15-780 — Mixed integer programming
J. Zico Kolter

February 12, 2014

Overview

Introduction to mixed integer programs
Examples: Sudoku, planning with obstacles
Solving integer programs with branch and bound

Extensions

Overview

Introduction to mixed integer programs
Examples: Sudoku, planning with obstacles
Solving integer programs with branch and bound

Extensions

Introduction

e Recall optimization problem
minimize f(x)
x
subject to gi(x) <0 i=1,....,m

“easy” when f, g; convex, “hard” otherwise

e But how hard? How do we even go about solving (locally or
globally) these problems?

e We've seen how to solve discrete non-convex optimization
problems with search, can we apply these same techniques for
mathematical optimization?

Mixed integer programs

e A special case of non-convex optimization methods that lends
itself to a combination of search and convex optimization

minimize f(x, z)
T,z
subject to g;(x,2) <0 i=1,...,m

— x € R", and z € Z” are optimization variables

- f:R*xZP - R and g; : R" x ZP — R convex objective and
constraint functions

e Not a convex problem (set of all integers is not convex)

e Note: some ambiguity in naming, some refer to MIPs as only
linear programs with integer constraints

Mixed binary integer programs

e For this class, we'll focus on a slightly more restricted case
minimize f(x, z)
x,2
subject to gi(x,2) <0 i=1,....,m
z€{0,1}, i=1,...,p

e Still an extremely power class of problems (i.e., binary integer
programing is NP-complete)

Overview

Introduction to mixed integer programs
Examples: Sudoku, planning with obstacles
Solving integer programs with branch and bound
Examples (solved)

Extensions

Example: Sudoku

e The ubiquitous Sudoku puzzle

5|3 7
6 1|/9]|5
98 6
8 6 3
4 8 3 1
7 2 6
6 2|8
419 5
8 719

e Can be encoded as binary integer program: let z; ; € {0, 1}°

denote the “indicator” of number in the 7, j position
5(3 7
6 1|9(5
9[8 6
8 6 3
%63=[001000000]" <= [T
6 2|8
4(1]9 5
8 719

Each square can have only one number
9

(e =1, i,j=1,...,9

k=1

Every row must contain each number
9

ZZW =1, (all ones vector) i=1,...

Jj=1

Every column must contain each number
9
E zij=1, j=1,...,9
i=1

Every 3x3 block must contain each number
3

> zigkjre=1, i,j €{0,3,6}
k=1

e Final optimization problem (note that objective is irrelevant, as
we only care about finding a feasible point)

9
minimize Z m]?X(ZiJ)k
4,7=1
subject to z;; € {0,1}%, 4,5 =1,...,9
9
Y (k=1 i,j=1,...,9
k=1

9
> zj=1,i=1,...,9
j=1

9
> zj=1,j=1,...,9
=1

3

Z Zi'f'k?,j-‘rf = 1) Z)] S {0’356}
k=1

Example: path planning with obstacles

e Find path from start to goal that avoids obstacles

Goal O
O Start
e Represent path as set of points z; € R?, i =1,...,m and

minimize squared distance between consectutive points

e Obstacle is defined by a,b € R?

O={z:a1 <z <bj,as <zy < by}

10

e Constraint that we not hit obstacle can be represented as

()1 < a1V (zi)1 > b1V (xi)2 <agV(zi)g > by, i=1,...

e How can we represent this using binary variables?

11

e The trick: "“big-M" method

e Let M € R be some big number and consider the constraint
(a:i)l <ay+zM

for z € {0,1}; if z = 0, this is the same as the original
constraint, but if z =1 then constraint will always be satisfied

e Introduce new variables z;1, z;2, 2;3, 2:4 for each z;

(i) < a1+ zaM
()1 > b1 — zpM

;€ O <= (15)2 < ag+ z3M
()2 > by — ziaM

zi1 + zig + zi3 + 2i4 < 3

12

Goal O

O Start

e Final optimization problem
m—1
minimize E lzit1 — zil|3
T, —
i=

subject to

zi1 + 22 + 23 + 24 < 3

zij €{0,1}, i=1,...,m, j=1,...

xr1 = start, x,, = goal

Ti)o < ag + zisM 1=1,...

,m

,4

13

Overview

Introduction to mixed integer programs
Examples: Sudoku, planning with obstacles
Solving integer programs with branch and bound
Examples (solved)

Extensions

14

Solution via enumeration

e Recall that optimization problem
minimize f(x,z)
T,z
subject to g;(x,2) <0 i=1,....,m
z€{0,1}, i=1,...,p

is easy for a fixed z (then a convex problem)

e So, just enumerate all possible z's and solve optimization
problem for each

e 2P possible assignments, quickly becomes intractable

15

Branch and bound

e Branch and bound is simply a search algorithm (best-first
search) applied to finding the optimal z assignment

e In the worst case, still exponential (have to check every possible
assignment)

e In many cases much better

16

Convex relaxations
e The key idea: convex relaxation of non-convex constraint
minimize f(z,2)
T,z
subject to g;(x,2) <0 i=1,....,m
z;€4{0,1}, i=1,...,p

