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Kinematics

• Kinematics refers generally to the study of robot geometry

• Given a configuration of a robot (e.g., settings to joint angles),
how does this affect the position of its parts?

• For a desired position of the robot end-effector, are there joint
angles that achieve this position?
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Two-link planar robot

θ1

θ2
(x, y)

l1

l2

• θ1, θ2: joint angles of robot
(configuration space, joint
space)

• l1, l2: length of each link
(robot parameters)

• x, y: position of end effector
(task space)

• Kinematics is how we move
back and forth between these
representations
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Kinematics of two-link robot

π
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θ2
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l1 + l2−π

Forward kinematics

Inverse kinematics
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Forward kinematics of two-link robot

θ1

θ2
(x, y)

l1

l2

• Position of “elbow” x0, y0

x0 = `1 cos(θ1)

y0 = `1 sin(θ1)

• So, position of end effector x, y

x = `1 cos(θ1) + `2 cos(θ1 + θ2)

y = `1 sin(θ1) + `2 sin(θ1 + θ2)

• For simplicity, we’ll write this as

x = `1c1 + `2c12

y = `1s1 + `2s12
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Inverse kinematics of two-link robot

• Given x, y, can we find θ1, θ2 that achieve this position?

• This seems harder, there could be

– Infinite solutions (x = 0, y = 0)

– Two solutions (
√
x2 + y2 < `1 + `2)

– One solution (
√
x2 + y2 = `1 + `2)

– No solutions (
√
x2 + y2 > `1 + `2)

• (Sometimes) can solve via inverse trigonometry functions
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θ1

θ2
(x, y)

l1

l2

• From cosine rule

x2 + y2 = `21 + `22 − 2l1l2 cos(π − θ2)

=⇒ θ2 = ± cos−1
(
x2 + y2 − `21 − `22

2l1l2

)

• Now solve for θ1

tanψ = y/x

sinφ =
`2 sin(θ2)

x2 + y2

=⇒ θ1 = ψ − φ

= tan−1
(y
x

)
− sin−1

(
`2 sin(θ2)

x2 + y2

)
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(x, y)

π − θ2
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(x, y)

ψ

φ

• From cosine rule
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θ2 = ± cos−1
(
x2 + y2 − `21 − `22

2l1l2

)
θ1 = tan−1

(y
x

)
− sin−1

(
`2 sin(θ2)

x2 + y2

)

• What happens when
√
x2 + y2 > `1 + `2?

• For general manipulators (more on this shortly), we may not be
able to find a closed form solution.
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Inverse kinematics as optimization

• Define forward kinematics as the function

x = f(θ), x, θ ∈ Rn

• Inverse kinematics can be solved via the (non-convex)
optimization problem

minimize
θ

‖f(θ)− x?‖22

– Solve via gradient descent, other methods

– For overdetermined systems (θ higher dimensional than x), can
impose other penalties like smoothness
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Jacobian

• Jacobian matrix contains derivatives of robot end effector with
respect to joint angles[

x
y

]
=

[
l1c1 + l2c12
l1s1 + l2s12

]
so

J =

[
∂x
∂θ1

∂x
∂θ2

∂y
∂θ1

∂y
∂θ2

]

=

[
−`1s1 − `ss12 −`2s12
`1c2 + `2c12 `2c12

]
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• Jacobian also provides (instantaneous) relationship between
joint velocities and velocities of end effector

• Let θ1(t), θ2(t) be time-varying angles

• Then by chain rule

∂x(t)

∂t
=

∂x(t)

∂θ1(t)

∂θ1(t)

∂t
+
∂x(t)

∂θ2(t)

∂θ2(t)

∂t

i.e. [
∂x(t)
∂t
∂y(t)
∂t

]
= J

[
∂θ1(t)
∂t

∂θ2(t)
∂t

]
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General manipulators

• Two-link planar robot is not that useful in practice

• To manipulate objects in 3D space, we typically want full
control over 3D position and 3D orientation of end effector =⇒
at least 6 joint angles

• Forward kinematics still easy to solve (just be careful with
representing 3D rotations)

• Inverse kinematics often solvable too, but much more
complicated
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Obstacles

Obstacle
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Obstacles in configuration space

• Obstacles usually “naturally” described in the task space of the
robot, but inverse kinematics often makes it less convinient to
plan in task space

• Instead, want to determine which poses in the robot’s
configuration space (joint space) are non-colliding

• Set of all non-colliding configurations is also called free space
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Sample-based planning

• In general, it’s very difficult to analytically desribe the free space

• But we can (relatively) quickly check to see if a given
configuration is colliding or not

