Hodgkin and Huxley won the Nobel prize for their elegant experimental and theoretical work on the

nature of the voltage gated channels in the squid axon. This theory is the basis for all subsequent models

of ionic channels in nerve and other membranes. Some of the details may di�er, but the basic ideas are the

same.

Channels facilitate the passive 
ow of ions across the membrane. When they are gated by other forces

such as calcium or voltage, they can also provide great computational properties to the neuron. Non-gated

channels are responsible for the membrane potential. Recall that the equilibrium potential of an ion is given

by:

E = 2:303
RT

ZF
log

[C]o
[C]i

where C is the concentration, and at 25� C we have 2:303RT=ZF = 60 mv when Z = +1: Thus, since there

are 20 mMoles of potassium inside and 400 outside EK = �78mV: ENa = 55mV and ECl = �60mV: Recall

that the membrane potential is found from the Goldman equation:

Vm =
RT

F
ln

P
Pj [Cj]oP
Pj [Cj]i

where Pj are the permeabilities of the ions. At rest

PK : PNa : PCl = 1 : :04 : :45

during the peak of the action potential

PK : PNa : PCl = 1 : 20 : :45

This is really the correct way to discern the membrane potential, however, in modeling, we will make a

much simpler equivalent circuit. We will treat each ion channel as a conductor and a battery. Note that
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Figure 1: Equivalent circuit for Squid Axon

the permeabilities act like conductances and the equilibrium potentials act as batteries. Consider Figure 1

which ignores the pumps for sodium and potassium. Then the equations for the membrane are:

C
dV

dt
= gNa(ENa � V ) + gCl(ECl � V ) + gK(EK � V ) + I (1)

where I is the applied current. The membrane potential is de�ned as a steady state of (1) that is the

right-hand side must vanish. This enables us to solve forV :

Vm =
gNaENa + gKEK + gClECl + I

gNa + gK + gCl

If I = 0; gCl = 0; gK = 10� 10�6S; gNa = :5� 10�6S then Vm = �69mV:

Homework:

1. Compute the sodium and potassium currents at rest (Hint: The current of an ionic species is I =

g(E � V ) where E is the reversal potential, g the conductance, and V the resting potential.)

2. What is the e�ect of gCl on the resting potential. That is if gCl is small and positive, will this raise or

lower the potential.

3. Given that ECa = 150mV suppose that gCa = :2� 10�6S: What is Vm?

4. Suppose that gNa increases 500 fold as it does during the action potential. What is Vm in this case?

5. Again ignoring chloride and using the values in the example for the conductances of sodium and potas-

sium, how much current must you inject to increase the potential by 10mV?

6. Rewrite (1) as

CdV=dt = �g(Vm � V ) + I

where �g is the e�ective conductance. Using the given values for the potassium and sodium conductances

and noting that C = Cm � A where A is the area of the membrane and using Cm = 1�F=cm2 what is

the area of the membrane if the time constant is 1msec. (Hint: The time constant is C=�g = CmA=�g: )

2 Voltage gated channels

The basis for the action potential is the voltage gated ion channel. That is the conductance of the channel

is dependent on the membrane potential at the time. This throws a monkey wrench into the equilibrium

potential since the conducatnces are actually nonlinear function of the voltage. As in Kandel and Schwartz,
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one can measure the properties of the action potential by voltage clamp studies in order to understand the

basic dynamics of active channels. The idea is really just an application of Ohms law and we can thus write:

CmdV=dt = �

X
k

Ii (2)

where Ii are just the di�erent currents per unit area due to the channels. Each of these can be decomposed

as:

Ii = Conductance of open Channel �

Density of channels �

probability of channel open�

electromotive driving force

There are at least 4 di�erent types of channels:

1. Passive

Ii = �g(V �
�E)

2. Persistent or noninactivating

Ii = �gm(t)p(V �
�E)

3. Transient or inactivating

Ii = �gm(t)ph(t)q(V � �E)

4. Anomalous or activated by hyperpolarization

Ii = �gh(t)q(V �
�E)

where m;h are dynamic variables that are in [0; 1] and are generally voltage dependent. m will generally

increase as the voltage increases and h decreases as the voltage increases. The powers, p; q are meant to

represent the components of a channel. For example, the potassium channel consistes of 4 subunits and so

the power is 4. The diagram in Figure 2 should make this clear.

