

Basic notation

 \bullet A matrix with real-valued entries, m rows, and n columns

 $A \in \mathbb{R}^{m \times n}$

• A_{ij} denotes the entry in the *i*th row and *j*th column

• A (column) vector with n real-valued entries

 $x \in \mathbb{R}^n$

• x_i denotes the *i*th entry

The Transpose

• The transpose operator A^T switches rows and columns of a matrix

$$A_{ij} = (A^T)_{ji}$$

• For a vector $x \in \mathbb{R}^n$, $x^T \in \mathbb{R}^{1 \times n}$ would represent a row vector

Elements of a Matrix

• Can write a matrix in terms of its columns

$$A = \left[\begin{array}{cccc} | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | \end{array} \right]$$

• Careful, a_i here corresponds to an entire vector $a_i \in \mathbb{R}^m$, not an element of a vector

• Similarly, can write a matrix in terms of rows

$$A = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ & \vdots & \\ - & a_m^T & - \end{bmatrix}$$

• $a_1 \in \mathbb{R}^n$ here and $a_1 \in \mathbb{R}^m$ from previous slide are *not* the same vector