17

Convex relaxations
e The key idea: convex relaxation of non-convex constraint

minimize f(z,2)
T,Z

subject to g;(z,z2) <0 i=1,....,m
Z €10,1], i=1,...,p

17

Convex relaxations
e The key idea: convex relaxation of non-convex constraint
minimize f(z,2)
T,z
Z2)<0i=1,....m

subject to g;(
z [07 }7 ’L.:]‘""7p

(z,
Zi €

e Key point: if the optimal solution Z* to the relaxtion is integer
valued, then it is an optimal solution to the integer program

e Furthermore, all solutions to relaxed problem provide lower
bounds on optimal objective

f(x*72*) S f(a:*7z*)

17

Simple branch and bound algorithm

e |dea of approach
1. Solve relaxed problem

2. If there are variables z} with non-integral solutions, pick one of
the variables and recursively solve each relaxtion with z; = 0 and
zi=1

3. Stop when a solution is integral

e By using best-first search (based upon lower bound given by
relaxation), we potentially need to search many fewer
possibilities than for enumeration

18

function (f,2*, z2*,C) = Solve-Relaxtion(C)
// solves relaxation plus constraints in C

q < Priority-Queue()
q.push(Solve-Relaxtion({}))
while(q not empty):
(f,2%,2%,C) < q.pop()
if zZ* integral:
return (f,xz*,z*,C)
else:
Choose 7 such that Z; non-integral
q.push(Solve-Relaxtion(C | J{z; = 0}))
q.push(Solve-Relaxtion(C | J{z; = 1}))

19

e A common modification: in addition to maintaining lower bound
from relaxation, maintain an upper bound on optimal objective

e Common method for computing upper bound: round entries in
Z; to nearest integer, and solve optimization problem with this
fixed Z

e (May not produce a feasible solution)

20

function (f,2*, z2*,C) = Solve-Relaxtion(C)
// solves relaxation plus constraints in C

q < Priority-Queue()
g2 < Priority-Queue()
q.push(Solve-Relaxtion({}))
while(q not empty):
(f,2%,2%,C) < q.pop()
q2.push(Solve-Relaxation({z = round(z*)}))
if g2.first() — f < e
return g2.pop()
else:
Choose ¢ such that z; non-integral
g.push(Solve-Relaxtion(C [J{z; = 0}))
q.push(Solve-Relaxtion(C | J{z; = 1}))

21

Simple example (from Boyd and Mattingley)

minimize 2z 4+ 20 — 223
z

subject to 0.7z1 + 0.529 + 23 > 1.8
z€{0,1}, i=1,2,3

Search tree Queue

22

Simple example (from Boyd and Mattingley)

minimize 2z 4+ 20 — 223
z

subject to 0.7z1 + 0.529 + 23 > 1.8
z €10,1], i=1,2,3

Search tree Queue

{} (—0.143,[0.43,1,1], {})

22

Simple example (from Boyd and Mattingley)

minimize 2z 4+ 20 — 223
z

subject to 0.7z1 + 0.529 + 23 > 1.8
z €10,1], i=1,2,3

Search tree Queue

(0.2,1,0.2,1], {z1 = 1})

0
/ \ (00— {21 = 0})

2’1:0 21:1

22

Simple example (from Boyd and Mattingley)

minimize 2z 4+ 20 — 223
z

subject to 0.7z1 + 0.529 + 23 > 1.8
z €10,1], i=1,2,3

Search tree Queue

(1,(1,1,1],{z1 = 1,20 = 1})

{
/N R U

2’1:0 21:1

RN

22:0 2’2:1

22

Sudoku revisited

e The hard part with Sudoku is finding puzzles where the initial
linear programming relaxation is not already tight

1 News - Wekd News

World's hardest sudoku: Can you solve Dr Arto Inkala's
puzzle?

(=]
N
©

Worlds Hardest Sudoks

Could this be the toughest sudoku puzzle ever devised?

e Branch and bound solves this problem after 27 steps

23

9
minimize Z m’?X(zi,j)k
7,j=1
subject to z € Valid-Sudoku
25 €{0,1%, i,j=1,....9

[0}
o

~
o

Objective
[ep}
o

Lower bound
Optimal

a
o

5 10 15 20 25
Iteration

24

Path planning with obstacles

Goal O

O Start

e Final optimization problem
m—1
minimize g lzit1 — zil|3
T, —
=

(
subject to (z)2 < ag + zizsM 1=1,....,m
(

zi1 + zig + 23 + 24 < 3 %

Objective

0.46

0.44+1

0.42}

o
~

o
w
©

o
w
o

0.34¢

0.32

Lower bound
Feasible upper bound |-

H

50

100 150
Iteration

26

1.0

0.8

0.6

0.4

0.2

OO]]]]
0.0 0.2 04 06 08 1.0

T

T

T

T

X

27

Overview

Introduction to mixed integer programs
Examples: Sudoku, planning with obstacles
Solving integer programs with branch and bound

Extensions

28

Extensions to MIP

e How to incorporate actual integer (instead of just binary)
constraints?

— When solution is non-integral, split after adding constraints
{z; <floor(z})}, {z; > ceil(z})}

e More advanced splits, addition of “cuts” that rule out
non-integer solutions (branch and cut)

e Solve convex problems more efficiently, many solvers can be
sped up given a good initial point, and many previous solutions
will be good initializations

29

Take home points

e Integer programs are a power subset of non-convex optimization
problems that can solve many problems of interest

e Combining search and numerical optimization techniques, we
get an algorithm that solve many problems much more
efficiently than the “brute force” approach

e Performance will still be exponential in the worst case, and
problem dependent, but can be reasonable for many problems of
interest

30