• Motivated a class of algorithms that somehow sample points in
configuration space, form paths over non-colliding samples
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Probabilistic road maps (PRMs)

θ1

θ2

Obstacles Free space

Plot of configuration space of robot
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Probabilistic road maps (PRMs)

θ1

θ2

Randomly sample points in configuration space
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Probabilistic road maps (PRMs)

θ1

θ2

Throw out all points not in free space
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Probabilistic road maps (PRMs)

θ1

θ2

Connect each remaining point to its nearest neighbors
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Probabilistic road maps (PRMs)

θ1

θ2

Remove all colliding paths
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Probabilistic road maps (PRMs)

θ1

θ2

Do this for all the nodes to form a graph
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Probabilistic road maps (PRMs)

θ1

θ2

Now, given new start and end points
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Probabilistic road maps (PRMs)

θ1

θ2

Add points to the graph
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Probabilistic road maps (PRMs)

θ1

θ2

Plan motion using any graph search method
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Challenges in PRMs

• How do we know if a path is non-colliding? (remember, we can
only easily check if individual points in configuration space are
non-colliding)

– Check many points uniformly on line

– Looks good!

– Need to ensure the discretization is smaller than narrowest
obstacle (e.g. by adding “safety margin” to obstacles)
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• Existence of “bottlenecks”

– Sample more densely in areas that have narrow passages

• Random sampling in [0, 1]n?

• Complexity of constructing graph?

• What about systems with dynamics, can’t move arbitrarily
between points in configuration space (more on this next time)
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Rapidly-exploring random trees (RRTs)

• (LaValle, 1998)

• A method for generating sample points and graph (here just a
tree) for a PRM

• Scales to higher dimensions better than random uniform
sampling (but careful, still exponential complexity in dimension)

• Can incoporate dynamics (not discussed today)
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function T = Build RRT(xinit, ε)
T.add vertex(xinit)
For i = 1, . . . ,m

xrand ← Random State()
xnear ← Nearest Neighbor(T, xrand)
xnew ← Grow Towards(xnear, xrand, ε)
T.add vertex(xnew)
T.add edge(xnear, xnew)

• Can account for obstacles by just not adding point of xnew
colliding (as long as ε small enough)

• Many variants: forward-backward, dynamic versions, RRT*
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Robot Dynamics

• Need to consider how robot’s state evolves over time, and how
physical laws effect this evolution

θ1

θ2
(x, y)

l1

l2

Kinematic system
State: θ1, θ2
Parameters: `1, `2

Dynamic system
State: θ1, θ2, θ̇1, θ̇2
Parameters: `1, `2,m1,m2

(point masses at elbow,
wrist)
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• Given a current state (θ1, θ2, θ̇1, θ̇2) we want to find a function
that shows how the system evolves

• I.e., we want to find
θ̇1
θ̇2
θ̈1
θ̈2

 = f(θ1, θ2, θ̇1, θ̇2)

called the equations of motion of the system
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• To derive the equations of motion for this system, we’ll use a
generalization of Newton’s laws F = ma

• We’ll write a general form of this law (called the Euler-Lagrange
equations) as

Fi =
d

dt

∂L

∂θ̇i
− ∂L

∂θi

where

– L = T − U is called the Lagrangian of the system, where T is
equal to the kinetic energy and U equal to the potential energy

– Fi is generalized force applied to ith coordinate of system (in our
case, these would be torques applied to the joints, which we’ll
denote as τi)
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• Consider applying these laws to a simple particle with coordinate
x (experiencing no gravity) and mass m

• Then

T =
1

2
mẋ2, U = 0

so

F =
d

dt

∂

∂ẋ

1

2
mẋ2 − ∂

∂x

1

2
ẋ2 =

d

dt
mẋ = mẍ

• If particle were being acted upon by gravity, then we would have
U = mgh where h is the height of the particle.
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• Let’s go through the process for the two-link robot (here x1, y1
will denote location of elbow, x2, y2 location of end effector)

• First, by forward kinematics, we have

x1 = `1c1 =⇒ ẋ1 = −`1s1θ̇1
y1 = `1s1 =⇒ ẏ1 = `1c1θ̇1

x2 = x1 + `2c12 =⇒ ẋ2 = ẋ1 − `2s12θ̇12
y2 = y1 + `2s12 =⇒ ẏ2 = ẏ1 + `2c12θ̇12

• Then (after some algebra, and trigonometric identities)

T =
1

2
m1(ẋ

2
1 + ẏ21) +

1

2
m2(ẋ

2
2 + ẏ22)

=
1

2
(m1 +m2)`

2
1θ̇

2
1 +

1

2
m2`

2
2(θ̇1 + θ̇2)