In the squid axon, potassium is of type 2 (persistent noninactivating) and sodium is of type 3 (transient

or inactivating.) In the thalamus, there is a type 3 calcium current that is very important for synchronizing

spindle activity. Now lets examine the dynamics of the channel variables, m;h: The ideas are grounded in

chemical kinetics and can be neatly summarized by the mass action model:

Closed

1�m

�
*)

�

Open

m

Using the law of mass action we get

dm

dt
= �(V )(1 �m) � �(V )m

which we can rearrage to the better known form:

� (V )
dm

dt
= m1(V )�m (3)

where

� (V ) =
1

�(V ) + �(V )

m1(V ) =
�

�+ �
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Figure 2: The four di�erent types of gated channels. (1) The passive gate lets ions through a a rate

proportional to the voltage drop, (2) The persistent gate requires the \m" activating gate to be open, (3)

the transient gate requires both the activating gate and the inactivating gate to be open, (4) the anomalous

requires the inactivating gate to be open. The functions m1 and h1 are shown in the �gure

The key points to note in general are that (i) m1(V ) is an increasing function of voltage for activating

gates. That is, the higher the potential, the higer the probability of the activation gate being open. Figure 2

shows the typical activation function. (ii) Inactivation gates decrease with increased voltage and are generally

slower than the activation gates. (iii) While the gates are generally dependent on voltage, some potassium

gates depend on the intracellular calcium concentration or on other modulatory substances.

2.1 An aside on experimental issues: Voltage clamp

The equations for the gating variables are all well and good in theory, but in practice, how does one compute

them? This is done by a technique known as the voltage clamp. One holds the voltage as a �xed value

and then changes it by some incremental amount. The current that passes is then measured. Lets take,

for example, the squid axon model of Hodgkin and Huxley. Suppose that we chemically block the sodium

channel. (There are many di�erent pharmacological agents that can be used to block di�erent channels.

Sodium is blocked by tetrodotoxin, TTX, found in the pu�er �sh. Tetraethylammonium , TEA, blocks

certain kinds of potassium channels.) The the current passed is due solely to the leak, the capacitance, and

the leak. Since the capacitative current is just a short pulse and is zero otherwise, we can ignore that. The

current is thus:

I(t) = gL(V �EL) + gK(t)(V �EK)

We know the voltage and the reversal potentials, so we can solve for the time-dependent conductance:

g(t) =
I(t) � gL(V � EL)

V � EK

:

Now, the idea is that the conductance should be of the form:

g(t) = �gKn
p(t)

where
dn

dt
= (n1(V ) � n)=�n(V ):

For a �xed value of voltage, this is just a linear di�erential equation which has a solution:

n(t) = n1(V ) + (n(t0)� n1(V ))e�t=�n(V ):
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By using a series of di�erent initial voltages and voltage jumps, we can �rst �nd the best power, p to �t the

data. Then we can �nd the maximal value of the conductance. Finally, we can use the above formula to �t

the conductance to a series of exponential curves and use these to �nd n1(V ) and �n(V ) for each value of

the voltage. For gates that have both activation and inactivation, the voltage clamp is a little trickier, but

not all that bad. With the advent of channel blockers, it is now a fairly standard (though by no means easy!)

experimental protocol. A paper illustrating the technique applied to a calcium current in the thalamus is

Coulter et al J. Physiol. London, 414:587-604.

