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Introduction: digit classification

• The task: write a program that, given a 28x28 grayscale image
of a digit, outputs the string representation

Digits from MNIST dataset
(http://yann.lecun.com/exdb/mnist/)
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• One approach: try to write a program by hand that uses your a
priori knowledge of digits to properly classify the images

• Alternative method (machine learning): collect a bunch of
images and their corresponding digits, write a program that uses
this data to build its own method for classifying images

• (This is actually a subclass of ML class supervised learning; we
will briefly talk about other frameworks)
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A simple example: predicting electricity use

• What will peak power consumption be in the Pittsburgh area
tomorrow?

• Collect data of past high temperatures and peak demands

High Temperature (F) Peak Demand (GW)
76.7 1.87
72.7 1.92
71.5 1.96
86.0 2.43
90.0 2.69
87.7 2.50

...
...
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• Hypothesize model

Peak demand ≈ θ1(High temperature) + θ2

for some numbers θ1 and θ2

• Then, given a forecast of tomorrow’s high temperature, we can
predict the likely peak demand by plugging it into our model
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• Equivalent to “drawing a line through the data”
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Observed data
Linear regression prediction
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Notation

• Input features: xi ∈ Rn, i = 1, . . . ,m

– E.g.: xi ∈ R2 =

[
high temperature for day i

1

]

• Output: yi ∈ R (regression task)
– E.g.: yi ∈ R = {peak demand for day i}

• Model Parameters: θ ∈ Rn

• Hypothesis function: hθ(x) : Rn → R
– Hypothesis function hθ(xi) returns a prediction of the output yi,

and we will focus initially on linear predictors

hθ(xi) =

n∑
j=1

θj(xi)j = θTxi
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• Loss function: ` : R× R→ R+

– `(yi, hθ(xi)) is a “penalty” we pay for predicting hθ(xi) when
the true output is yi

– E.g., squared loss: `(yi, hθ(xi)) = (hθ(xi)− yi)2

• Canonical supervised learning problem: given a collection of
input features and outputs (xi, yi), i = 1, . . . ,m, find
parameters that minimize sum of losses over all examples

minimize
θ

m∑
i=1

`(yi, hθ(xi))

• Virtually all machine learning algorithms have this form, just
different choices of hypothesis and loss functions
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Least squares revisited

• A linear hypothesis, hθ(xi) = θTxi, and squared loss function,
`(yi, hθ(xi)) = (hθ(xi)− yi)2, lead to the least-squares problem
we saw in the optimization lecture

• Defining the matrices

X ∈ Rm×n =


— xT1 —
— xT2 —

...
— xTm —

 , y ∈ Rm =


y1

y2
...
ym


then

m∑
i=1

`(yi, hθ(xi)) =
m∑
i=1

(θTxi − yi)2 = ‖Xθ − y‖22
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• Thus, finding the best parameters θ for linear predictor and
squared loss is optimization problem

minimize
θ

‖Xθ − y‖22

• This is a convex optimization problem, so can be solved by a
number of methods (e.g., gradient descent, cvxpy)

• However, this special case can also be solved analytically by
taking gradients

∇θ‖Xθ − y‖22 = 2XT (Xθ − y)

and setting them equal to zero

XT (Xθ? − y) = 0 =⇒ θ? = (XTX)−1XT y
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• Python code for solving the least-squares problem

# load data files

X = np.mat(np.loadtxt('temperature.txt',ndmin=2))

y = np.mat(np.loadtxt('peak demand.txt',ndmin=2))

# append a column of ones to X and solve for theta

X = np.hstack((X,np.ones((X.shape[0],1))))

theta = np.linalg.solve(X.T * X, X.T * y)
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Alternative loss functions

• Why did we choose the squared loss functions
`(yi, hθ(xi)) = (hθ(xi)− yi)2?

• Some other alternatives

Absolute loss: `(yi, hθ(xi)) = |hθ(xi)− yi|
Deadband loss: `(yi, hθ(xi)) = max{0, |hθ(xi)− yi| − ε}, ε ∈ R+
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Absolute Loss
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• For most loss functions other than squared loss, can’t
analytically find optimal θ, but for convex loss, still a convex
optimization problem

E.g. minimize
θ

m∑
i=1

|hθ(xi)− yi|

• Intuitively, losses based on absolute loss are less sensitive to
outliers (known as robust loss functions), analogous to mean vs.
median

