
15-780 – Machine Learning

J. Zico Kolter

February 19, 2014

1

Outline

Introduction to machine learning

Regression

“Non-linear” regression, overfitting, and model selection

Classification

Other ML algorithms and unsupervised learning

Evaluating and debugging ML algorithms

2

Outline

Introduction to machine learning

Regression

“Non-linear” regression, overfitting, and model selection

Classification

Other ML algorithms and unsupervised learning

Evaluating and debugging ML algorithms

3

Introduction: digit classification

• The task: write a program that, given a 28x28 grayscale image
of a digit, outputs the string representation

Digits from MNIST dataset
(http://yann.lecun.com/exdb/mnist/)

4

http://yann.lecun.com/exdb/mnist/

• One approach: try to write a program by hand that uses your a
priori knowledge of digits to properly classify the images

• Alternative method (machine learning): collect a bunch of
images and their corresponding digits, write a program that uses
this data to build its own method for classifying images

• (This is actually a subclass of ML class supervised learning; we
will briefly talk about other frameworks)

5

Outline

Introduction to machine learning

Regression

“Non-linear” regression, overfitting, and model selection

Classification

Other ML algorithms and unsupervised learning

Evaluating and debugging ML algorithms

6

A simple example: predicting electricity use

• What will peak power consumption be in the Pittsburgh area
tomorrow?

• Collect data of past high temperatures and peak demands

High Temperature (F) Peak Demand (GW)
76.7 1.87
72.7 1.92
71.5 1.96
86.0 2.43
90.0 2.69
87.7 2.50

...
...

7

65 70 75 80 85 90
1.6

1.8

2

2.2

2.4

2.6

2.8

3

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Several days of peak demand vs. high temperature in Pittsburgh

8

• Hypothesize model

Peak demand ≈ θ1(High temperature) + θ2

for some numbers θ1 and θ2

• Then, given a forecast of tomorrow’s high temperature, we can
predict the likely peak demand by plugging it into our model

9

• Equivalent to “drawing a line through the data”

65 70 75 80 85 90
1.6

1.8

2

2.2

2.4

2.6

2.8

3

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Observed data
Linear regression prediction

10

Notation

• Input features: xi ∈ Rn, i = 1, . . . ,m

– E.g.: xi ∈ R2 =

[
high temperature for day i

1

]

• Output: yi ∈ R (regression task)
– E.g.: yi ∈ R = {peak demand for day i}

• Model Parameters: θ ∈ Rn

• Hypothesis function: hθ(x) : Rn → R
– Hypothesis function hθ(xi) returns a prediction of the output yi,

and we will focus initially on linear predictors

hθ(xi) =

n∑
j=1

θj(xi)j = θTxi

11

• Loss function: ` : R× R→ R+

– `(yi, hθ(xi)) is a “penalty” we pay for predicting hθ(xi) when
the true output is yi

– E.g., squared loss: `(yi, hθ(xi)) = (hθ(xi)− yi)2

• Canonical supervised learning problem: given a collection of
input features and outputs (xi, yi), i = 1, . . . ,m, find
parameters that minimize sum of losses over all examples

minimize
θ

m∑
i=1

`(yi, hθ(xi))

• Virtually all machine learning algorithms have this form, just
different choices of hypothesis and loss functions

12

Least squares revisited

• A linear hypothesis, hθ(xi) = θTxi, and squared loss function,
`(yi, hθ(xi)) = (hθ(xi)− yi)2, lead to the least-squares problem
we saw in the optimization lecture

• Defining the matrices

X ∈ Rm×n =


— xT1 —
— xT2 —

...
— xTm —

 , y ∈ Rm =


y1

y2
...
ym


then

m∑
i=1

`(yi, hθ(xi)) =
m∑
i=1

(θTxi − yi)2 = ‖Xθ − y‖22

13

• Thus, finding the best parameters θ for linear predictor and
squared loss is optimization problem

minimize
θ

‖Xθ − y‖22

• This is a convex optimization problem, so can be solved by a
number of methods (e.g., gradient descent, cvxpy)

• However, this special case can also be solved analytically by
taking gradients

∇θ‖Xθ − y‖22 = 2XT (Xθ − y)

and setting them equal to zero

XT (Xθ? − y) = 0 =⇒ θ? = (XTX)−1XT y

14

• Python code for solving the least-squares problem

load data files

X = np.mat(np.loadtxt('temperature.txt',ndmin=2))

y = np.mat(np.loadtxt('peak demand.txt',ndmin=2))

append a column of ones to X and solve for theta

X = np.hstack((X,np.ones((X.shape[0],1))))

theta = np.linalg.solve(X.T * X, X.T * y)

15

Alternative loss functions

• Why did we choose the squared loss functions
`(yi, hθ(xi)) = (hθ(xi)− yi)2?