2.2 Some common currents in cortical and thalamic neurons

There are many di�erent currents in the cortex and thalamus. I only touch on a few of them.

name ion type speed Rev. Pot threshold

INa Fast Sodium [Na] act/inact very fast 45 mV -50 mV

INap Persistent Sodium [Na] act/inact(slow) fast 45 mV -65 mV

IK Delayed recti�er [K] act fast -100 mV -40 mV

IA A-current [K] act/inact fast -100 mV -60 mV

IAHP Ca-dependent K [K] act (Ca-dep) moderate-slow -100 mV -

IM Slow potassium [K] act slow -100 mV -35 mV

IK2 Slow potassium [K] act/inact slow -100 mV -40 mV

IT Transient Ca [Ca] act/inact slow 150 mV -60 mV

IL High thresh. Ca [Ca] act fast 150 mV -10 mV

Ih Sag current [Ca]&[Na] inact slow 0-40 mV -

Ileak Leak [Cl],[K], [Na] passive - -60 mV -

Given the above table and the form for the kinetic parameters, �; � one can easily put together models

for active membranes. This can be regarded as a kind of mix and match a�air which results in a huge variety

of models. In spite of this, there are virtually no di�erences between the fundamental models of cardiac,

smooth muscle, squid axon, thalamic relay cells, etc. Each can be written as (2) where the Ik each satisfy

Ik = �gmphq(V �E) (4)

and m;h satisfy equations like (3). In many cases, the calcium current is handled slightly di�erent than the

linear conductance model and instead, the constant �eld equation is used:

ICa = Pmphq
(zFV )2

RT

[Cai]� [Cao]e
�zFV=RT

1� e�zFV=RT

Here instead of conductance, the permeability is used.

The best known examples of these models are the Hodgkin-Huxley equations which have 3 currents, (i)

passive leak, (ii) fast sodium, and (iii) delayed recti�er.

All of the currents mentioned in the table above have been found in cortical or thalamic neurons. These

currents are responsible for the intrinsic �ring properties of neurons which include three di�erent types: (i)

regular spiking neurons (ii) fast spike neurons (iii) bursting neurons.

Recall that the typical channel gate satis�es

dx

dt
= �(V )(1� x)� �(V )

The functions �; � are generally of three di�erent forms (see Figure 3)

1. Exponential:

�(v) = C1e
(V�VT )=Vs
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Figure 3: The three di�erent functional forms for the gating rates. Only the increasing ones are shown;

decreasing ones are just mirror images. All are chosen to pass through 0.5 at 0.

2. Linear-Exponential:

�(v) = C1(V � VT )=(1� e(V�VT )=Vs)

3. Logistic:

�(v) = C1=(1 + e�(V�VT )=Vs)

All three are de�ned by 3 parameters, the magnitude, C1, the \threshold", VT and the slope at threshold,

Vs.

3 Calcium dynamics and IK�AHP

Most of the models that are commonly used treat the current as in (4) but we will see that calcium is

somewhat special and requires a more complex approach.

Intracellular calcium is heavily bu�ered so that the concentration tends be be very low. As a consequence

the reversal potential for calcium can not really be modeled as a �xed value. The intracellular calcium levels

are on the order of 1000 times lower than extracellular calcium which accounts for the rather large reversal

potential for calcium. The way that many researchers model calcium is through the constant �eld equation

ICa = PCam
phq

4F 2

RT
V

�
[Ca]ine

2V F=RT
� [Ca]out

e2V F=RT � 1

�
(5)

where F = 96480 Colombs/mole, R = 8:3145J=mol� �K, PCa is the permeability, and T is the temperature

in degrees Kelvin (centigrade plus 273).

NOTES:

� 1 V = 1 joule/ Coulomb

� Permeability is measured in cm/sec and concentration is in moles/liter or moles/cubic centimeter.

Thus, the dimensions above are coulombs/(sec-square centimeter) which is just current per unit area.

To get some intuition behind this expression, de�ne

ECa =
RT

2F
ln

[Ca]out

[Ca]in
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as is usual. Then in the above, it is clear that V = ECa makes the current vanish so that the \reversal

potential" is indeed the Nernst equilibrium for calcium and linearizing about this reversal potential, we get

the slope

�gCa =
2PCaF

3ECa[Ca]out=(RT )
2

[Ca]out=[Ca]in� 1

which if you check has dimensions of conductance per unit area. Thus, we can approximate (5) by

ICa = �gCa(V �ECa)

where ECa is the Nernst equilibrium potential. We will use the two interchangeably, but keep in mind that

the constant �eld equation is more correct.

