15-780 - Mixed integer programming

J. Zico Kolter

February 12, 2014

Overview

- Introduction to mixed integer programs
- Examples: Sudoku, planning with obstacles
- Solving integer programs with branch and bound
- Extensions

Overview

- Introduction to mixed integer programs
- Examples: Sudoku, planning with obstacles
- Solving integer programs with branch and bound
- Extensions

Introduction

- Recall optimization problem

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0 \quad i=1, \ldots, m
\end{aligned}
$$

"easy" when f, g_{i} convex, "hard" otherwise

- But how hard? How do we even go about solving (locally or globally) these problems?
- We've seen how to solve discrete non-convex optimization problems with search, can we apply these same techniques for mathematical optimization?

Mixed integer programs

- A special case of non-convex optimization methods that lends itself to a combination of search and convex optimization

$$
\begin{aligned}
\underset{x, z}{\operatorname{minimize}} & f(x, z) \\
\text { subject to } & g_{i}(x, z) \leq 0 \quad i=1, \ldots, m
\end{aligned}
$$

- $x \in \mathbb{R}^{n}$, and $z \in \mathbb{Z}^{p}$ are optimization variables
- $f: \mathbb{R}^{n} \times \mathbb{Z}^{p} \rightarrow \mathbb{R}$ and $g_{i}: \mathbb{R}^{n} \times \mathbb{Z}^{p} \rightarrow \mathbb{R}$ convex objective and constraint functions
- Not a convex problem (set of all integers is not convex)
- Note: some ambiguity in naming, some refer to MIPs as only linear programs with integer constraints

Mixed binary integer programs

- For this class, we'll focus on a slightly more restricted case

$$
\begin{aligned}
\underset{x, z}{\operatorname{minimize}} & f(x, z) \\
\text { subject to } & g_{i}(x, z) \leq 0 \quad i=1, \ldots, m \\
& z_{i} \in\{0,1\}, \quad i=1, \ldots, p
\end{aligned}
$$

- Still an extremely power class of problems (i.e., binary integer programing is NP-complete)

Overview

- Introduction to mixed integer programs
- Examples: Sudoku, planning with obstacles
- Solving integer programs with branch and bound
- Examples (solved)
- Extensions

Example: Sudoku

- The ubiquitous Sudoku puzzle

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

- Can be encoded as binary integer program: let $z_{i, j} \in\{0,1\}^{9}$ denote the "indicator" of number in the i, j position
$z_{6,3}=\left[\begin{array}{llllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right]^{T} \Longleftrightarrow$

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7		3		2				6
	6					2	8	
			4	1	9			5
				8			7	9

- Each square can have only one number

$$
\sum_{k=1}^{9}\left(z_{i, j}\right)_{k}=1, \quad i, j=1, \ldots, 9
$$

- Every row must contain each number

$$
\sum_{j=1}^{9} z_{i, j}=\mathbf{1}, \text { (all ones vector) } i=1, \ldots, 9
$$

- Every column must contain each number

$$
\sum_{i=1}^{9} z_{i, j}=\mathbf{1}, \quad j=1, \ldots, 9
$$

- Every 3×3 block must contain each number

$$
\sum_{k, \ell=1}^{3} z_{i+k, j+\ell}=\mathbf{1}, \quad i, j \in\{0,3,6\}
$$

- Final optimization problem (note that objective is irrelevant, as we only care about finding a feasible point)

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i, j=1}^{9} \max _{k}\left(z_{i, j}\right)_{k} \\
\text { subject to } & z_{i, j} \in\{0,1\}^{9}, \quad i, j=1, \ldots, 9 \\
& \sum_{k=1}^{9}\left(z_{i, j}\right)_{k}=1, \quad i, j=1, \ldots, 9 \\
& \sum_{j=1}^{9} z_{i, j}=\mathbf{1}, \quad i=1, \ldots, 9 \\
& \sum_{i=1}^{9} z_{i, j}=\mathbf{1}, \quad j=1, \ldots, 9 \\
& \sum_{k, \ell=1}^{3} z_{i+k, j+\ell}=\mathbf{1}, \quad i, j \in\{0,3,6\}
\end{aligned}
$$