• Many of the combinations have fancy names: minimizing
deadband loss ≡ “support vector regression”
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• In many cases (e.g., when there is a “good” model for all the
data), different loss functions lead to fairly similar models
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Observed data
Squared loss
Absolute loss
Deadband loss, eps = 0.1
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Overfitting

• Though they may seem limited, linear hypothesis classes are
very powerful, since the input features can themselves include
non-linear features of data

xi ∈ R3 =

 (high temperature for day i)2

high temperature for day i
1


• In this case, hθ(xi) = θTxi will be a non-linear function of

“original” data (i.e., predicted peak power is a a non-linear
function of high temperature)

• For least-squares loss, optimal parameters still
θ? = (XTX)−1XT y
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Observed Data
d = 2

Linear regression with second degree polynomial features
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Observed Data
d = 4

Linear regression with fourth degree polynomial features
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Observed Data
d = 30

Linear regression with 30th degree polynomial features
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Training and validation loss

• Fundamental problem: we are optimizing parameters to solve

minimize
θ

m∑
i=1

`(yi, hθ(xi))

but what we really care about is loss of prediction on new
examples (x′, y′) (also called generalization error)

• Divide data into training set (used to find parameters for a fixed
hypothesis class hθ), and validation set (used to choose
hypothesis class)

– (Slightly abusing notation here, we’re going to wrap the “degree”
of the input features int the hypothesis class hθ)

25



20 40 60 80

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

High Temperature (F)

P
ea

k 
H

ou
rly

 D
em

an
d 

(G
W

)

 

 
Training set
Validation set

Training set and validation set
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Training set
Validation set
d = 4

Training set and validation set, fourth degree polynomial
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Training set
Validation set
d = 30

Training set and validation set, 30th degree polynomial

28



• General intuition for training and validation loss

Loss

Model Complexity

Training
Validation

• We would like to choose hypothesis class that is at the “sweet
spot” of minimizing validation loss
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Training and validation loss on peak demand prediction
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Model complexity and regularization

• A number of different ways to control “model complexity”

• An obvious one we have just seen: keep the number of features
(number of parameters) low

• A less obvious method: keep the magnitude of the parameters
small
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• Intuition: a 30th degree polynomial that passes exactly through
many of the data points requires very large entries in θ
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d = 30
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• We can directly prevent large entries in θ by penalizing ‖θ‖22 in
our optimization objective

• Leads to regularized loss minimization problem

minimize
θ

λ‖θ‖22 +

m∑
i=1

`(yi, hθ(xi))

where λ ∈ R+ is a regularization parameter that weights the
relative penalties of the size of θ and the loss

• Example: regularized squared loss

minimize
θ

λ‖θ‖22 + ‖Xθ − y‖22
=⇒ ∇θ(‖θ‖22 + ‖Xθ − y‖22) = 2θ + 2XT (Xθ − y)

=⇒ θ? = (XTX + λI)−1XT y
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Loss for 30 degree polynomial, different values of λ
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Validation set
d = 30

Degree 30 polynomial, with λ = 1
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• For other convex loss functions, regularized loss minimization is
still a convex problem

minimize
θ

λ‖θ‖22 +

m∑
i=1

`(yi, hθ(xi))

• Also can use other norms to measure magnitude of θ

– `1 norm, ‖θ‖1 =
∑n
i=1 |θi| is a popular choice because it often

leads to sparse solutions, which indicates which input features are
“important”
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Classification problems

• Sometimes we want to predict discrete outputs rather than
continuous

• Is the email spam or not? (YES/NO)

• What digit is in this image? (0/1/2/3/4/5/6/7/8/9)
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Notation

• Input features: xi ∈ Rn, i = 1, . . . ,m

– E.g.: xi ∈ R784 = pixel values for 28x28 image

• Output: yi ∈ {−1,+1} (binary classification task)

– E.g.: yi ∈ {−1,+1} = Is digit a 0?

• Model Parameters: θ ∈ Rn

• Hypothesis function: hθ(x) : Rn → R
– Returns continuous prediction of the output yi, where the value

indicates how “confident” we are that the example is −1 or +1;
sign(hθ(xi)) is the actual binary prediction

– Again, we will focus initially on linear predictors hθ(xi) = θTxi

39



Loss functions

• Loss function ` : {−1,+1} × R→ R

• Do we need a different loss function?

y

−1

+1

x0
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Loss functions
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• The simplest loss (0/1 loss, accuracy): count the number of
mistakes we make

`(y, hθ(x)) =

{
1 if y 6= sign(hθ(x))
0 otherwise

= 1{y · hθ(x) ≤ 0}
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• Unfortunately, minimizing sum of 0/1 losses leads to a
non-convex optimization problem