3.1 Intracellular Calcium dynamics

The calcium dynamics are usually modeled in the following simple fashion.

d[Ca]in

dt
= �

k

2Fd
ICa �

KT [Ca]in

[Ca]in+Kd

(6)

or with just a linear term. Here F is the Faraday constant, d is the depth of the shell between the membrane

(usually, e.g., 0:1�), k = 0:1 for I in �A=cm2, [Ca] in millimolar, KT = 10�4mM=ms and Kd = 10�4mM:

Note that as the calcium current increases in an inward direction, �ICa becomes positive and thus intra-

cellular calcium increases. The uptake of calcium is modeled here as a Michaelis-Menten type reaction. An

even simpler uptake would be simply linear. These constants are for thalamic neurons but are in the right

ballpark for most models. Finally, in general, extracellular calcium is about 2 mM and intracellular tends to

be around 2:410�4 mM.

3.2 Calcium dependent potassium

Since this is responsible for adaptation and for many types of bursting dynamics, I want to describe the

calcium dependent potassium. There are a number of models for this. The simplest are of the form:

IK(Ca) = �gmp(V � EK)

where
dm

dt
= �m([Ca])(1�m) � �m

and

�m([Ca]) = �[Ca]nin:

McCormick et al use n = 2 and � = 48ms�1=mM2 and � = 0:03ms�1:

I will make a very general model which incorporates most of the currents that are of interest.

3.3 Units - Again!

Many modelers de�ne the conductances, etc in absolute terms, such as a capacitance of, say, 0.29 nF. Most

of the time, I will de�ne my units in terms of \size per unit area," but some of the models I describe (in

particular, the big cortical mix and match model) will be in absolute numbers. A modeler who does that is

making an implicit assumption about the size of the cell. For example, in the above capacitance example,

if I assume a capacitance value of 1�F=cm2 then 0:29nF corresponds to a cell with a total membrane area

of 29000 �m2: Given that typical conductances are in units of mS=cm2 then typical absolute conductances

would be of the order of microsiemens, currents are in nanoamps, capacitance in nanofarads. In McCormick's

and Huguenard's model (J. Neurophys 68:1373, 1384) sodium has a conductance of 12 �S for the 29000

�2 cell which translates into 41 mS=cm2: (Make sure you can do this calculation { keep in mind that

1�2 = 1� 10�8cm2:
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Since currents are in nanofarads, let's see what the conversion factors are for the in
ux of calcium. Recall

that a farad is a coulomb per second. The Faraday constant, F has units of coulombs per mole. Concetration

is moles per liter, so that we need to know the volume in which the calcium is relevant. Volume is area times

depth, so if we take a depth of 100 nM under our spherical cell, we can �gure out the volume. Thus, with a

linear uptake in cacium, the calcium concentration is satis�es:

d[Cai]

dt
= �kICa=(d �A)� �[Cai]

where k = 5:18� 10�3 to convert current (nanoamperes), time (milliseconds) and volume (cubic microns)

to concentration in moles/liter. (To see this, note

1 nA = 1� 10�12 Coulomb/msec

1 liter = 1� 1015 �3

Thus
1� 10�12 Coulombs/msec

2� 96485 Coulombs/mole� 1� 10�15 liters=�3
= 5:18� 10�3 moles/liter/msec

)

4 Exploring the Hodgkin Huxley equations

These famous equations model the squid-axon and are an excellent example of the type of model that one

obtains by using the methods of the previous section. The equations are:

C
dV

dt
= I(t) � �gNam

3h(V � VNa)� �gKn
4(V � VK) � gl(V � Vl)

dm

dt
= �m(V ) � (�m(V ) + �m(V ))m

dh

dt
= �h(V ) � (�h(V ) + �h(V ))h

dn

dt
= �n(V )� (�n(V ) + �n(V ))n

where

�m(V ) = �(:1(V + 40)=(1� exp(�:1(V + 40))))

�m(V ) = �(4:0 exp(�(V + 65)=18))

�h(V ) = �(:07 exp(�(V + 65)=20))

