
15-780 – Robotics

J. Zico Kolter

April 14, 2014

1



Outline

Robot kinematics

Motion planning

Robot dynamics

Control

2



Outline

Robot kinematics

Motion planning

Robot dynamics

Control

3



Kinematics

• Kinematics refers generally to the study of robot geometry

• Given a configuration of a robot (e.g., settings to joint angles),
how does this affect the position of its parts?

• For a desired position of the robot end-effector, are there joint
angles that achieve this position?

4



Two-link planar robot

θ1

θ2
(x, y)

l1

l2

• θ1, θ2: joint angles of robot
(configuration space, joint
space)

• l1, l2: length of each link
(robot parameters)

• x, y: position of end effector
(task space)

• Kinematics is how we move
back and forth between these
representations

5



Kinematics of two-link robot

π
θ1

θ2

x

y

l1 + l2−π

Forward kinematics

Inverse kinematics

6



Forward kinematics of two-link robot

θ1

θ2
(x, y)

l1

l2

• Position of “elbow” x0, y0

x0 = `1 cos(θ1)

y0 = `1 sin(θ1)

• So, position of end effector x, y

x = `1 cos(θ1) + `2 cos(θ1 + θ2)

y = `1 sin(θ1) + `2 sin(θ1 + θ2)

• For simplicity, we’ll write this as

x = `1c1 + `2c12

y = `1s1 + `2s12

7



Inverse kinematics of two-link robot

• Given x, y, can we find θ1, θ2 that achieve this position?

• This seems harder, there could be

– Infinite solutions (x = 0, y = 0)

– Two solutions (
√
x2 + y2 < `1 + `2)

– One solution (
√
x2 + y2 = `1 + `2)

– No solutions (
√
x2 + y2 > `1 + `2)

• (Sometimes) can solve via inverse trigonometry functions

8



θ1

θ2
(x, y)

l1

l2

• From cosine rule

x2 + y2 = `21 + `22 − 2l1l2 cos(π − θ2)

=⇒ θ2 = ± cos−1
(
x2 + y2 − `21 − `22

2l1l2

)

• Now solve for θ1

tanψ = y/x

sinφ =
`2 sin(θ2)

x2 + y2

=⇒ θ1 = ψ − φ

= tan−1
(y
x

)
− sin−1

(
`2 sin(θ2)

x2 + y2

)

9



(x, y)

π − θ2

• From cosine rule

x2 + y2 = `21 + `22 − 2l1l2 cos(π − θ2)

=⇒ θ2 = ± cos−1
(
x2 + y2 − `21 − `22

2l1l2

)

• Now solve for θ1

tanψ = y/x

sinφ =
`2 sin(θ2)

x2 + y2

=⇒ θ1 = ψ − φ

= tan−1
(y
x

)
− sin−1

(
`2 sin(θ2)

x2 + y2

)

9



(x, y)

ψ

φ

• From cosine rule

x2 + y2 = `21 + `22 − 2l1l2 cos(π − θ2)

=⇒ θ2 = ± cos−1
(
x2 + y2 − `21 − `22

2l1l2

)

• Now solve for θ1

tanψ = y/x

sinφ =
`2 sin(θ2)

x2 + y2

=⇒ θ1 = ψ − φ

= tan−1
(y
x

)
− sin−1

(
`2 sin(θ2)

x2 + y2

)

9



θ2 = ± cos−1
(
x2 + y2 − `21 − `22

2l1l2

)
θ1 = tan−1

(y
x

)
− sin−1

(
`2 sin(θ2)

x2 + y2

)

• What happens when
√
x2 + y2 > `1 + `2?

• For general manipulators (more on this shortly), we may not be
able to find a closed form solution.

