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Prisoner’s dilemma

• Two prisoners being interrogated, can either stay silent or
implicate the other one

• If both stay silent, each sentenced to a year in jail; if only one
implicates another, he goes free and other gets 5 years in jail; if
both implicate each other, both get 3 years

Silent Implicate

Silent -1,-1 -5,0

Implicate 0,-5 -3,-3

• Even though Silent/Silent is best for both, each one strictly
benefits from implicating the other, regardless of other’s actions
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Guess 2/3 the mean

• All of you will play the game

• Pick a number between 1 and 10 (inclusive)

• The student whose number is closest to 2/3 of the mean of all
the guesses wins (and breaking ties randomly)
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General ideas

• Both these games differ slightly from what we have seen so far
in class: in order to decide our action we need to account for
other agents that are also acting (and trying to account for our
actions, ad infinitum)

• We focus here on the special cases of noncooperative game
theory and games in normal form

– Non-cooperative doesn’t mean that agents don’t cooperate, just
that they are self-interested

– Normal form here just means “one-shot” games, as opposed to
turn-based games
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Games in normal form

• A normal form game is defined by (N,A, u), where

– N is a number of players, each indexed by i

– A = A1 ×A2 × . . .×An is a set of actions, where each Ai is a
finite set of actions available to player i

– u : A→ Rn is a utility function that maps each set of actions
a ∈ A to a set of N utilities, one for each agent; i.e., ui(a)
denotes the utility of agent i for the actions a
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• Example: Prisoner’s dilemma

Silent Implicate

Silent -1,-1 -5,0

Implicate 0,-5 -3,-3

– N = 2

– A = {Silent, Implicate} × {Silent, Implicate}

– u(a) =



[
−1
−1

]
if a = (Silent,Silent)[

−5
0

]
if a = (Silent, Implicate)[

0

−5

]
if a = (Implicate,Silent)[

−3
−3

]
if a = (Implicate, Implicate)
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• Example: Guess 2/3 the mean

– N arbitrary

– A = {1, 2, . . . , 10}N

– ui(a) =

{
1∑m

k=1 1{ak=[ 23mean(a)]} if ai =
[
2
3mean(a)

]
0 otherwise

– Note that utilities here refer to expected utilities: although we
are not guaranteed to win if we pick the average, we still have a
chance proportional to one over the number of others who pick
the same mean
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• Battle of the sexes

– Husband and wife planning movie for the evening: husband
wants to see Wondrous Love (WL) wife wants to see Lethal
Weapon (LW)

– Different utilities for each movie, but both equally unhappy if
they end up seeing different movies

WL LW

WL 2,1 0,0

LW 0,0 1,2

– Like prisoner’s dilemma, points where there is no incentive for
either player to deviate, but here there are two such points
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• Rock, paper, scissors

– Rock beats scissors, scissors beats paper, paper beats rock

Rock Paper Scissors

Rock 0,0 -1,1 1,-1

Paper 1,-1 0,0 -1,1

Scissors -1,1 1,-1 0,0

– If we play a fixed strategy, other player will always be able to
beat us
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• Some special cases:

– Zero-sum game: two player game where u1(a) = −u2(a),
∀a ∈ A (e.g., rock paper scissors)

– Coordination game: payoffs for all players are the same
ui(a) = uj(a), ∀i, j ∈ {1, . . . , N}, a ∈ A

L R

L 1,1 -1,-1

R -1,-1 1,1
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Pure and mixed strategies

• A strategy for player i, denoted si : Ai → [0, 1] is a probability
distribution over actions: si(ai) denotes probability that player i
takes action action ai (think of si as a vector in [0, 1]|Ai| that
must sum to one)

• A strategy profile s is a set of strategies for each player
s = (s1, . . . , sN )

• The support of a strategy si is the set of actions that have
non-zero probability

• Strategy with a support of size one is called pure strategy,
otherwise mixed strategy
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• The probability of set of actions a under strategy profile s is

s(a) =

N∏
i=1

si(ai)

i.e., the actions are all chosen independently

• The expected utility for a strategy profile s is given by

u(s) =
∑
a∈A

u(a)s(a)

• This can also be written elementwise, for example

ui(s) =
∑
a∈A

ui(a)

N∏
j=1

sj(aj)

