
15-780 – Mixed integer programming

J. Zico Kolter

February 12, 2014

1



Overview

• Introduction to mixed integer programs

• Examples: Sudoku, planning with obstacles

• Solving integer programs with branch and bound

• Extensions

2



Overview

• Introduction to mixed integer programs

• Examples: Sudoku, planning with obstacles

• Solving integer programs with branch and bound

• Extensions

2



Introduction

• Recall optimization problem

minimize
x

f(x)

subject to gi(x) ≤ 0 i = 1, . . . ,m

“easy” when f , gi convex, “hard” otherwise

• But how hard? How do we even go about solving (locally or
globally) these problems?

• We’ve seen how to solve discrete non-convex optimization
problems with search, can we apply these same techniques for
mathematical optimization?

3



Mixed integer programs

• A special case of non-convex optimization methods that lends
itself to a combination of search and convex optimization

minimize
x,z

f(x, z)

subject to gi(x, z) ≤ 0 i = 1, . . . ,m

– x ∈ Rn, and z ∈ Zp are optimization variables

– f : Rn × Zp → R and gi : Rn × Zp → R convex objective and
constraint functions

• Not a convex problem (set of all integers is not convex)

• Note: some ambiguity in naming, some refer to MIPs as only
linear programs with integer constraints

4



Mixed binary integer programs

• For this class, we’ll focus on a slightly more restricted case

minimize
x,z

f(x, z)

subject to gi(x, z) ≤ 0 i = 1, . . . ,m

zi ∈ {0, 1}, i = 1, . . . , p

• Still an extremely power class of problems (i.e., binary integer
programing is NP-complete)

5



Overview

• Introduction to mixed integer programs

• Examples: Sudoku, planning with obstacles

• Solving integer programs with branch and bound

• Examples (solved)

• Extensions

6



Example: Sudoku

• The ubiquitous Sudoku puzzle

• Can be encoded as binary integer program: let zi,j ∈ {0, 1}9
denote the “indicator” of number in the i, j position

z6,3 = [0 0 1 0 0 0 0 0 0]T ⇐⇒

7



• Each square can have only one number

9∑
k=1

(zi,j)k = 1, i, j = 1, . . . , 9

• Every row must contain each number

9∑
j=1

zi,j = 1, (all ones vector) i = 1, . . . , 9

• Every column must contain each number

9∑
i=1

zi,j = 1, j = 1, . . . , 9

• Every 3x3 block must contain each number

3∑
k,`=1

zi+k,j+` = 1, i, j ∈ {0, 3, 6}
8



• Final optimization problem (note that objective is irrelevant, as
we only care about finding a feasible point)

minimize

9∑
i,j=1

max
k

(zi,j)k

subject to zi,j ∈ {0, 1}9, i, j = 1, . . . , 9

9∑
k=1

(zi,j)k = 1, i, j = 1, . . . , 9

9∑
j=1

zi,j = 1, i = 1, . . . , 9

9∑
i=1

zi,j = 1, j = 1, . . . , 9

3∑
k,`=1

zi+k,j+` = 1, i, j ∈ {0, 3, 6}

9



Example: path planning with obstacles

• Find path from start to goal that avoids obstacles

Start

Goal

• Represent path as set of points xi ∈ R2, i = 1, . . . ,m and
minimize squared distance between consectutive points

• Obstacle is defined by a, b ∈ R2

O = {x : a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2}
10



• Constraint that we not hit obstacle can be represented as

(xi)1 ≤ a1 ∨ (xi)1 ≥ b1 ∨ (xi)2 ≤ a2 ∨ (xi)2 ≥ b2, i = 1, . . . ,m

• How can we represent this using binary variables?