10



Inverse kinematics as optimization

• Define forward kinematics as the function

x = f(θ), x, θ ∈ Rn

• Inverse kinematics can be solved via the (non-convex)
optimization problem

minimize
θ

‖f(θ)− x?‖22

– Solve via gradient descent, other methods

– For overdetermined systems (θ higher dimensional than x), can
impose other penalties like smoothness

11



Jacobian

• Jacobian matrix contains derivatives of robot end effector with
respect to joint angles[

x
y

]
=

[
l1c1 + l2c12
l1s1 + l2s12

]
so

J =

[
∂x
∂θ1

∂x
∂θ2

∂y
∂θ1

∂y
∂θ2

]

=

[
−`1s1 − `ss12 −`2s12
`1c2 + `2c12 `2c12

]

12



• Jacobian also provides (instantaneous) relationship between
joint velocities and velocities of end effector

• Let θ1(t), θ2(t) be time-varying angles

• Then by chain rule

∂x(t)

∂t
=

∂x(t)

∂θ1(t)

∂θ1(t)

∂t
+
∂x(t)

∂θ2(t)

∂θ2(t)

∂t

i.e. [
∂x(t)
∂t
∂y(t)
∂t

]
= J

[
∂θ1(t)
∂t

∂θ2(t)
∂t

]

13



General manipulators

• Two-link planar robot is not that useful in practice

• To manipulate objects in 3D space, we typically want full
control over 3D position and 3D orientation of end effector =⇒
at least 6 joint angles

• Forward kinematics still easy to solve (just be careful with
representing 3D rotations)

• Inverse kinematics often solvable too, but much more
complicated

14



Outline

Robot kinematics

Motion planning

Robot dynamics

Control

15



Obstacles

Obstacle

16



Obstacles in configuration space

• Obstacles usually “naturally” described in the task space of the
robot, but inverse kinematics often makes it less convinient to
plan in task space

• Instead, want to determine which poses in the robot’s
configuration space (joint space) are non-colliding

• Set of all non-colliding configurations is also called free space

17



−2 −1 0 1 2
0

1

2

x

y

Obstacle with r = 0.5 at
(-1,1)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

θ
1

θ 2

 

 

Non−colliding
Colliding

18



−2 −1 0 1 2
0

1

2

x

y

Obstacle with r = 0.5 at
(-1,1) −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

θ
1

θ 2

 

 

Non−colliding
Colliding

18



−2 −1 0 1 2
0

1

2

x

y

Obstacle with r = 0.4 at
(-1,1)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

θ
1

θ 2

 

 

Non−colliding
Colliding

19



−2 −1 0 1 2
0

1

2

x

y

Obstacle with r = 0.4 at
(-1,1) −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

θ
1

θ 2

 

 

Non−colliding
Colliding

19



Sample-based planning

• In general, it’s very difficult to analytically desribe the free space

• But we can (relatively) quickly check to see if a given
configuration is colliding or not

• Motivated a class of algorithms that somehow sample points in
configuration space, form paths over non-colliding samples

20



Probabilistic road maps (PRMs)

θ1

θ2

Obstacles Free space

Plot of configuration space of robot

21



Probabilistic road maps (PRMs)

θ1

θ2

Randomly sample points in configuration space

21



Probabilistic road maps (PRMs)

θ1

θ2

Throw out all points not in free space

21



Probabilistic road maps (PRMs)

θ1

θ2

Connect each remaining point to its nearest neighbors

21



Probabilistic road maps (PRMs)

θ1

θ2

Remove all colliding paths

21



Probabilistic road maps (PRMs)

θ1

θ2

Do this for all the nodes to form a graph

21



Probabilistic road maps (PRMs)

θ1

θ2

Now, given new start and end points

21



Probabilistic road maps (PRMs)

θ1

θ2

Add points to the graph

21



Probabilistic road maps (PRMs)

θ1

θ2

Plan motion using any graph search method

21



Challenges in PRMs

• How do we know if a path is non-colliding? (remember, we can
only easily check if individual points in configuration space are
non-colliding)

– Check many points uniformly on line

– Looks good!