• Some other alternatives

Absolute loss: `(yi, hθ(xi)) = |hθ(xi)− yi|
Deadband loss: `(yi, hθ(xi)) = max{0, |hθ(xi)− yi| − ε}, ε ∈ R+

−3 −2 −1 0 1 2 3
0

1

2

3

4

hθ(x
i
) − y

i

Lo
ss

Squared Loss
Absolute Loss
Deadband Loss

16

• For most loss functions other than squared loss, can’t
analytically find optimal θ, but for convex loss, still a convex
optimization problem

E.g. minimize
θ

m∑
i=1

|hθ(xi)− yi|

• Intuitively, losses based on absolute loss are less sensitive to
outliers (known as robust loss functions), analogous to mean vs.
median

• Many of the combinations have fancy names: minimizing
deadband loss ≡ “support vector regression”

17

• In many cases (e.g., when there is a “good” model for all the
data), different loss functions lead to fairly similar models

65 70 75 80 85 90
1.6

1.8

2

2.2

2.4

2.6

2.8

3

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Observed data
Squared loss
Absolute loss
Deadband loss, eps = 0.1

18

Outline

Introduction to machine learning

Regression

“Non-linear” regression, overfitting, and model selection

Classification

Other ML algorithms and unsupervised learning

Evaluating and debugging ML algorithms

19

Overfitting

• Though they may seem limited, linear hypothesis classes are
very powerful, since the input features can themselves include
non-linear features of data

xi ∈ R3 =

 (high temperature for day i)2

high temperature for day i
1


• In this case, hθ(xi) = θTxi will be a non-linear function of

“original” data (i.e., predicted peak power is a a non-linear
function of high temperature)

• For least-squares loss, optimal parameters still
θ? = (XTX)−1XT y

20

20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Several days of peak demand vs. high temperature in Pittsburgh
over all months

21

20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Observed Data
d = 2

Linear regression with second degree polynomial features

22

20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Observed Data
d = 4

Linear regression with fourth degree polynomial features

23

20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Observed Data
d = 30

Linear regression with 30th degree polynomial features

24

Training and validation loss

• Fundamental problem: we are optimizing parameters to solve

minimize
θ

m∑
i=1

`(yi, hθ(xi))

but what we really care about is loss of prediction on new
examples (x′, y′) (also called generalization error)

• Divide data into training set (used to find parameters for a fixed
hypothesis class hθ), and validation set (used to choose
hypothesis class)

– (Slightly abusing notation here, we’re going to wrap the “degree”
of the input features int the hypothesis class hθ)

25

20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Training set
Validation set

Training set and validation set

26

20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Training set
Validation set
d = 4

Training set and validation set, fourth degree polynomial

27

20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Training set
Validation set
d = 30

Training set and validation set, 30th degree polynomial

28

• General intuition for training and validation loss

Loss

Model Complexity

Training
Validation

• We would like to choose hypothesis class that is at the “sweet
spot” of minimizing validation loss

29

0 5 10 15 20 25 30

10
0

10
5

10
10

Degree of polynomial

Lo
ss

Training
Validation

Training and validation loss on peak demand prediction

30

Model complexity and regularization

• A number of different ways to control “model complexity”

• An obvious one we have just seen: keep the number of features
(number of parameters) low

• A less obvious method: keep the magnitude of the parameters
small

31

• Intuition: a 30th degree polynomial that passes exactly through
many of the data points requires very large entries in θ

20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Observed Data
d = 30

32

• We can directly prevent large entries in θ by penalizing ‖θ‖22 in
our optimization objective

• Leads to regularized loss minimization problem

minimize
θ

λ‖θ‖22 +

m∑
i=1

`(yi, hθ(xi))

where λ ∈ R+ is a regularization parameter that weights the
relative penalties of the size of θ and the loss