2 +m2c2`1`2θ̇1(θ̇1 + θ̇2)

U = m1gy1 +m2gy2 = (m1 +m2)g`1s1 +m2g`2s12
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• Taking derivatives and simplifying

τ1 =
d

dt

∂L

∂θ̇1
− ∂L

∂θ1

= (m1 +m2)`
2
1θ̈1 +m2`

2
2(θ̈1 + θ̈2) +m2c2`1`2(2θ̈1 + θ̈2)

−m2s2`1`2(2θ̇1 + θ̇2)θ̇2 + (m1 +m2)g`1c1 +m2g`2c12

τ2 =
d

dt

∂L

∂θ̇2
− ∂L

∂θ2

= m2`
2
2(θ̈1 + θ̈2) +m2c2`1`2θ̈1 +m2s2`1`2θ̇

2
1 +m2g`2c12

• But, we still want a direct solution of θ̈1, θ̈2
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• Putting the equations above in matrix forms

H(θ)

[
θ̈1
θ̈2

]
+ C(θ, θ̇) +G(θ) =

[
τ1
τ2

]
where

H(θ) =

[
(m1 +m2)`

2
1 +m2`

2
2 + 2m2c2`1`2 m2`

2
2 +m2c2`1`2

m2`
2
2 +m2c2`1`2 m2`

2
2

]
C(θ, θ̇) =

[
−m2s2`1`2(2θ̇1 + θ̇2)θ̇2

m2s2`1`2θ̇
2
1

]
G(θ) =

[
(m1 +m2)g`1c1 +m2g`2c12

m2g`2c12

]

• So, after all this, we finally have

θ̈ = H(θ)−1(τ − C(θ, θ̇)−G(θ))
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• How do we make robot behave as we want (e.g. reach a certain
point, follow a certain trajectory) under the constraints of its
dynamics?
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PD Control

• For now, let’s assume that each of the robot’s joints has a
motor that can apply torque (be careful, things change a lot
when this is no longer the case)

• Suppose we want to bring robot to a desired state θ?

• We could try to look into the detailed dynamics model, produce
a sequence of torques, but this seems uncessarily complex
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• Proportional (P) control: instead of trying to use our
dynamics model, let’s just use the intuitive control law[

τ1
τ2

]
= kP

[
θ1 − θ?1
θ2 − θ?2

]
for some constant kP

• Know as proportional control, it just applies a torque in relation
to how far away we are from the desired location

• Let’s look at the method applied to our two-link arm with
m1 = m2 = 1kg, `1 = `2 = 1m, kP = −50
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• The trouble with proportional control is that it “overshoots,” by
the time we reach the desired position we’ve already built up
velocity, leads to oscilations

• Can overcome this by adding a term that penalizes deviation
from desired velocity (in this case, θ̇?i = 0)

• Proportional Derivative (PD) control[
τ1
τ2

]
= kP

[
θ1 − θ?1
θ2 − θ?2

]
+ kD

[
θ̇1 − θ̇?1
θ̇2 − θ̇?2

]

• Using the same parameters as before, but kD = −20
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• Still aren’t reaching the desired location, because gravity is
“fighting” the control (would work in zero gravity)

• Solution is to find “open loop” torques that would keep us at
desired position

τ? = H(θ?)θ̈? + C(θ?, θ̇?) +G(θ?)

• Since θ̇? = 0 in this case, for the two-link manipulator optimal
torques are just τ? = G(θ?) (i.e., the torques required to
overcome gravity)

• Feedforward PD control[
τ1
τ2

]
= τ? + kP

[
θ1 − θ?1
θ2 − θ?2

]
+ kD

[
θ̇1 − θ̇?1
θ̇2 − θ̇?2

]
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• Combining feedforward (open loop τ?) and feedback (P and D
terms) control laws lets us reach the desired position

• Can replace the feedforward term with an “integrator” that
integrates the error in position, called proporitonal integral
derivative (PID) control[
τ1
τ2

]
= kI

∫ T

0

[
θ1(t)− θ?1
θ2(t)− θ?2

]
dt+kP

[
θ1 − θ?1
θ2 − θ?2

]
+kD

[
θ̇1 − θ̇?1
θ̇2 − θ̇?2

]

• But watch out, integrator term can be very finicky, especially
when we talk about tracking motion
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Trajectory following

• The same concepts apply to following a desired trajectory θ?(t)

• For instance, PD control in this case would take the form[
τ1
τ2

]
= kP

[
θ1 − θ?1(t)
θ2 − θ?2(t)