– Need to ensure the discretization is smaller than narrowest
obstacle (e.g. by adding “safety margin” to obstacles)

22



Challenges in PRMs

• How do we know if a path is non-colliding? (remember, we can
only easily check if individual points in configuration space are
non-colliding)

– Check many points uniformly on line

– Looks good!

– Need to ensure the discretization is smaller than narrowest
obstacle (e.g. by adding “safety margin” to obstacles)

22



• Existence of “bottlenecks”

– Sample more densely in areas that have narrow passages

• Random sampling in [0, 1]n?

• Complexity of constructing graph?

• What about systems with dynamics, can’t move arbitrarily
between points in configuration space (more on this next time)

23



Rapidly-exploring random trees (RRTs)

• (LaValle, 1998)

• A method for generating sample points and graph (here just a
tree) for a PRM

• Scales to higher dimensions better than random uniform
sampling (but careful, still exponential complexity in dimension)

• Can incoporate dynamics (not discussed today)

24



function T = Build RRT(xinit, ε)
T.add vertex(xinit)
For i = 1, . . . ,m

xrand ← Random State()
xnear ← Nearest Neighbor(T, xrand)
xnew ← Grow Towards(xnear, xrand, ε)
T.add vertex(xnew)
T.add edge(xnear, xnew)

• Can account for obstacles by just not adding point of xnew
colliding (as long as ε small enough)

• Many variants: forward-backward, dynamic versions, RRT*

25



−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

26



−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

27



Outline

Robot kinematics

Motion planning

Robot dynamics

Control

28



Robot Dynamics

• Need to consider how robot’s state evolves over time, and how
physical laws effect this evolution

θ1

θ2
(x, y)

l1

l2

Kinematic system
State: θ1, θ2
Parameters: `1, `2

Dynamic system
State: θ1, θ2, θ̇1, θ̇2
Parameters: `1, `2,m1,m2

(point masses at elbow,
wrist)

29



Robot Dynamics

• Need to consider how robot’s state evolves over time, and how
physical laws effect this evolution

θ1

θ2
(x, y)

l1

l2

Kinematic system
State: θ1, θ2
Parameters: `1, `2

Dynamic system
State: θ1, θ2, θ̇1, θ̇2
Parameters: `1, `2,m1,m2

(point masses at elbow,
wrist)

29



• Given a current state (θ1, θ2, θ̇1, θ̇2) we want to find a function
that shows how the system evolves

• I.e., we want to find
θ̇1
θ̇2
θ̈1
θ̈2

 = f(θ1, θ2, θ̇1, θ̇2)

called the equations of motion of the system

30



• To derive the equations of motion for this system, we’ll use a
generalization of Newton’s laws F = ma

• We’ll write a general form of this law (called the Euler-Lagrange
equations) as

Fi =
d

dt

∂L

∂θ̇i
− ∂L

∂θi

where

– L = T − U is called the Lagrangian of the system, where T is
equal to the kinetic energy and U equal to the potential energy

– Fi is generalized force applied to ith coordinate of system (in our
case, these would be torques applied to the joints, which we’ll
denote as τi)

31



• Consider applying these laws to a simple particle with coordinate
x (experiencing no gravity) and mass m

• Then

T =
1

2
mẋ2, U = 0

so

F =
d

dt

∂

∂ẋ

1

2
mẋ2 − ∂

∂x

1

2
ẋ2 =

d

dt
mẋ = mẍ

• If particle were being acted upon by gravity, then we would have
U = mgh where h is the height of the particle.