• Example: regularized squared loss

minimize
θ

λ‖θ‖22 + ‖Xθ − y‖22
=⇒ ∇θ(‖θ‖22 + ‖Xθ − y‖22) = 2θ + 2XT (Xθ − y)

=⇒ θ? = (XTX + λI)−1XT y

33

10
−15

10
−10

10
−5

10
0

10
5

10
−2

10
0

10
2

10
4

10
6

10
8

λ

Lo
ss

Training
Validation

Loss for 30 degree polynomial, different values of λ

34

20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k
H

ou
rly

 D
em

an
d

(G
W

)

Training set
Validation set
d = 30

Degree 30 polynomial, with λ = 1

35

• For other convex loss functions, regularized loss minimization is
still a convex problem

minimize
θ

λ‖θ‖22 +

m∑
i=1

`(yi, hθ(xi))

• Also can use other norms to measure magnitude of θ

– `1 norm, ‖θ‖1 =
∑n
i=1 |θi| is a popular choice because it often

leads to sparse solutions, which indicates which input features are
“important”

36

Outline

Introduction to machine learning

Regression

“Non-linear” regression, overfitting, and model selection

Classification

Other ML algorithms and unsupervised learning

Evaluating and debugging ML algorithms

37

Classification problems

• Sometimes we want to predict discrete outputs rather than
continuous

• Is the email spam or not? (YES/NO)

• What digit is in this image? (0/1/2/3/4/5/6/7/8/9)

38

Notation

• Input features: xi ∈ Rn, i = 1, . . . ,m

– E.g.: xi ∈ R784 = pixel values for 28x28 image

• Output: yi ∈ {−1,+1} (binary classification task)

– E.g.: yi ∈ {−1,+1} = Is digit a 0?

• Model Parameters: θ ∈ Rn

• Hypothesis function: hθ(x) : Rn → R
– Returns continuous prediction of the output yi, where the value

indicates how “confident” we are that the example is −1 or +1;
sign(hθ(xi)) is the actual binary prediction

– Again, we will focus initially on linear predictors hθ(xi) = θTxi

39

Loss functions

• Loss function ` : {−1,+1} × R→ R

• Do we need a different loss function?

y

−1

+1

x0

40

Loss functions

• Loss function ` : {−1,+1} × R→ R

• Do we need a different loss function?

y

−1

+1

x

Least squares

0

40

Loss functions

• Loss function ` : {−1,+1} × R→ R

• Do we need a different loss function?

y

−1

+1

x

Least squares
Perfect classifier

0

40

• The simplest loss (0/1 loss, accuracy): count the number of
mistakes we make

`(y, hθ(x)) =

{
1 if y 6= sign(hθ(x))
0 otherwise

= 1{y · hθ(x) ≤ 0}

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

y × hθ(x)

Lo
ss

41

• Unfortunately, minimizing sum of 0/1 losses leads to a
non-convex optimization problem

• Because of this, a whole range of alternative “approximations”
to 0/1 loss are used instead

Hinge loss: `(y, hθ(x)) = max{1− y · hθ(x), 0}
Squared hinge loss: `(y, hθ(x)) = max{1− y · hθ(x), 0}2

Logistic loss: `(y, hθ(x)) = log(1 + e−y·hθ(x))

Exponential loss: `(y, hθ(x)) = e−y·hθ(x)

42

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

y × hθ(x)

Lo
ss

0−1 Loss
Hinge Loss
Logistic Loss
Exponential Loss

Common loss functions for classification

43

Support vector machines

• Support vector machine is just regularized hinge loss and linear
prediction (caveat, also common to use “kernel” hypothesis
function, more later)

minimize
θ

λ‖θ‖22 +

m∑
i=1

max{1− yi · θTxi, 0}

• No analytic solution, but a convex problem (can use off-the-shelf
solvers like cvxpy for small problems)

• For large problems, methods like gradient descent are
(somewhat surprisingly) almost state of the art

44

• Example: goal is to differentiate between two refrigerators using
their power consumption signatures

150 160 170 180 190 200 210

500

1000

1500

2000

2500

Power (watts)

D
ur

at
io

n
(s

ec
on

ds
)

Fridge 1
Fridge 2

• Input feature is xi = (ith power increase, ith event duration, 1)

45

150 160 170 180 190 200 210

500

1000

1500

2000

2500

Power (watts)