• Because of this, a whole range of alternative “approximations”
to 0/1 loss are used instead

Hinge loss: `(y, hθ(x)) = max{1− y · hθ(x), 0}
Squared hinge loss: `(y, hθ(x)) = max{1− y · hθ(x), 0}2

Logistic loss: `(y, hθ(x)) = log(1 + e−y·hθ(x))

Exponential loss: `(y, hθ(x)) = e−y·hθ(x)
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Support vector machines

• Support vector machine is just regularized hinge loss and linear
prediction (caveat, also common to use “kernel” hypothesis
function, more later)

minimize
θ

λ‖θ‖22 +

m∑
i=1

max{1− yi · θTxi, 0}

• No analytic solution, but a convex problem (can use off-the-shelf
solvers like cvxpy for small problems)

• For large problems, methods like gradient descent are
(somewhat surprisingly) almost state of the art
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• Example: goal is to differentiate between two refrigerators using
their power consumption signatures
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Fridge 1
Fridge 2

• Input feature is xi = (ith power increase, ith event duration, 1)
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Classification boundary of support vector machine
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Logistic regression

• Regularized logistic regression

minimize
θ

λ‖θ‖22 +

m∑
i=1

log(1 + e−y·hθ(x))

• Probabilistic interpretation: p(y = +1|x) = 1
1+exp{−θT xi}

• Again a (differentiable) convex problem, but no analytic solution

• Common approach: solve using Newton’s method
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• Optimization objective

f(θ) = λ‖θ‖22 +

m∑
i=1

log(1 + exp(−yi · θTφ(xi)))

• Gradient and Hessian given by (try to prove this):

∇θf(θ) = −XTZy + 2λθ

∇2
θf(θ) = XTZ(I − Z)X + 2λI

where

Z ∈ Rm×mdiagonal, Zii =
1

1 + exp(yi · θTφ(xi))

• Newton’s method repeats:

θ ← θ − (∇2
θf(θ))−1∇θf(θ)
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Multi-class classification

• When classification is not binary y ∈ 0, 1, . . . , k (i.e., classifying
digit images), a common approach is “one-vs-all” method

• Create a new set of y’s for the binary classification problem “is
the label of this example equal to j”

ŷji =

{
1 if yi = j
−1 otherwise

and train the corresponding θj

minimize
θj

λ‖θ‖22 +

m∑
i=1

`(ŷji , hθj (xi))

• For input x, classify according to the hypothesis with the
highest confidence: argmaxj hθj (x)
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Non-linear classification

• Same exact approach as in the regression case: use non-linear
features of input to capture non-linear decision boundaries

120 140 160 180 200 220 240

500

1000

1500

2000

2500

Power (watts)

D
ur

at
io

n 
(s

ec
on

ds
)
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• Linear hypothesis classes (with non-linear features) plus convex
loss functions, are a very popular set of machine learning
algorithms

• But, they are not the only possibility

• Many other algorithms that use different (possibly non-linear)
hypothesis class or a different (possibly non-convex) loss
function
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Kernel methods

• Kernel methods are a very popular approach to non-linear
classification, but they are actually still just a linear hypothesis
class

hθ(x) =

m∑
i=1

θiK(x, xi)

where K : Rn × Rn → R is a kernel function that measures the
similarity between x and xi (larger values for more similar)

• For certain K, can be interpreted as working in a high
dimensional feature space without explicitly forming features

• Still linear in θ, can use all the same algorithms as before

• Important: θ ∈ Rm, as many parameters as examples
(non-parametric approach)
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Nearest neighbor methods

• Predict output based upon closest example in training set

hθ(x) = yargmini dist(x,xi)

where dist : Rn × Rn → R+ is some distance function

• Can also average over k closest examples: k-nearest neighbor

• Requires no separate “training” phase, but (like kernel methods)
it is non-parametric, requires that we keep around all the data
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Neural networks

• Non-linear hypothesis class

hθ(x) = σ(θT2 σ(ΘT
1 x))

for a 2-layer network, where θ = {Θ1 ∈ Rn×p, θ2 ∈ Rp and
σ : R→ R is an sigmoid function σ(z) = 1/(1 + exp(−z))
(applied elementwise to vector)
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z1
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y
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θ2

56



• Non-convex optimization, but smooth (gradient and similar
methods can work very well)

• Neural networks are seeing a huge revival in popularity in recent
years, thanks to some new algorithmic approaches (algorithms
for deep architectures with many layers) and increased
computational power