32



• Let’s go through the process for the two-link robot (here x1, y1
will denote location of elbow, x2, y2 location of end effector)

• First, by forward kinematics, we have

x1 = `1c1 =⇒ ẋ1 = −`1s1θ̇1
y1 = `1s1 =⇒ ẏ1 = `1c1θ̇1

x2 = x1 + `2c12 =⇒ ẋ2 = ẋ1 − `2s12θ̇12
y2 = y1 + `2s12 =⇒ ẏ2 = ẏ1 + `2c12θ̇12

• Then (after some algebra, and trigonometric identities)

T =
1

2
m1(ẋ

2
1 + ẏ21) +

1

2
m2(ẋ

2
2 + ẏ22)

=
1

2
(m1 +m2)`

2
1θ̇

2
1 +

1

2
m2`

2
2(θ̇1 + θ̇2)

2 +m2c2`1`2θ̇1(θ̇1 + θ̇2)

U = m1gy1 +m2gy2 = (m1 +m2)g`1s1 +m2g`2s12

33



• Taking derivatives and simplifying

τ1 =
d

dt

∂L

∂θ̇1
− ∂L

∂θ1

= (m1 +m2)`
2
1θ̈1 +m2`

2
2(θ̈1 + θ̈2) +m2c2`1`2(2θ̈1 + θ̈2)

−m2s2`1`2(2θ̇1 + θ̇2)θ̇2 + (m1 +m2)g`1c1 +m2g`2c12

τ2 =
d

dt

∂L

∂θ̇2
− ∂L

∂θ2

= m2`
2
2(θ̈1 + θ̈2) +m2c2`1`2θ̈1 +m2s2`1`2θ̇

2
1 +m2g`2c12

• But, we still want a direct solution of θ̈1, θ̈2

34



• Putting the equations above in matrix forms

H(θ)

[
θ̈1
θ̈2

]
+ C(θ, θ̇) +G(θ) =

[
τ1
τ2

]
where

H(θ) =

[
(m1 +m2)`

2
1 +m2`

2
2 + 2m2c2`1`2 m2`

2
2 +m2c2`1`2

m2`
2
2 +m2c2`1`2 m2`

2
2

]
C(θ, θ̇) =

[
−m2s2`1`2(2θ̇1 + θ̇2)θ̇2

m2s2`1`2θ̇
2
1

]
G(θ) =

[
(m1 +m2)g`1c1 +m2g`2c12

m2g`2c12

]

• So, after all this, we finally have

θ̈ = H(θ)−1(τ − C(θ, θ̇)−G(θ))

35



−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

36



Outline

Robot kinematics

Motion planning

Robot dynamics

Control

37



• How do we make robot behave as we want (e.g. reach a certain
point, follow a certain trajectory) under the constraints of its
dynamics?

38



PD Control

• For now, let’s assume that each of the robot’s joints has a
motor that can apply torque (be careful, things change a lot
when this is no longer the case)

• Suppose we want to bring robot to a desired state θ?

• We could try to look into the detailed dynamics model, produce
a sequence of torques, but this seems uncessarily complex

39



• Proportional (P) control: instead of trying to use our
dynamics model, let’s just use the intuitive control law[

τ1
τ2

]
= kP

[
θ1 − θ?1
θ2 − θ?2

]
for some constant kP

• Know as proportional control, it just applies a torque in relation
to how far away we are from the desired location

• Let’s look at the method applied to our two-link arm with
m1 = m2 = 1kg, `1 = `2 = 1m, kP = −50

40



−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

41



0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

Time

A
ng

le
 

 

θ
⋆

1
θ
⋆

2 θ 1 θ 2

0 1 2 3 4 5 6 7 8 9 10
−20

0

20

Time

A
ng

ul
ar

 V
el

oc
ity

 

 

θ̇ 1 θ̇ 2

0 1 2 3 4 5 6 7 8 9 10
−100

0

100

Time

T
or

qu
e

 

 
τ 1 τ 2

42



• The trouble with proportional control is that it “overshoots,” by
the time we reach the desired position we’ve already built up
velocity, leads to oscilations

• Can overcome this by adding a term that penalizes deviation
from desired velocity (in this case, θ̇?i = 0)