]
+ kD

[
θ̇1 − θ̇?1(t)
θ̇2 − θ̇?2(t)

]

• Same problem with pure PD control as before (don’t reach the
desired location), but this time it won’t even work in zero gravity

50



−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

51



0 2 4 6 8 10 12 14
−2

0

2

4

Time

A
ng

le
 

 

θ
⋆

1
θ
⋆

2 θ 1 θ 2

0 2 4 6 8 10 12 14
−5

0

5

Time

A
ng

ul
ar

 V
el

oc
ity

 

 

θ̇
⋆

1
θ̇
⋆

2 θ̇ 1 θ̇ 2

0 2 4 6 8 10 12 14
−100

0

100

200

Time

T
or

qu
e

 

 
τ 1 τ 2

52



• Feedforward control works as before, but this time we’ll need
time-varying optimal torques, and all the terms in the dynamics

τ?(t) = H(θ?(t))θ̈?(t) + C(θ?(t), θ̇?(t)) +G(θ?(t))

and control law[
τ1
τ2

]
= τ?(t) + kP

[
θ1 − θ?1(t)
θ2 − θ?2(t)

]
+ kD

[
θ̇1 − θ̇?1(t)
θ̇2 − θ̇?2(t)

]

• Here, it’s much trickier to get integral control to work well,
since “open loop” term is time-varying
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Underactuated robots

• The following examples were all “easy” in the sense that we had
an actuator controlling each degree of freedom of the robot
(and they could generate arbitrary torque)

• But, most robot aren’t like this

– Plane: 6DOF, 4 inputs

– Heliopter: 6DOF, 4 inputs

– Planar Car: 3DOF, 2 inputs

• How can we control these systems?
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• First, let’s accept the fact that we can no longer control the
robot arbitrarily

• Example: two-link manipulator with only elbow controlled
(acrobot)

H(θ)θ̈ + C(θ, θ̇) +G(θ) =

[
0
τ2

]

• Could we reach and maintain θ = (π/4, π/2)?
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• But, maybe we can control the system around “feasible” points

• For this to be possible at all, we’d require a point θ? and torque
τ?2 such that [

0
τ2

]
= G(θ?)

known as an equilibrium point of the system

• E.g., for θ? = (π/2, 0) (robot fully upright), G(θ?) = 0, so an
equilibrium point for τ = 0

• But, how do we design a “PD-like” control law that can
maintain this point? We need something like

τ2 = f(θ1 − θ?1, θ2 − θ?2, θ̇1 − θ̇?1, θ̇2 − θ̇?2)

but what is this function f?
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Linear quadratic regulator (LQR)

• Given a (linear) system with dynamics

ẋ = Ax+Bu

where x denotes the state and u denotes the control inputs

• Want to find a feedback controller u(t) = Kx(t) that forces
state to x = 0 and maintains it there

• Cost of system is measured by

J =

∫ ∞
0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt

for some (positive definite) matrices Q and R
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• Somewhat surprisingly, it turns out we can solve this problem
exactly, optimal K is given by

K = −R−1BTP

where P is the solution to the equation

ATP + PA− PBR−1BTP = 0

• A non-linear set of equations, but there exist methods that will
find this very efficiently (i.e., in MATLAB the command lqr, in
Python there are a couple libraries that will do it)
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Back to the Acrobot

• But the acrobot is a non-linear system: letting
x = (θ1, θ2, θ̇1, θ̇2), u = τ2, our dynamics can be written as

ẋ = f(x, u)

• A remarkable property of non-linear control: assume x?, u? is an
equilbrium point of f (i.e.,) f(x?, u?) = 0, and we have
controller u(t) = Kx(t) that stabilizes the linear approximation
to this system

ẋ− ẋ? ≈ A(x− x?) +B(u− u?)
where

A ≡ ∂f(x?, u?)

∂x
, B ≡ ∂f(x?, u?)

∂u

• Then this controller also stabilizes the non-linear system in some
region around x?, u?
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Putting it all together

• So, the whole process is as follows:

1. Find an equilibrium point of the system

2. Compute linearization A and B around this equilibrium point

3. Compute LQR controller for A and B (using some, probably
hand-specified cost matrices Q and R)

4. Execute the resulting controller on the non-linear system
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LQR around trajectories

• All the considerations above also apply to tracking a (feasible)
trajectory θ?(t) in an underactuated system

• As before, a few additional complications, need to compute
time-varying LQR controllers

• Often, the most challenging piece is simply coming up with the
feasible trajectory in the first place

– Here’s where we can use planning techniques like RRTs
(extended to dynamical systems), optimization methods
(shooting, direct collocation), etc
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