D
ur

at
io

n
(s

ec
on

ds
)

Fridge 1
Fridge 2
Classifier boundary

Classification boundary of support vector machine

46

Logistic regression

• Regularized logistic regression

minimize
θ

λ‖θ‖22 +

m∑
i=1

log(1 + e−y·hθ(x))

• Probabilistic interpretation: p(y = +1|x) = 1
1+exp{−θT xi}

• Again a (differentiable) convex problem, but no analytic solution

• Common approach: solve using Newton’s method

47

• Optimization objective

f(θ) = λ‖θ‖22 +

m∑
i=1

log(1 + exp(−yi · θTφ(xi)))

• Gradient and Hessian given by (try to prove this):

∇θf(θ) = −XTZy + 2λθ

∇2
θf(θ) = XTZ(I − Z)X + 2λI

where

Z ∈ Rm×mdiagonal, Zii =
1

1 + exp(yi · θTφ(xi))

• Newton’s method repeats:

θ ← θ − (∇2
θf(θ))−1∇θf(θ)

48

150 160 170 180 190 200 210

500

1000

1500

2000

2500

Power (watts)

D
ur

at
io

n
(s

ec
on

ds
)

Classification boundary of logistic regression

49

Multi-class classification

• When classification is not binary y ∈ 0, 1, . . . , k (i.e., classifying
digit images), a common approach is “one-vs-all” method

• Create a new set of y’s for the binary classification problem “is
the label of this example equal to j”

ŷji =

{
1 if yi = j
−1 otherwise

and train the corresponding θj

minimize
θj

λ‖θ‖22 +

m∑
i=1

`(ŷji , hθj (xi))

• For input x, classify according to the hypothesis with the
highest confidence: argmaxj hθj (x)

50

Non-linear classification

• Same exact approach as in the regression case: use non-linear
features of input to capture non-linear decision boundaries

120 140 160 180 200 220 240

500

1000

1500

2000

2500

Power (watts)

D
ur

at
io

n
(s

ec
on

ds
)

Classification boundary of support vector machine using
non-linear features 51

Outline

Introduction to machine learning

Regression

“Non-linear” regression, overfitting, and model selection

Classification

Other ML algorithms and unsupervised learning

Evaluating and debugging ML algorithms

52

• Linear hypothesis classes (with non-linear features) plus convex
loss functions, are a very popular set of machine learning
algorithms

• But, they are not the only possibility

• Many other algorithms that use different (possibly non-linear)
hypothesis class or a different (possibly non-convex) loss
function

53

Kernel methods

• Kernel methods are a very popular approach to non-linear
classification, but they are actually still just a linear hypothesis
class

hθ(x) =

m∑
i=1

θiK(x, xi)

where K : Rn × Rn → R is a kernel function that measures the
similarity between x and xi (larger values for more similar)

• For certain K, can be interpreted as working in a high
dimensional feature space without explicitly forming features

• Still linear in θ, can use all the same algorithms as before

• Important: θ ∈ Rm, as many parameters as examples
(non-parametric approach)

54

Nearest neighbor methods

• Predict output based upon closest example in training set

hθ(x) = yargmini dist(x,xi)

where dist : Rn × Rn → R+ is some distance function

• Can also average over k closest examples: k-nearest neighbor

• Requires no separate “training” phase, but (like kernel methods)
it is non-parametric, requires that we keep around all the data

55

Neural networks

• Non-linear hypothesis class

hθ(x) = σ(θT2 σ(ΘT
1 x))

for a 2-layer network, where θ = {Θ1 ∈ Rn×p, θ2 ∈ Rp and
σ : R→ R is an sigmoid function σ(z) = 1/(1 + exp(−z))
(applied elementwise to vector)

x1

x2

xn

...

z1

z2

zp

...

y

Θ1

θ2

56

• Non-convex optimization, but smooth (gradient and similar
methods can work very well)

• Neural networks are seeing a huge revival in popularity in recent
years, thanks to some new algorithmic approaches (algorithms
for deep architectures with many layers) and increased
computational power

• Some major recent success stories in speech recognition, image
classification

57

Decision trees

• Hypothesis class partitions space into different regions

x2 ≥ 2

x1 ≥ −3

hθ(x) = +1 hθ(x) = −1

hθ(x) = −1

• Can also have linear predictors (regression or classification) at
the leaves

• Greedy training find nodes that best separate data into distinct
classes

58

Ensemble methods

• Combine a number of different hypotheses

hθ(x) =

k∑
i=1

θisign(hi(x))