• Some major recent success stories in speech recognition, image
classification
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Decision trees

• Hypothesis class partitions space into different regions

x2 ≥ 2

x1 ≥ −3

hθ(x) = +1 hθ(x) = −1

hθ(x) = −1

• Can also have linear predictors (regression or classification) at
the leaves

• Greedy training find nodes that best separate data into distinct
classes
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Ensemble methods

• Combine a number of different hypotheses

hθ(x) =

k∑
i=1

θisign(hi(x))

• Popular instances

– Random forests: ensemble of decision trees built from different
subsets of training data

– Boosting: iteratively train multiple classifiers/regressors on
reweighted examples based upon performance of the previous
hypothesis
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Unsupervised learning

• In the unsupervised setting, we don’t have have pairs (xi, yi),
i = 1, . . . ,m, but just the inputs xi

• Goal is to extract some form of “structure” in the data

• Since we don’t have an output, need a different form of
hypothesis and loss functions

• Many unsupervised learning methods can be cast as using a
reconstruction loss, e.g.

`(xi, hθ(xi) = ‖xi − hθ(xi)‖22

where hypothesis function is now hθ : Rn → Rn
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k-means

• Parameters are a set of “centers” in the data θ = {µ1, . . . , µk}
for µi ∈ Rn

• Hypothesis class picks the closest center

hθ(x) = µargmini ‖x−µi‖22

• With this framework, training looks the same as supervised
learning

minimize
θ

m∑
i=1

‖xi−hθ(xi)‖22 ≡ minimize
µ1,...,µk

‖xi−µargminj ‖x−µj‖22‖
2

• Not a convex problem, but can solve by iteratively finding the
optimal µi for each example, then taking µi to be the mean of
all examples assigned to it
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Principal component analysis

• Parameters are two matrices that reduce the effective dimension
of the data, θ = {Θ1 ∈ Rn×k,Θ2 ∈ Rk×n with k < n

• Hypothesis class hθ(x) = Θ1Θ2x

• Interpretation: to reconstruct data Θ2x ∈ Rk needs to preserve
most of the information in x, so that we can construct it
(dimensionality reduction)

• Minimizing loss

minimize
Θ1,Θ2

m∑
i=1

‖xi −Θ1Θ2xi‖22

is not a convex problem, but can be solved (exactly) via an
eigenvalue decomposition
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ML implementations

• Good news is that you can use a lot of existing libraries for
different machine learning approaches: e.g., scikit.learn

• But be careful, you usually need some understanding of how the
methods work in order to properly evaluate and debug the
algorithms

63



Outline

Introduction to machine learning

Regression

“Non-linear” regression, overfitting, and model selection

Classification

Other ML algorithms and unsupervised learning

Evaluating and debugging ML algorithms

64



Evaluating ML algorithms

• You have developed a machine learning approach to a certain
task, and want to validate that it actually works well (or
determine if it doesn’t work well)

• Standard: approach, divide data into training and testing sets,
train method on training set, and report results on the testing
set

• Important: testing set is not the same as the validation test
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• The proper way to evaluate an ML algorithm

1. Break all data into training/testing sets (e.g., 70%/30%)

2. Break training set into training/validation set (e.g., 70%/30%
again)

3. Choose hyperparameters using validation set

4. (Optional) Once we have selected hyperparameters, retrain using
all the training set

5. Evaluate performance on the testing set
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Debugging machine learning algorithms

• You have built a logistic regression classifier on your application
of course, and find that the training and testing error are both
too high (more than the desired performance)

• Should you:

– Add more features?

– Collect more data?

– Try a neural network?

– Use a higher/lower regularization parameter?

• Can try all these things, but this will waste a lot of time
67



• Virtually all my time spent developing machine learning methods
is spent writing diagnostics to characterize performance

• For instance, a commonly helpful diagnostic is to plot training
and testing error versus number of samples

Loss

Number of samples

Training

Tesing

Desired performance

In this case, collecting more data won’t help
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Take home points

• Machine learning provides a way of developing complex
programs by providing just input/output pairs, let the algorithm
decide how best to produce output from similar inputs

• Lots of different machine learning algorithms, but the vast
majority attempt to minimize some loss function on a training
set, given a hypothesis class; choosing different hypotheses, loss
functions, and minimization algorithms give different ML
approaches

• When developing ML methods, instead of just “trying
everything” always try to think of diagnostics you can write to
identify the problem, then fix it
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