15-780 - Mixed integer programming

J. Zico Kolter

February 12, 2014

Overview

- Introduction to mixed integer programs
- Examples: Sudoku, planning with obstacles
- Solving integer programs with branch and bound
- Extensions

Overview

- Introduction to mixed integer programs
- Examples: Sudoku, planning with obstacles
- Solving integer programs with branch and bound
- Extensions

Introduction

Recall optimization problem

minimize
$$f(x)$$

subject to $g_i(x) \le 0$ $i = 1, ..., m$

"easy" when f, g_i convex, "hard" otherwise

- But how hard? How do we even go about solving (locally or globally) these problems?
- We've seen how to solve discrete non-convex optimization problems with search, can we apply these same techniques for mathematical optimization?

Mixed integer programs

 A special case of non-convex optimization methods that lends itself to a combination of search and convex optimization

minimize
$$f(x, z)$$

subject to $g_i(x, z) \le 0$ $i = 1, ..., m$

- $x \in \mathbb{R}^n$, and $z \in \mathbb{Z}^p$ are optimization variables
- $-f: \mathbb{R}^n \times \mathbb{Z}^p \to \mathbb{R}$ and $g_i: \mathbb{R}^n \times \mathbb{Z}^p \to \mathbb{R}$ convex objective and constraint functions
- Not a convex problem (set of all integers is not convex)
- Note: some ambiguity in naming, some refer to MIPs as only linear programs with integer constraints

Mixed binary integer programs

For this class, we'll focus on a slightly more restricted case

minimize
$$f(x, z)$$

subject to $g_i(x, z) \le 0$ $i = 1, ..., m$
 $z_i \in \{0, 1\}, i = 1, ..., p$

 Still an extremely power class of problems (i.e., binary integer programing is NP-complete)

Overview

- Introduction to mixed integer programs
- Examples: Sudoku, planning with obstacles
- Solving integer programs with branch and bound
- Examples (solved)
- Extensions

Example: Sudoku

• The ubiquitous Sudoku puzzle

3			7				
		1	9	5			
9	8					6	
			6				3
		8		3			1
			2				6
6					2	8	
		4	1	9			5
			8			7	9
	9	9 8	9 8 - 8 - 8 - 6 - 6 - 6	9 8 7 8 6 6 8 7 2 6 7 6 7 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	9 8 7 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		

• Can be encoded as binary integer program: let $z_{i,j} \in \{0,1\}^9$ denote the "indicator" of number in the i,j position

• Each square can have only one number

$$\sum_{k=1}^{9} (z_{i,j})_k = 1, \quad i, j = 1, \dots, 9$$

Every row must contain each number

$$\sum_{i=1}^{9} z_{i,j} = \mathbf{1}, \text{ (all ones vector)} \quad i = 1, \dots, 9$$

Every column must contain each number

$$\sum_{i=1}^{9} z_{i,j} = 1, \quad j = 1, \dots, 9$$

• Every 3x3 block must contain each number

$$\sum_{k,\ell=1}^{3} z_{i+k,j+\ell} = \mathbf{1}, \ i, j \in \{0,3,6\}$$

 Final optimization problem (note that objective is irrelevant, as we only care about finding a feasible point)

minimize
$$\sum_{i,j=1}^{9} \max_{k} (z_{i,j})_{k}$$
subject to
$$z_{i,j} \in \{0,1\}^{9}, \quad i,j=1,\ldots,9$$
$$\sum_{k=1}^{9} (z_{i,j})_{k} = 1, \quad i,j=1,\ldots,9$$
$$\sum_{j=1}^{9} z_{i,j} = \mathbf{1}, \quad i=1,\ldots,9$$
$$\sum_{i=1}^{9} z_{i,j} = \mathbf{1}, \quad j=1,\ldots,9$$
$$\sum_{k,\ell=1}^{3} z_{i+k,j+\ell} = \mathbf{1}, \quad i,j \in \{0,3,6\}$$

Example: path planning with obstacles

Find path from start to goal that avoids obstacles

- Represent path as set of points $x_i \in \mathbb{R}^2$, i = 1, ..., m and minimize squared distance between consectutive points
- Obstacle is defined by $a, b \in \mathbb{R}^2$

$$\mathcal{O} = \{x : a_1 \le x_1 \le b_1, a_2 \le x_2 \le b_2\}$$

• Constraint that we not hit obstacle can be represented as

$$(x_i)_1 \le a_1 \lor (x_i)_1 \ge b_1 \lor (x_i)_2 \le a_2 \lor (x_i)_2 \ge b_2, \ i = 1, \dots, m$$

How can we represent this using binary variables?