11



• The trick: “big-M” method

• Let M ∈ R be some big number and consider the constraint

(xi)1 ≤ a1 + zM

for z ∈ {0, 1}; if z = 0, this is the same as the original
constraint, but if z = 1 then constraint will always be satisfied

• Introduce new variables zi1, zi2, zi3, zi4 for each xi

xi 6∈ O ⇐⇒

(xi)1 ≤ a1 + zi1M
(xi)1 ≥ b1 − zi2M
(xi)2 ≤ a2 + zi3M
(xi)2 ≥ b2 − zi4M
zi1 + zi2 + zi3 + zi4 ≤ 3

12



Start

Goal

• Final optimization problem

minimize
x,z

m−1∑
i=1

‖xi+1 − xi‖22

subject to

(xi)1 ≤ a1 + zi1M
(xi)1 ≥ b1 − zi2M
(xi)2 ≤ a2 + zi3M
(xi)2 ≥ b2 − zi4M
zi1 + zi2 + zi3 + zi4 ≤ 3

 i = 1, . . . ,m

zij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , 4

x1 = start, xm = goal 13



Overview

• Introduction to mixed integer programs

• Examples: Sudoku, planning with obstacles

• Solving integer programs with branch and bound

• Examples (solved)

• Extensions

14



Solution via enumeration

• Recall that optimization problem

minimize
x,z

f(x, z)

subject to gi(x, z) ≤ 0 i = 1, . . . ,m

zi ∈ {0, 1}, i = 1, . . . , p

is easy for a fixed z (then a convex problem)

• So, just enumerate all possible z’s and solve optimization
problem for each

• 2p possible assignments, quickly becomes intractable

15



Branch and bound

• Branch and bound is simply a search algorithm (best-first
search) applied to finding the optimal z assignment

• In the worst case, still exponential (have to check every possible
assignment)

• In many cases much better

16



Convex relaxations

• The key idea: convex relaxation of non-convex constraint

minimize
x,z

f(x, z)

subject to gi(x, z) ≤ 0 i = 1, . . . ,m

zi ∈ {0, 1}, i = 1, . . . , p

• Key point: if the optimal solution z̄? to the relaxtion is integer
valued, then it is an optimal solution to the integer program

• Furthermore, all solutions to relaxed problem provide lower
bounds on optimal objective

f(x?, z̄?) ≤ f(x?, z?)

17



Convex relaxations

• The key idea: convex relaxation of non-convex constraint

minimize
x,z̄

f(x, z̄)

subject to gi(x, z̄) ≤ 0 i = 1, . . . ,m

z̄i ∈ [0, 1], i = 1, . . . , p

• Key point: if the optimal solution z̄? to the relaxtion is integer
valued, then it is an optimal solution to the integer program

• Furthermore, all solutions to relaxed problem provide lower
bounds on optimal objective

f(x?, z̄?) ≤ f(x?, z?)

17



Convex relaxations

• The key idea: convex relaxation of non-convex constraint

minimize
x,z̄

f(x, z̄)

subject to gi(x, z̄) ≤ 0 i = 1, . . . ,m

z̄i ∈ [0, 1], i = 1, . . . , p

• Key point: if the optimal solution z̄? to the relaxtion is integer
valued, then it is an optimal solution to the integer program

• Furthermore, all solutions to relaxed problem provide lower
bounds on optimal objective

f(x?, z̄?) ≤ f(x?, z?)

17



Simple branch and bound algorithm

• Idea of approach

1. Solve relaxed problem

2. If there are variables z̄?i with non-integral solutions, pick one of
the variables and recursively solve each relaxtion with z̄i = 0 and
z̄i = 1

3. Stop when a solution is integral

• By using best-first search (based upon lower bound given by
relaxation), we potentially need to search many fewer
possibilities than for enumeration

18



function (f, x?, z̄?, C) = Solve-Relaxtion(C)
// solves relaxation plus constraints in C

q← Priority-Queue()
q.push(Solve-Relaxtion({}))
while(q not empty):

(f, x?, z̄?, C)← q.pop()
if z̄? integral:

return (f, x?, z̄?, C)
else:

Choose i such that z̄i non-integral
q.push(Solve-Relaxtion(C

⋃
{z̄i = 0}))

q.push(Solve-Relaxtion(C
⋃
{z̄i = 1}))

19



• A common modification: in addition to maintaining lower bound
from relaxation, maintain an upper bound on optimal objective

• Common method for computing upper bound: round entries in
z̄i to nearest integer, and solve optimization problem with this
fixed z̄

• (May not produce a feasible solution)

20



function (f, x?, z̄?, C) = Solve-Relaxtion(C)
// solves relaxation plus constraints in C

q← Priority-Queue()
q2← Priority-Queue()
q.push(Solve-Relaxtion({}))
while(q not empty):

