15-780 - Numerical Optimization

J. Zico Kolter

April 23, 2014

Outline

Introduction: Some (possibly) familiar games

Basic game theory

Computing equilibria

Special cases and extensions

Prisoner's dilemma

- Two prisoners being interrogated, can either stay silent or implicate the other one
- If both stay silent, each sentenced to a year in jail; if only one implicates another, he goes free and other gets 5 years in jail; if both implicate each other, both get 3 years

	Silent	Implicate
Silent	-1,-1	-5,0
Implicate	0,-5	-3,-3

• Even though Silent/Silent is best for both, each one strictly benefits from implicating the other, regardless of other's actions

Guess 2/3 the mean

- All of you will play the game
- Pick a number between 1 and 10 (inclusive)
- The student whose number is *closest to 2/3* of the mean of all the guesses wins (and breaking ties randomly)

General ideas

- Both these games differ slightly from what we have seen so far in class: in order to decide our action we need to account for other agents that are also acting (and trying to account for our actions, ad infinitum)
- We focus here on the special cases of *noncooperative* game theory and games in *normal form*
 - Non-cooperative doesn't mean that agents don't cooperate, just that they are self-interested
 - Normal form here just means "one-shot" games, as opposed to turn-based games

Outline

Introduction: Some (possibly) familiar games

Basic game theory

Computing equilibria

Special cases and extensions

Games in normal form

- A normal form game is defined by (N, A, u), where
 - -N is a number of players, each indexed by i
 - $A = A_1 \times A_2 \times ... \times A_n$ is a set of actions, where each A_i is a *finite* set of actions available to player i
 - $-\ u:A o \mathbb{R}^n$ is a utility function that maps each set of actions $a\in A$ to a set of N utilities, one for each agent; i.e., $u_i(a)$ denotes the utility of agent i for the actions a

• Example: Prisoner's dilemma

	Silent	Implicate
Silent	-1,-1	-5,0
Implicate	0,-5	-3,-3

$$-N=2$$

$$- \ A = \{\mathsf{Silent}, \mathsf{Implicate}\} \times \{\mathsf{Silent}, \mathsf{Implicate}\}$$

$$-\ u(a) = \begin{cases} \begin{bmatrix} -1 \\ -1 \end{bmatrix} & \text{if } a = (\mathsf{Silent}, \mathsf{Silent}) \\ \begin{bmatrix} -5 \\ 0 \end{bmatrix} & \text{if } a = (\mathsf{Silent}, \mathsf{Implicate}) \\ \begin{bmatrix} 0 \\ -5 \end{bmatrix} & \text{if } a = (\mathsf{Implicate}, \mathsf{Silent}) \\ \begin{bmatrix} -3 \\ -3 \end{bmatrix} & \text{if } a = (\mathsf{Implicate}, \mathsf{Implicate}) \end{cases}$$

- Example: Guess 2/3 the mean
 - -N arbitrary

-
$$A = \{1, 2, \dots, 10\}^N$$

$$- u_i(a) = \begin{cases} \frac{1}{\sum_{k=1}^m \mathbf{1}\left\{a_k = \left[\frac{2}{3}\operatorname{mean}(a)\right]\right\}} & \text{if } a_i = \left[\frac{2}{3}\operatorname{mean}(a)\right] \\ 0 & \text{otherwise} \end{cases}$$

 Note that utilities here refer to expected utilities: although we are not guaranteed to win if we pick the average, we still have a chance proportional to one over the number of others who pick the same mean

Battle of the sexes

- Husband and wife planning movie for the evening: husband wants to see Wondrous Love (WL) wife wants to see Lethal Weapon (LW)
- Different utilities for each movie, but both equally unhappy if they end up seeing different movies

	WL	LW
WL	2,1	0,0
LW	0,0	1,2

 Like prisoner's dilemma, points where there is no incentive for either player to deviate, but here there are two such points

- Rock, paper, scissors
 - Rock beats scissors, scissors beats paper, paper beats rock

	Rock	Paper	Scissors
Rock	0,0	-1,1	1,-1
Paper	1,-1	0,0	-1,1
Scissors	-1,1	1,-1	0,0

 If we play a fixed strategy, other player will always be able to beat us

- Some special cases:
 - Zero-sum game: two player game where $u_1(a)=-u_2(a)$, $\forall a\in A$ (e.g., rock paper scissors)
 - Coordination game: payoffs for all players are the same $u_i(a)=u_j(a), \ \forall i,j\in\{1,\dots,N\},\ a\in A$