- The trick: "big-M" method
- ullet Let $M\in\mathbb{R}$ be some big number and consider the constraint

$$(x_i)_1 \le a_1 + zM$$

for $z \in \{0,1\}$; if z=0, this is the same as the original constraint, but if z=1 then constraint will always be satisfied

• Introduce new variables $z_{i1}, z_{i2}, z_{i3}, z_{i4}$ for each x_i

$$(x_i)_1 \le a_1 + z_{i1}M$$

$$(x_i)_1 \ge b_1 - z_{i2}M$$

$$x_i \notin \mathcal{O} \iff (x_i)_2 \le a_2 + z_{i3}M$$

$$(x_i)_2 \ge b_2 - z_{i4}M$$

$$z_{i1} + z_{i2} + z_{i3} + z_{i4} \le 3$$

• Final optimization problem

minimize
$$\sum_{i=1}^{m-1} \|x_{i+1} - x_i\|_2^2$$

$$(x_i)_1 \le a_1 + z_{i1}M$$

$$(x_i)_1 \ge b_1 - z_{i2}M$$
subject to
$$(x_i)_2 \le a_2 + z_{i3}M$$

$$(x_i)_2 \ge b_2 - z_{i4}M$$

$$z_{i1} + z_{i2} + z_{i3} + z_{i4} \le 3$$

$$z_{ij} \in \{0, 1\}, \quad i = 1, \dots, m, \quad j = 1, \dots, 4$$

$$x_1 = \text{start}, \quad x_m = \text{goal}$$

Overview

- Introduction to mixed integer programs
- Examples: Sudoku, planning with obstacles
- Solving integer programs with branch and bound
- Examples (solved)
- Extensions

Solution via enumeration

Recall that optimization problem

minimize
$$f(x, z)$$

subject to $g_i(x, z) \le 0$ $i = 1, ..., m$
 $z_i \in \{0, 1\}, i = 1, ..., p$

is easy for a fixed z (then a convex problem)

- So, just enumerate all possible z's and solve optimization problem for each
- ullet possible assignments, quickly becomes intractable

Branch and bound

- Branch and bound is simply a search algorithm (best-first search) applied to finding the optimal z assignment
- In the worst case, still exponential (have to check every possible assignment)
- In many cases much better

Convex relaxations

• The key idea: convex relaxation of non-convex constraint

minimize
$$f(x,z)$$

subject to $g_i(x,z) \le 0$ $i = 1, ..., m$
 $z_i \in \{0,1\}, i = 1, ..., p$

Convex relaxations

• The key idea: convex relaxation of non-convex constraint

$$\begin{aligned} & \underset{x,\bar{z}}{\text{minimize}} & f(x,\bar{z}) \\ & \text{subject to} & g_i(x,\bar{z}) \leq 0 & i=1,\ldots,m \\ & \bar{z}_i \in [0,1], & i=1,\ldots,p \end{aligned}$$

Convex relaxations

• The key idea: convex relaxation of non-convex constraint

minimize
$$f(x, \bar{z})$$

subject to $g_i(x, \bar{z}) \leq 0$ $i = 1, ..., m$
 $\bar{z}_i \in [0, 1], i = 1, ..., p$

- Key point: if the optimal solution \bar{z}^* to the relaxtion is integer valued, then it is an optimal solution to the integer program
- Furthermore, all solutions to relaxed problem provide lower bounds on optimal objective

$$f(x^*, \bar{z}^*) \le f(x^*, z^*)$$

Simple branch and bound algorithm

- Idea of approach
 - 1. Solve relaxed problem
 - 2. If there are variables \bar{z}_i^\star with non-integral solutions, pick one of the variables and recursively solve each relaxtion with $\bar{z}_i=0$ and $\bar{z}_i=1$
 - 3. Stop when a solution is integral
- By using best-first search (based upon lower bound given by relaxation), we potentially need to search many fewer possibilities than for enumeration

```
function (f, x^*, \bar{z}^*, \mathcal{C}) = \text{Solve-Relaxtion}(\mathcal{C})
      // solves relaxation plus constraints in \mathcal C
q \leftarrow Priority-Queue()
g.push(Solve-Relaxtion({}))
while(q not empty):
     (f, x^{\star}, \bar{z}^{\star}, \mathcal{C}) \leftarrow \mathsf{q.pop}()
     if \bar{z}^{\star} integral:
            return (f, x^*, \bar{z}^*, \mathcal{C})
     else:
            Choose i such that \bar{z}_i non-integral
            q.push(Solve-Relaxtion(\mathcal{C} \mid J\{\bar{z}_i = 0\}))
           g.push(Solve-Relaxtion(\mathcal{C} \mid J\{\bar{z}_i = 1\}))
```