�h(V ) = �(1=(exp(�:1(V + 35))) + 1))

�n(V ) = �:125 exp(�(V + 65)=80:)

�n(V ) = �(V + 55)=(1� exp(:1(V + 55))))

and

� = 3(T�6:3)=10

corrects for the temperature on the kinetics. The �gures below illustrate the kinetic functions and the

functions for m1; �m; etc. Note that in all cases the steady state voltage dependence is sigmoidal with n and

m monotonically increasing and h decreasing. Also notice that the maximum of the time constant of the

sodium activation is about .5 and that of h and n are 8 and 5 respectively. The sodium activation is more

than ten times as fast as the inactivation and the delayed recti�er current. Also note that at the activation

threshold, the h is nearly zero.
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4.1 Numerical solutions and exercises

The xpp �le has the following format:

# hhh.ode

init v=-65 m=0.05 h=0.6 n=0.317

par vna=50 vk=-77 vl=-54.4 gna=120 gk=36 gl=0.3 c=1 phi=1 i0=0

par ip=0 pon=50 poff=150

is(t)=ip*heav(t-pon)*heav(poff-t)

am(v)=phi*.1*(v+40)/(1-exp(-(v+40)/10))

bm(v)=phi*4*exp(-(v+65)/18)

ah(v)=phi*.07*exp(-(v+65)/20)

bh(v)=phi*1/(1+exp(-(v+35)/10))

an(v)=phi*.01*(v+55)/(1-exp(-(v+55)/10))

bn(v)=phi*.125*exp(-(v+65)/80)

v'=(I0+is(t) - gna*h*(v-vna)*m^3-gk*(v-vk)*n^4-gl*(v-vl))/c

m'=am(v)*(1-m)-bm(v)*m

h'=ah(v)*(1-h)-bh(v)*h

n'=an(v)*(1-n)-bn(v)*n

# track the currents

aux ina=gna*(v-vna)*h*m^3

aux ik=gk*(v-vk)*n^4

aux il=gl*(v-vl)

# track the stimulus

aux stim=is(t)

done

Note that I have set � to 1 and thus have assumed the standard temperature of 6:3�C: I have also kept

track of the currents and the stimulus.

We can use this �le to explore the dynamics of the HH model as various parameters are changed. The

most obvious parameter to vary is the applied current. By setting I0 we can inject a constant current and

by setting IP a pulse of current can be injected at PON lasting until POFF. In class I will play around a bit

but I want you to do the following experiments. Use the Runge-Kutta integrator with a time-step of 0.05

and set nOut to 10 so that output occurs every half a millisecond. Also set the total amount of time to 200

msec and set the Bounds to 10000 so that the various currents do not exceed them.

1. With I0 = 0 try to �nd the threshold by setting all the variables at rest but incrementing V by di�erent

amounts.

2. Change the current I0 until the neuron �res repetitively. What is the critical value of current that you

found?

3. With I0 = 10 integrate the equations. In the Data Browser add a column called minf which contains

the formula, am(v)/(am(v)+bm(v)). Compare this to the value of m(t) by plotting the two during a

few spikes. The two are almost identical. This tells ypu that it may be possible to approximate the

dynamics of m by m1(V ) thus making the di�erential equation one fewer variable.

4. Next, plot a phase-plane of n and h. They seem to lie along a line. What is the equation for this

line? This says that n and h may be linearly related. This means that we may be able to reduce this

4 dimensional system to 2 dimensions by eliminating m and one of n; h.

5. Set I0 = 0 and let the membrane start at rest. Set Pon=0, poff=50, ip=-5. This hyperpolarizes the

membrane. What happens after the stimulus is removed? You should get a spike. Explain why this

happens. (Hint: Look at the variable h during the hyperpolarization. )

6. Repeat the above experiment but use less negative values of ip is there a critical value below which

you get no rebound spike?
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7. Set ip=0, i0=6.5. Solve the equations for v = �61;m = 0; h = 0:45; n = :4: What happens? Try the

same thing with v = �45. What happens? What does this tell you about the number of stable states

for the membrane?
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