• Popular instances

– Random forests: ensemble of decision trees built from different
subsets of training data

– Boosting: iteratively train multiple classifiers/regressors on
reweighted examples based upon performance of the previous
hypothesis

59

Unsupervised learning

• In the unsupervised setting, we don’t have have pairs (xi, yi),
i = 1, . . . ,m, but just the inputs xi

• Goal is to extract some form of “structure” in the data

• Since we don’t have an output, need a different form of
hypothesis and loss functions

• Many unsupervised learning methods can be cast as using a
reconstruction loss, e.g.

`(xi, hθ(xi) = ‖xi − hθ(xi)‖22

where hypothesis function is now hθ : Rn → Rn

60

k-means

• Parameters are a set of “centers” in the data θ = {µ1, . . . , µk}
for µi ∈ Rn

• Hypothesis class picks the closest center

hθ(x) = µargmini ‖x−µi‖22

• With this framework, training looks the same as supervised
learning

minimize
θ

m∑
i=1

‖xi−hθ(xi)‖22 ≡ minimize
µ1,...,µk

‖xi−µargminj ‖x−µj‖22‖
2

• Not a convex problem, but can solve by iteratively finding the
optimal µi for each example, then taking µi to be the mean of
all examples assigned to it

61

Principal component analysis

• Parameters are two matrices that reduce the effective dimension
of the data, θ = {Θ1 ∈ Rn×k,Θ2 ∈ Rk×n with k < n

• Hypothesis class hθ(x) = Θ1Θ2x

• Interpretation: to reconstruct data Θ2x ∈ Rk needs to preserve
most of the information in x, so that we can construct it
(dimensionality reduction)

• Minimizing loss

minimize
Θ1,Θ2

m∑
i=1

‖xi −Θ1Θ2xi‖22

is not a convex problem, but can be solved (exactly) via an
eigenvalue decomposition

62

ML implementations

• Good news is that you can use a lot of existing libraries for
different machine learning approaches: e.g., scikit.learn

• But be careful, you usually need some understanding of how the
methods work in order to properly evaluate and debug the
algorithms

63

Outline

Introduction to machine learning

Regression

“Non-linear” regression, overfitting, and model selection

Classification

Other ML algorithms and unsupervised learning

Evaluating and debugging ML algorithms

64

Evaluating ML algorithms

• You have developed a machine learning approach to a certain
task, and want to validate that it actually works well (or
determine if it doesn’t work well)

• Standard: approach, divide data into training and testing sets,
train method on training set, and report results on the testing
set

• Important: testing set is not the same as the validation test

65

• The proper way to evaluate an ML algorithm

1. Break all data into training/testing sets (e.g., 70%/30%)

2. Break training set into training/validation set (e.g., 70%/30%
again)

3. Choose hyperparameters using validation set

4. (Optional) Once we have selected hyperparameters, retrain using
all the training set

5. Evaluate performance on the testing set

66

Debugging machine learning algorithms

• You have built a logistic regression classifier on your application
of course, and find that the training and testing error are both
too high (more than the desired performance)

• Should you:

– Add more features?

– Collect more data?

– Try a neural network?

– Use a higher/lower regularization parameter?

• Can try all these things, but this will waste a lot of time
67

• Virtually all my time spent developing machine learning methods
is spent writing diagnostics to characterize performance

• For instance, a commonly helpful diagnostic is to plot training
and testing error versus number of samples

Loss

Number of samples

Training

Tesing

Desired performance

In this case, collecting more data won’t help

68

Take home points

• Machine learning provides a way of developing complex
programs by providing just input/output pairs, let the algorithm
decide how best to produce output from similar inputs

• Lots of different machine learning algorithms, but the vast
majority attempt to minimize some loss function on a training
set, given a hypothesis class; choosing different hypotheses, loss
functions, and minimization algorithms give different ML
approaches

• When developing ML methods, instead of just “trying
everything” always try to think of diagnostics you can write to
identify the problem, then fix it

69

	Introduction to machine learning
	Regression
	``Non-linear'' regression, overfitting, and model selection
	Classification
	Other ML algorithms and unsupervised learning
	Evaluating and debugging ML algorithms