- A common modification: in addition to maintaining lower bound from relaxation, maintain an upper bound on optimal objective
- Common method for computing upper bound: round entries in \bar{z}_i to nearest integer, and solve optimization problem with this fixed \bar{z}
- (May not produce a feasible solution)

```
function (f, x^*, \bar{z}^*, \mathcal{C}) = \text{Solve-Relaxtion}(\mathcal{C})
     // solves relaxation plus constraints in \mathcal C
a \leftarrow Priority-Queue()
q2 \leftarrow Priority-Queue()
g.push(Solve-Relaxtion({}))
while(q not empty):
     (f, x^*, \bar{z}^*, \mathcal{C}) \leftarrow \mathsf{q.pop}()
     q2.push(Solve-Relaxation(\{\bar{z} = \text{round}(\bar{z}^{\star})\}\))
     if a2.first() -f < \epsilon:
           return q2.pop()
     else:
           Choose i such that \bar{z}_i non-integral
           g.push(Solve-Relaxtion(\mathcal{C} \mid \exists \{\bar{z}_i = 0\}))
           q.push(Solve-Relaxtion(\mathcal{C} \cup \{\bar{z}_i = 1\}))
```

minimize
$$2z_1 + z_2 - 2z_3$$

subject to $0.7z_1 + 0.5z_2 + z_3 \ge 1.8$
 $z_i \in \{0, 1\}, i = 1, 2, 3$

Search tree

Queue

minimize
$$2z_1 + z_2 - 2z_3$$

subject to $0.7z_1 + 0.5z_2 + z_3 \ge 1.8$
 $z_i \in [0, 1], i = 1, 2, 3$

minimize
$$2z_1 + z_2 - 2z_3$$

subject to $0.7z_1 + 0.5z_2 + z_3 \ge 1.8$
 $z_i \in [0, 1], i = 1, 2, 3$

Search tree

Queue

$$(0.2, [1, 0.2, 1], \{z_1 = 1\})$$

$$(\infty, -, \{z_1 = 0\})$$

minimize
$$2z_1 + z_2 - 2z_3$$

subject to $0.7z_1 + 0.5z_2 + z_3 \ge 1.8$
 $z_i \in [0, 1], i = 1, 2, 3$

Search tree

Queue

$$(1, [1, 1, 1], \{z_1 = 1, z_2 = 1\})$$

$$(\infty, -, \{z_1 = 0\})$$

$$(\infty, -, \{z_1 = 1, z_2 = 0\})$$

Sudoku revisited

• The hard part with Sudoku is finding puzzles where the initial linear programming relaxation is not already tight

World's hardest sudoku: Can you solve Dr Arto Inkala's

puzzle? Aug 19, 2010 00:00 By Mirror.co.uk 0 Comments Could this be the toughest sudoku puzzle ever devised? 8 2 7 1 5 5 3 7 6 3 2 8 6 9 3 9 7

• Branch and bound solves this problem after 27 steps

Could this be the toughest sudoku puzzle ever devised?

Path planning with obstacles

• Final optimization problem

minimize
$$\sum_{i=1}^{m-1} \|x_{i+1} - x_i\|_2^2$$

$$(x_i)_1 \le a_1 + z_{i1}M$$

$$(x_i)_1 \ge b_1 - z_{i2}M$$
subject to
$$(x_i)_2 \le a_2 + z_{i3}M$$

$$(x_i)_2 \ge b_2 - z_{i4}M$$

$$z_{i1} + z_{i2} + z_{i3} + z_{i4} < 3$$

$$i = 1, \dots, m$$

Overview

- Introduction to mixed integer programs
- Examples: Sudoku, planning with obstacles
- Solving integer programs with branch and bound
- Extensions

Extensions to MIP

- How to incorporate actual integer (instead of just binary) constraints?
 - When solution is non-integral, split after adding constraints

$$\{\bar{z}_i \leq \text{floor}(\bar{z}_i^{\star})\}, \ \{\bar{z}_i \geq \text{ceil}(\bar{z}_i^{\star})\}$$

- More advanced splits, addition of "cuts" that rule out non-integer solutions (branch and cut)
- Solve convex problems more efficiently, many solvers can be sped up given a good initial point, and many previous solutions will be good initializations

Take home points

- Integer programs are a power subset of non-convex optimization problems that can solve many problems of interest
- Combining search and numerical optimization techniques, we get an algorithm that solve many problems much more efficiently than the "brute force" approach
- Performance will still be exponential in the worst case, and problem dependent, but can be reasonable for many problems of interest