(f, x?, z̄?, C)← q.pop()
q2.push(Solve-Relaxation({z̄ = round(z̄?)}))
if q2.first()− f < ε:

return q2.pop()
else:

Choose i such that z̄i non-integral
q.push(Solve-Relaxtion(C

⋃
{z̄i = 0}))

q.push(Solve-Relaxtion(C
⋃
{z̄i = 1}))

21



Simple example (from Boyd and Mattingley)

minimize
z

2z1 + z2 − 2z3

subject to 0.7z1 + 0.5z2 + z3 ≥ 1.8

zi ∈ {0, 1}, i = 1, 2, 3

Search tree

{}

z1 = 0 z1 = 1

z2 = 0 z2 = 1

Queue

22



Simple example (from Boyd and Mattingley)

minimize
z

2z1 + z2 − 2z3

subject to 0.7z1 + 0.5z2 + z3 ≥ 1.8

zi ∈ [0, 1], i = 1, 2, 3

Search tree

{}

z1 = 0 z1 = 1

z2 = 0 z2 = 1

Queue

(−0.143, [0.43, 1, 1], {})

22



Simple example (from Boyd and Mattingley)

minimize
z

2z1 + z2 − 2z3

subject to 0.7z1 + 0.5z2 + z3 ≥ 1.8

zi ∈ [0, 1], i = 1, 2, 3

Search tree

{}

z1 = 0 z1 = 1

z2 = 0 z2 = 1

Queue

(0.2, [1, 0.2, 1], {z1 = 1})
(∞,−, {z1 = 0})

22



Simple example (from Boyd and Mattingley)

minimize
z

2z1 + z2 − 2z3

subject to 0.7z1 + 0.5z2 + z3 ≥ 1.8

zi ∈ [0, 1], i = 1, 2, 3

Search tree

{}

z1 = 0 z1 = 1

z2 = 0 z2 = 1

Queue

(1, [1, 1, 1], {z1 = 1, z2 = 1})
(∞,−, {z1 = 0})
(∞,−, {z1 = 1, z2 = 0})

22



Sudoku revisited

• The hard part with Sudoku is finding puzzles where the initial
linear programming relaxation is not already tight

• Branch and bound solves this problem after 27 steps

23



minimize

9∑
i,j=1

max
k

(zi,j)k

subject to z ∈ Valid-Sudoku

zi,j ∈ {0, 1}9, i, j = 1, . . . , 9

5 10 15 20 25

50

60

70

80

Iteration

O
bj

ec
tiv

e

 

 

Lower bound
Optimal

24



Path planning with obstacles

Start

Goal

• Final optimization problem

minimize
x,z

m−1∑
i=1

‖xi+1 − xi‖22

subject to

(xi)1 ≤ a1 + zi1M
(xi)1 ≥ b1 − zi2M
(xi)2 ≤ a2 + zi3M
(xi)2 ≥ b2 − zi4M
zi1 + zi2 + zi3 + zi4 ≤ 3

 i = 1, . . . ,m

zij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , 4

x1 = start, xm = goal

25



50 100 150
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

Iteration

O
bj

ec
tiv

e

 

 
Lower bound
Feasible upper bound

26



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

27



Overview

• Introduction to mixed integer programs

• Examples: Sudoku, planning with obstacles

• Solving integer programs with branch and bound

• Extensions

28



Extensions to MIP

• How to incorporate actual integer (instead of just binary)
constraints?

– When solution is non-integral, split after adding constraints

{z̄i ≤ floor(z̄?i )}, {z̄i ≥ ceil(z̄?i )}

• More advanced splits, addition of “cuts” that rule out
non-integer solutions (branch and cut)

• Solve convex problems more efficiently, many solvers can be
sped up given a good initial point, and many previous solutions
will be good initializations

29



Take home points

• Integer programs are a power subset of non-convex optimization
problems that can solve many problems of interest

• Combining search and numerical optimization techniques, we
get an algorithm that solve many problems much more
efficiently than the “brute force” approach

• Performance will still be exponential in the worst case, and
problem dependent, but can be reasonable for many problems of
interest

30