Example: path planning with obstacles

- Find path from start to goal that avoids obstacles

- Represent path as set of points $x_{i} \in \mathbb{R}^{2}, i=1, \ldots, m$ and minimize squared distance between consectutive points
- Obstacle is defined by $a, b \in \mathbb{R}^{2}$

$$
\mathcal{O}=\left\{x: a_{1} \leq x_{1} \leq b_{1}, a_{2} \leq x_{2} \leq b_{2}\right\}
$$

- Constraint that we not hit obstacle can be represented as

$$
\left(x_{i}\right)_{1} \leq a_{1} \vee\left(x_{i}\right)_{1} \geq b_{1} \vee\left(x_{i}\right)_{2} \leq a_{2} \vee\left(x_{i}\right)_{2} \geq b_{2}, \quad i=1, \ldots, m
$$

- How can we represent this using binary variables?
- The trick: "big-M" method
- Let $M \in \mathbb{R}$ be some big number and consider the constraint

$$
\left(x_{i}\right)_{1} \leq a_{1}+z M
$$

for $z \in\{0,1\}$; if $z=0$, this is the same as the original constraint, but if $z=1$ then constraint will always be satisfied

- Introduce new variables $z_{i 1}, z_{i 2}, z_{i 3}, z_{i 4}$ for each x_{i}

$$
x_{i} \notin \mathcal{O} \Longleftrightarrow \begin{aligned}
&\left(x_{i}\right)_{1} \leq a_{1}+z_{i 1} M \\
&\left(x_{i}\right)_{1} \geq b_{1}-z_{i 2} M \\
&\left(x_{i}\right)_{2} \leq a_{2}+z_{i 3} M \\
&\left(x_{i}\right)_{2} \geq b_{2}-z_{i 4} M \\
& z_{i 1}+z_{i 2}+z_{i 3}+z_{i 4} \leq 3
\end{aligned}
$$

Goal O

O Start

- Final optimization problem

$$
\left.\begin{array}{cl}
\underset{x, z}{\operatorname{minimize}} & \sum_{i=1}^{m-1}\left\|x_{i+1}-x_{i}\right\|_{2}^{2} \\
& \left(x_{i}\right)_{1} \leq a_{1}+z_{i 1} M \\
& \left(x_{i}\right)_{1} \geq b_{1}-z_{i 2} M \\
\text { subject to } & \left(x_{i}\right)_{2} \leq a_{2}+z_{i 3} M \\
& \left(x_{i}\right)_{2} \geq b_{2}-z_{i 4} M \\
& z_{i 1}+z_{i 2}+z_{i 3}+z_{i 4} \leq 3
\end{array}\right\} i=1, \ldots, r
$$

Overview

- Introduction to mixed integer programs
- Examples: Sudoku, planning with obstacles
- Solving integer programs with branch and bound
- Examples (solved)
- Extensions

Solution via enumeration

- Recall that optimization problem

$$
\begin{aligned}
\underset{x, z}{\operatorname{minimize}} & f(x, z) \\
\text { subject to } & g_{i}(x, z) \leq 0 \quad i=1, \ldots, m \\
& z_{i} \in\{0,1\}, \quad i=1, \ldots, p
\end{aligned}
$$

is easy for a fixed z (then a convex problem)

- So, just enumerate all possible z 's and solve optimization problem for each
- 2^{p} possible assignments, quickly becomes intractable

Branch and bound

- Branch and bound is simply a search algorithm (best-first search) applied to finding the optimal z assignment
- In the worst case, still exponential (have to check every possible assignment)
- In many cases much better

Convex relaxations

- The key idea: convex relaxation of non-convex constraint

$$
\begin{aligned}
\underset{x, z}{\operatorname{minimize}} & f(x, z) \\
\text { subject to } & g_{i}(x, z) \leq 0 \quad i=1, \ldots, m \\
& z_{i} \in\{0,1\}, \quad i=1, \ldots, p
\end{aligned}
$$

Convex relaxations

- The key idea: convex relaxation of non-convex constraint

$$
\begin{aligned}
\underset{x, \bar{z}}{\operatorname{minimize}} & f(x, \bar{z}) \\
\text { subject to } & g_{i}(x, \bar{z}) \leq 0 \quad i=1, \ldots, m \\
& \bar{z}_{i} \in[0,1], \quad i=1, \ldots, p
\end{aligned}
$$