• Proportional Derivative (PD) control[
τ1
τ2

]
= kP

[
θ1 − θ?1
θ2 − θ?2

]
+ kD

[
θ̇1 − θ̇?1
θ̇2 − θ̇?2

]

• Using the same parameters as before, but kD = −20

43



−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

44



0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

Time

A
ng

le
 

 

θ
⋆

1
θ
⋆

2 θ 1 θ 2

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

Time

A
ng

ul
ar

 V
el

oc
ity

 

 

θ̇ 1 θ̇ 2

0 1 2 3 4 5 6 7 8 9 10
−50

0

50

100

Time

T
or

qu
e

 

 
τ 1 τ 2

45



• Still aren’t reaching the desired location, because gravity is
“fighting” the control (would work in zero gravity)

• Solution is to find “open loop” torques that would keep us at
desired position

τ? = H(θ?)θ̈? + C(θ?, θ̇?) +G(θ?)

• Since θ̇? = 0 in this case, for the two-link manipulator optimal
torques are just τ? = G(θ?) (i.e., the torques required to
overcome gravity)

• Feedforward PD control[
τ1
τ2

]
= τ? + kP

[
θ1 − θ?1
θ2 − θ?2

]
+ kD

[
θ̇1 − θ̇?1
θ̇2 − θ̇?2

]

46



−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

47



0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

Time

A
ng

le
 

 

θ
⋆

1
θ
⋆

2 θ 1 θ 2

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

Time

A
ng

ul
ar

 V
el

oc
ity

 

 

θ̇ 1 θ̇ 2

0 1 2 3 4 5 6 7 8 9 10
−50

0

50

100

Time

T
or

qu
e

 

 
τ 1 τ 2

48



• Combining feedforward (open loop τ?) and feedback (P and D
terms) control laws lets us reach the desired position

• Can replace the feedforward term with an “integrator” that
integrates the error in position, called proporitonal integral
derivative (PID) control[
τ1
τ2

]
= kI

∫ T

0

[
θ1(t)− θ?1
θ2(t)− θ?2

]
dt+kP

[
θ1 − θ?1
θ2 − θ?2

]
+kD

[
θ̇1 − θ̇?1
θ̇2 − θ̇?2

]

• But watch out, integrator term can be very finicky, especially
when we talk about tracking motion

49



Trajectory following

• The same concepts apply to following a desired trajectory θ?(t)

• For instance, PD control in this case would take the form[
τ1
τ2

]
= kP

[
θ1 − θ?1(t)
θ2 − θ?2(t)

]
+ kD

[
θ̇1 − θ̇?1(t)
θ̇2 − θ̇?2(t)

]

• Same problem with pure PD control as before (don’t reach the
desired location), but this time it won’t even work in zero gravity

50



−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

51



0 2 4 6 8 10 12 14
−2

0

2

4

Time

A
ng

le
 

 

θ
⋆

1
θ
⋆

2 θ 1 θ 2

0 2 4 6 8 10 12 14
−5

0

5

Time

A
ng

ul
ar

 V
el

oc
ity

 

 

θ̇
⋆

1
θ̇
⋆

2 θ̇ 1 θ̇ 2

0 2 4 6 8 10 12 14
−100

0

100

200

Time

T
or

qu
e

 

 
τ 1 τ 2

52



• Feedforward control works as before, but this time we’ll need
time-varying optimal torques, and all the terms in the dynamics

τ?(t) = H(θ?(t))θ̈?(t) + C(θ?(t), θ̇?(t)) +G(θ?(t))

and control law[
τ1
τ2

]
= τ?(t) + kP

[
θ1 − θ?1(t)
θ2 − θ?2(t)

]
+ kD

[
θ̇1 − θ̇?1(t)
θ̇2 − θ̇?2(t)

]

• Here, it’s much trickier to get integral control to work well,
since “open loop” term is time-varying

53



−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

54



0 2 4 6 8 10 12 14
−2

0

2

4

Time

A
ng

le
 

 