	L	R
L	1,1	-1,-1
R	-1,-1	1,1

Pure and mixed strategies

- A strategy for player i, denoted $s_i:A_i\to [0,1]$ is a probability distribution over actions: $s_i(a_i)$ denotes probability that player i takes action action a_i (think of s_i as a vector in $[0,1]^{|A_i|}$ that must sum to one)
- A strategy profile s is a set of strategies for each player $s=(s_1,\ldots,s_N)$
- ullet The *support* of a strategy s_i is the set of actions that have non-zero probability
- Strategy with a support of size one is called *pure* strategy, otherwise *mixed* strategy

ullet The probability of set of actions a under strategy profile s is

$$s(a) = \prod_{i=1}^{N} s_i(a_i)$$

i.e., the actions are all chosen independently

ullet The expected utility for a strategy profile s is given by

$$u(s) = \sum_{a \in A} u(a)s(a)$$

This can also be written elementwise, for example

$$u_i(s) = \sum_{a \in A} u_i(a) \prod_{j=1}^{N} s_j(a_j)$$

Best response

- Best response refers to a best (potentially mixed) strategy that a player can play given the strategies of all opponents
- Define s_{-i} be be strategy profile s omitting the strategy of the ith player
- Formally, best response for player i given strategy profile s_{-i} is a strategy s_i^\star such that $u(s_i^\star, s_{-i}) \geq u(s_i, s_{-i})$ for all strategies s_i
- Of course, in general we don't know the strategies of the other opponents

Nash equilibrium

- Key definition: a strategy profile s is a Nash equilibrium if s_i is a best response to s_{-i} for all $i=1,\ldots,N$
- Intuitively corresponds to a "rational" set of strategies for each agent: no agent gains an advantage by switching their strategy
- Can be one or more Nash equilibria for a game
- Strict Nash if for all i and $s'_i \neq s_i$

$$u(s_i, s_{-i}) > u(s'_i, s_{-i})$$

i.e., s_i is strictly preferable to all other strategies

• Weak Nash otherwise, i.e., can have s_i' such that $u(s_i,s_{-i})=u(s_i',s_{-i})$

• Prisoner's dilemma

	Silent	Implicate
Silent -1,-1		-5,0
mplicate	0,-5	-3,-3

What are NE? Are they strict?

• Rock paper scissors

	Rock	Paper	Scissors
Rock	0,0	-1,1	1,-1
Paper	1,-1	0,0	-1,1
Scissors	-1,1	1,-1	0,0

What are NE? Are they strict?

• Battle of sexes

	WL	LW
WL	2,1	0,0
LW	0,0	1,2

What are NE? Are they strict?

- In 1950, John Nash proved that every game has at least one equilibrium point (important, requires mixed strategies)
- 27 pages, typeset like on the right (probably about 5 pages in dense latex, the same as your class project writeup ... hmmm); two references, one to his own paper
- Work won the Nobel prize in economics

Extatence of Scuilibrium Points

I have previously published [Proc. E. A. 5. 36 (1950) 45-49] a groof of two result below based on lakeutania generalised fixed point theorems. The proof given here uses the Broomer theorems.

The method is to set up a sequence of continuous mapp lingus

→ A'(d,1); d→ A'(d,1); --- whose
fixed points have an equilibrium point as limit point. A limit mapping salets, but in discontinuous, and need not have any fixed points.

THEO. 1: Every finite page has an equilibrium point.

Proof: Using our standard notation, let -d, be an n-topic of mixed strategies, and $\bigcap_{i \in A} (-d_i)$ the pay-off to player i if he uses his pure strategy. Thus, and the others use their respective mixed strategies in $-d_i$. For each integer $-\lambda$, we define the following continuous functions of $-d_i$:

$$\begin{aligned} &q_{1}(\mathbf{d}) = \underset{\mathsf{ind}}{\overset{\mathsf{mox}}{\sim}} \beta_{1} \mathbf{a}(\mathbf{d}) \;, \\ &\varphi_{1} \mathbf{a}(\mathbf{d}, \mathbf{h}) = \beta_{1} \mathbf{a}(\mathbf{d}) - q_{1}(\mathbf{d}) + \frac{1}{2} \mathbf{a} \;, \; \mathbf{and} \\ &\varphi_{1}^{+} \mathbf{a}(\mathbf{h}) = \underset{\mathsf{ind}}{\mathsf{max}} \left[0, \varphi_{1} \mathbf{a}(\mathbf{d}, \mathbf{h}) \right] \;. \end{aligned}$$

Now $\sum_{\alpha} \phi_{i\alpha}^{+}(\alpha) \ge \max_{\alpha} \phi_{i\alpha}^{+}(\alpha) = 1/2 > 0$ so that

$$C'_{id}(4,\lambda) = \frac{\phi_{id}^{+}(4,\lambda)}{\sum \phi_{ib}^{+}(4,\lambda)}$$

tails $S_1'(\mathcal{A}, \lambda) = \sum_{\alpha} \prod_{\alpha} C_1'(\alpha', \lambda)$ and $\mathcal{A}'(\mathcal{A}, \lambda) = (S_1', S_1', \dots, S_n')$. Since all the operations have preserved continuity, the mapping $\mathcal{A} \to \mathcal{A}'(\mathcal{A}, \lambda)$ is con-

Outline

Introduction: Some (possibly) familiar games

Basic game theory

Computing equilibria

Special cases and extensions

Can we compute Nash equilibria?