Convex relaxations

- The key idea: convex relaxation of non-convex constraint

$$
\begin{aligned}
\underset{x, \bar{z}}{\operatorname{minimize}} & f(x, \bar{z}) \\
\text { subject to } & g_{i}(x, \bar{z}) \leq 0 \quad i=1, \ldots, m \\
& \bar{z}_{i} \in[0,1], \quad i=1, \ldots, p
\end{aligned}
$$

- Key point: if the optimal solution \bar{z}^{\star} to the relaxtion is integer valued, then it is an optimal solution to the integer program
- Furthermore, all solutions to relaxed problem provide lower bounds on optimal objective

$$
f\left(x^{\star}, \bar{z}^{\star}\right) \leq f\left(x^{\star}, z^{\star}\right)
$$

Simple branch and bound algorithm

- Idea of approach

1. Solve relaxed problem
2. If there are variables \bar{z}_{i}^{\star} with non-integral solutions, pick one of the variables and recursively solve each relaxtion with $\bar{z}_{i}=0$ and $\bar{z}_{i}=1$
3. Stop when a solution is integral

- By using best-first search (based upon lower bound given by relaxation), we potentially need to search many fewer possibilities than for enumeration
function $\left(f, x^{\star}, \bar{z}^{\star}, \mathcal{C}\right)=$ Solve-Relaxtion (\mathcal{C})
// solves relaxation plus constraints in \mathcal{C}
$\mathrm{q} \leftarrow$ Priority-Queue()
q.push(Solve-Relaxtion(\{\}))
while(q not empty):
$\left(f, x^{\star}, \bar{z}^{\star}, \mathcal{C}\right) \leftarrow \mathrm{q} \cdot \operatorname{pop}()$
if \bar{z}^{\star} integral:
return $\left(f, x^{\star}, \bar{z}^{\star}, \mathcal{C}\right)$
else:
Choose i such that \bar{z}_{i} non-integral q.push(Solve-Relaxtion $\left.\left(\mathcal{C} \bigcup\left\{\bar{z}_{i}=0\right\}\right)\right)$
q. push $\left(\right.$ Solve-Relaxtion $\left.\left(\mathcal{C} \bigcup\left\{\bar{z}_{i}=1\right\}\right)\right)$
- A common modification: in addition to maintaining lower bound from relaxation, maintain an upper bound on optimal objective
- Common method for computing upper bound: round entries in \bar{z}_{i} to nearest integer, and solve optimization problem with this fixed \bar{z}
- (May not produce a feasible solution)
function $\left(f, x^{\star}, \bar{z}^{\star}, \mathcal{C}\right)=$ Solve-Relaxtion (\mathcal{C})
// solves relaxation plus constraints in \mathcal{C}
$\mathrm{q} \leftarrow$ Priority-Queue()
q2 \leftarrow Priority-Queue()
q.push(Solve-Relaxtion(\{\}))
while(q not empty):
$\left(f, x^{\star}, \bar{z}^{\star}, \mathcal{C}\right) \leftarrow \mathrm{q} \cdot \operatorname{pop}()$
q2.push(Solve-Relaxation $\left.\left(\left\{\bar{z}=\operatorname{round}\left(\bar{z}^{\star}\right)\right\}\right)\right)$
if q2.first() $-f<\epsilon$:
return q2.pop()
else:
Choose i such that \bar{z}_{i} non-integral
q. push $\left(\right.$ Solve-Relaxtion $\left.\left(\mathcal{C} \bigcup\left\{\bar{z}_{i}=0\right\}\right)\right)$
q. push(Solve-Relaxtion $\left.\left(\mathcal{C} \bigcup\left\{\bar{z}_{i}=1\right\}\right)\right)$

Simple example (from Boyd and Mattingley)

$$
\begin{aligned}
\underset{z}{\operatorname{minimize}} & 2 z_{1}+z_{2}-2 z_{3} \\
\text { subject to } & 0.7 z_{1}+0.5 z_{2}+z 3 \geq 1.8 \\
& z_{i} \in\{0,1\}, \quad i=1,2,3
\end{aligned}
$$