θ
⋆

1
θ
⋆

2 θ 1 θ 2

0 2 4 6 8 10 12 14
−5

0

5

Time

A
ng

ul
ar

 V
el

oc
ity

 

 

θ̇
⋆

1
θ̇
⋆

2 θ̇ 1 θ̇ 2

0 2 4 6 8 10 12 14
−100

0

100

200

Time

T
or

qu
e

 

 
τ 1 τ 2

55



Underactuated robots

• The following examples were all “easy” in the sense that we had
an actuator controlling each degree of freedom of the robot
(and they could generate arbitrary torque)

• But, most robot aren’t like this

– Plane: 6DOF, 4 inputs

– Heliopter: 6DOF, 4 inputs

– Planar Car: 3DOF, 2 inputs

• How can we control these systems?

56



• First, let’s accept the fact that we can no longer control the
robot arbitrarily

• Example: two-link manipulator with only elbow controlled
(acrobot)

H(θ)θ̈ + C(θ, θ̇) +G(θ) =

[
0
τ2

]

• Could we reach and maintain θ = (π/4, π/2)?

57



• But, maybe we can control the system around “feasible” points

• For this to be possible at all, we’d require a point θ? and torque
τ?2 such that [

0
τ2

]
= G(θ?)

known as an equilibrium point of the system

• E.g., for θ? = (π/2, 0) (robot fully upright), G(θ?) = 0, so an
equilibrium point for τ = 0

• But, how do we design a “PD-like” control law that can
maintain this point? We need something like

τ2 = f(θ1 − θ?1, θ2 − θ?2, θ̇1 − θ̇?1, θ̇2 − θ̇?2)

but what is this function f?

58



Linear quadratic regulator (LQR)

• Given a (linear) system with dynamics

ẋ = Ax+Bu

where x denotes the state and u denotes the control inputs

• Want to find a feedback controller u(t) = Kx(t) that forces
state to x = 0 and maintains it there

• Cost of system is measured by

J =

∫ ∞
0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt

for some (positive definite) matrices Q and R

59



• Somewhat surprisingly, it turns out we can solve this problem
exactly, optimal K is given by

K = −R−1BTP

where P is the solution to the equation

ATP + PA− PBR−1BTP = 0

• A non-linear set of equations, but there exist methods that will
find this very efficiently (i.e., in MATLAB the command lqr, in
Python there are a couple libraries that will do it)

60



Back to the Acrobot

• But the acrobot is a non-linear system: letting
x = (θ1, θ2, θ̇1, θ̇2), u = τ2, our dynamics can be written as

ẋ = f(x, u)

• A remarkable property of non-linear control: assume x?, u? is an
equilbrium point of f (i.e.,) f(x?, u?) = 0, and we have
controller u(t) = Kx(t) that stabilizes the linear approximation
to this system

ẋ− ẋ? ≈ A(x− x?) +B(u− u?)
where

A ≡ ∂f(x?, u?)

∂x
, B ≡ ∂f(x?, u?)

∂u

• Then this controller also stabilizes the non-linear system in some
region around x?, u?

61



Putting it all together

• So, the whole process is as follows:

1. Find an equilibrium point of the system

2. Compute linearization A and B around this equilibrium point

3. Compute LQR controller for A and B (using some, probably
hand-specified cost matrices Q and R)

4. Execute the resulting controller on the non-linear system

62



−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

63



LQR around trajectories

• All the considerations above also apply to tracking a (feasible)
trajectory θ?(t) in an underactuated system

• As before, a few additional complications, need to compute
time-varying LQR controllers

• Often, the most challenging piece is simply coming up with the
feasible trajectory in the first place

– Here’s where we can use planning techniques like RRTs
(extended to dynamical systems), optimization methods
(shooting, direct collocation), etc

64


	Robot kinematics
	Motion planning
	Robot dynamics
	Control