- Since this is a computer science course after all...
- How do we actually compute the Nash equilibria of a game (for now, let's just consider two-player games)?
- In 2005, shown to be a PPAD-complete problem (not quite like NP, since every game has a Nash equilibrium, but main intuition is similar, thought to require solvable exponential time in game size in the worst case)
- But "hard" problems don't faze us in this course (see search, mixed integer programming, etc)

Computing an equilibrium with known support

- If we just want to look at pure strategies (again,in two player case) this is easy: just check all $|A_1| \times |A_2|$ possible strategies
- But, a game may not have a pure strategy equilibrium
- Key idea: For a given support, we can compute NE (if one exists) by solving a set of linear equations
- Thus, problem really becomes one of searching for the correct support

 \bullet Battle of sexes, let's guess that the support for a mixed strategy contains both WL and LW for husband and wife, and say that husband chooses WL with probability p

	WL	LW
WL	2,1	0,0
LW	0,0	1,2

 Key idea: In order for strategy to be a NE, wife must be indifferent between alternatives

$$u_2(WL) = u_2(LW)$$

 $p \cdot 1 + (1-p) \cdot 0 = p \cdot 0 + (1-p) \cdot 2$
 $p = 2/3$

• So $s_1 = (2/3, 1/3), s_2 = (1/3, 2/3)$ is mixed strategy NE

- The general case
 - Hypothesize some supports $A_1 \subseteq A_1, A_2 \subseteq A_2$ for players
 - Utilities for all actions in support must be equal for both players $u_1(a)=u_1(a'), \forall a,a'\in\mathcal{A}_1\Longrightarrow |\mathcal{A}_1|-1 \text{ linear equations}$ $u_2(a)=u_2(a'), \forall a,a'\in\mathcal{A}_2\Longrightarrow |\mathcal{A}_2|-1 \text{ linear equations}$ $\sum_{a\in\mathcal{A}_1}s_1(a)=1, \sum_{a\in\mathcal{A}_2}s_2(a)=1\Longrightarrow |\mathcal{A}_2|-1 \text{ linear equations}$ $\text{Variables }s_1(a), \forall a\in\mathcal{A}_1,s_2(a), \forall a\in\mathcal{A}_2,\Longrightarrow |\mathcal{A}_1|+|\mathcal{A}_2| \text{ unknowns}}$

- What happens when we try a support that does not produce a NE?
- Prisoner's dilemma, mixed strategy with full support (S,I)

	Silent	Implicate
Silent	-1,-1	-5,0
Implicate	0,-5	-3,-3

Finding the support

- But, $2^{|A_i|} 1$ possible supports for each player
- Do we have to try them all? In the worst case, yes (unless PPAD = P)
- But, many times we will find a solution much faster (c.f. search, mixed integer programming, etc)
- In fact, a procedure that looks a lot like local hill-climbing search is guaranteed to find a solution for the two-player case

- Lemke-Howson algorithm (stated very imprecisely)
- Start with some initial support A_1, A_2 and repeat:
 - 1. Choose (according to a specific rule), to add, drop, or swap action from support
 - 2. Solve resulting linear systems, if they are consistent with mixed strategy, we have found a NE
 - 3. Otherwise, continue
- Essentially the same procedure as the simplex algorithm for linear programming, for those who may be familiar with that

Outline

Introduction: Some (possibly) familiar games

Basic game theory

Computing equilibria

Special cases and extensions

N-player games

- For more than two players, precise analogue of Lemke-Howson algorithm doesn't exist, but local search can still be effective
- Can also formulate as optimization problem

minimize
$$\sum_{i=1}^{N} \sum_{a_i \in A_i} \max\{u_i(a_i, s_{-i}) - u_i(s), 0\}^2$$
subject to $1^T s_i = 1, \ s \ge 0$

- At any NE, objective value will be zero (no incentive to any other pure strategy)
- Of course, a non-convex problem, with potential local optima

Special case: zero-sum games

 Two-player zero-sum games can be solved efficiently (in polynomial time) by formulating it as a linear program

minimize maximize
$$s_1^T C s_2$$

subject to $s_1 \geq 0, 1^T s_1 = 1, s_2 \geq 0, 1^T s_2 = 1$

Requiring player 2 to play a pure strategy, equivalent to

minimize
$$\max_{s_1 = 1, \dots, |A_2|} (C^T s_1)_i$$

subject to $s_1 \ge 0, 1^T s_1 = 1$

which is equivalent to linear program

minimize
$$t$$

subject to $s_1 \ge 0, 1^T s_1 = 1, C^T u \le t1$

- Somewhat surprisingly, this is actually the optimal strategy for player 1, even if player 2 can play mixed strategies (proof involves an optimization concept called duality)
- Key aspect of zero-sum game is that we could express game as minimization and maximization over the same objective terms by the two agents, can't do this in general case