Search tree

Queue

Simple example (from Boyd and Mattingley)

$$
\begin{aligned}
\underset{z}{\operatorname{minimize}} & 2 z_{1}+z_{2}-2 z_{3} \\
\text { subject to } & 0.7 z_{1}+0.5 z_{2}+z 3 \geq 1.8 \\
& z_{i} \in[0,1], \quad i=1,2,3
\end{aligned}
$$

Search tree
Queue
\{\}

$$
(-0.143,[0.43,1,1],\{ \})
$$

Simple example (from Boyd and Mattingley)

$$
\begin{aligned}
\underset{z}{\operatorname{minimize}} & 2 z_{1}+z_{2}-2 z_{3} \\
\text { subject to } & 0.7 z_{1}+0.5 z_{2}+z 3 \geq 1.8 \\
& z_{i} \in[0,1], \quad i=1,2,3
\end{aligned}
$$

Search tree

$$
z_{1}=0 \quad z_{1}=1
$$

Queue

$$
\begin{aligned}
& \left(0.2,[1,0.2,1],\left\{z_{1}=1\right\}\right) \\
& \left(\infty,-,\left\{z_{1}=0\right\}\right)
\end{aligned}
$$

Simple example (from Boyd and Mattingley)

$$
\begin{aligned}
\underset{z}{\operatorname{minimize}} & 2 z_{1}+z_{2}-2 z_{3} \\
\text { subject to } & 0.7 z_{1}+0.5 z_{2}+z 3 \geq 1.8 \\
& z_{i} \in[0,1], \quad i=1,2,3
\end{aligned}
$$

Search tree

Queue

Sudoku revisited

- The hard part with Sudoku is finding puzzles where the initial linear programming relaxation is not already tight
[1] - News - Waird Nows
World's hardest sudoku: Can you solve Dr Arto Inkala's puzzle?

Aug 19,201000.00 By Mirrorco.uk OComments
Could this be the toughest sudoku puzzle ever devised?

Wordd's Hardest Sudoku
Could this be the toughest sudoku puzzle ever devised?

- Branch and bound solves this problem after 27 steps
$\operatorname{minimize} \sum_{i, j=1}^{9} \max _{k}\left(z_{i, j}\right)_{k}$
subject to $z \in$ Valid-Sudoku

$$
z_{i, j} \in\{0,1\}^{9}, \quad i, j=1, \ldots, 9
$$

Path planning with obstacles

- Final optimization problem

$$
\left.\begin{array}{rl}
\underset{x, z}{\operatorname{minimize}} & \sum_{i=1}^{m-1}\left\|x_{i+1}-x_{i}\right\|_{2}^{2} \\
& \left(x_{i}\right)_{1} \leq a_{1}+z_{i 1} M \\
& \left(x_{i}\right)_{1} \geq b_{1}-z_{i 2} M \\
\text { subject to } & \left(x_{i}\right)_{2} \leq a_{2}+z_{i 3} M \\
& \left(x_{i}\right)_{2} \geq b_{2}-z_{i 4} M \\
& z_{i 1}+z_{i 2}+z_{i 3}+z_{i 4} \leq 3
\end{array}\right\} i=1, \ldots, m
$$

Overview

- Introduction to mixed integer programs
- Examples: Sudoku, planning with obstacles
- Solving integer programs with branch and bound
- Extensions

Extensions to MIP

- How to incorporate actual integer (instead of just binary) constraints?
- When solution is non-integral, split after adding constraints

$$
\left\{\bar{z}_{i} \leq \text { floor }\left(\bar{z}_{i}^{\star}\right)\right\}, \quad\left\{\bar{z}_{i} \geq \operatorname{ceil}\left(\bar{z}_{i}^{\star}\right)\right\}
$$

- More advanced splits, addition of "cuts" that rule out non-integer solutions (branch and cut)
- Solve convex problems more efficiently, many solvers can be sped up given a good initial point, and many previous solutions will be good initializations

Take home points

- Integer programs are a power subset of non-convex optimization problems that can solve many problems of interest
- Combining search and numerical optimization techniques, we get an algorithm that solve many problems much more efficiently than the "brute force" approach
- Performance will still be exponential in the worst case, and problem dependent, but can be reasonable for many problems of interest