14



Best response

• Best response refers to a best (potentially mixed) strategy that
a player can play given the strategies of all opponents

• Define s−i be be strategy profile s omitting the strategy of the
ith player

• Formally, best response for player i given strategy profile s−i is a
strategy s?i such that u(s?i , s−i) ≥ u(si, s−i) for all strategies si

• Of course, in general we don’t know the strategies of the other
opponents
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Nash equilibrium

• Key definition: a strategy profile s is a Nash equilibrium if si is
a best response to s−i for all i = 1, . . . , N

• Intuitively corresponds to a “rational” set of strategies for each
agent: no agent gains an advantage by switching their strategy

• Can be one or more Nash equilibria for a game

• Strict Nash if for all i and s′i 6= si

u(si, s−i) > u(s′i, s−i)

i.e., si is strictly preferable to all other strategies

• Weak Nash otherwise, i.e., can have s′i such that
u(si, s−i) = u(s′i, s−i)
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• Prisoner’s dilemma

Silent Implicate

Silent -1,-1 -5,0

Implicate 0,-5 -3,-3

What are NE? Are they strict?
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• Rock paper scissors

Rock Paper Scissors

Rock 0,0 -1,1 1,-1

Paper 1,-1 0,0 -1,1

Scissors -1,1 1,-1 0,0

What are NE? Are they strict?

18



• Battle of sexes
WL LW

WL 2,1 0,0

LW 0,0 1,2

What are NE? Are they strict?
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• In 1950, John Nash proved that
every game has at least one
equilibrium point (important,
requires mixed strategies)

• 27 pages, typeset like on the right
(probably about 5 pages in dense
latex, the same as your class
project writeup ... hmmm); two
references, one to his own paper

• Work won the Nobel prize in
economics

20



Outline

Introduction: Some (possibly) familiar games

Basic game theory

Computing equilibria

Special cases and extensions

21



Can we compute Nash equilibria?

• Since this is a computer science course after all...

• How do we actually compute the Nash equilibria of a game (for
now, let’s just consider two-player games)?

• In 2005, shown to be a PPAD-complete problem (not quite like
NP, since every game has a Nash equilibrium, but main intuition
is similar, thought to require solvable exponential time in game
size in the worst case)

• But “hard” problems don’t faze us in this course (see search,
mixed integer programming, etc)
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Computing an equilibrium with known support

• If we just want to look at pure strategies (again,in two player
case) this is easy: just check all |A1| × |A2| possible strategies

• But, a game may not have a pure strategy equilibrium

• Key idea: For a given support, we can compute NE (if one
exists) by solving a set of linear equations

• Thus, problem really becomes one of searching for the correct
support
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• Battle of sexes, let’s guess that the support for a mixed strategy
contains both WL and LW for husband and wife, and say that
husband chooses WL with probability p

WL LW

WL 2,1 0,0

LW 0,0 1,2

• Key idea: In order for strategy to be a NE, wife must be
indifferent between alternatives

u2(WL) = u2(LW)

p · 1 + (1− p) · 0 = p · 0 + (1− p) · 2
p = 2/3

• So s1 = (2/3, 1/3), s2 = (1/3, 2/3) is mixed strategy NE
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• The general case

– Hypothesize some supports A1 ⊆ A1,A2 ⊆ A2 for players

– Utilities for all actions in support must be equal for both players

u1(a) = u1(a
′),∀a, a′ ∈ A1 =⇒ |A1| − 1 linear equations

u2(a) = u2(a
′),∀a, a′ ∈ A2 =⇒ |A2| − 1 linear equations∑

a∈A1

s1(a) = 1,
∑
a∈A2

s2(a) = 1 =⇒ |A2| − 1 linear equations

Variables s1(a),∀a ∈ A1, s2(a),∀a ∈ A2,=⇒ |A1|+|A2| unknowns
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• What happens when we try a support that does not produce a
NE?

• Prisoner’s dilemma, mixed strategy with full support (S,I)

Silent Implicate

Silent -1,-1 -5,0

Implicate 0,-5 -3,-3
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Finding the support

• But, 2|Ai| − 1 possible supports for each player

• Do we have to try them all? In the worst case, yes (unless
PPAD = P)

• But, many times we will find a solution much faster (c.f. search,
mixed integer programming, etc)

• In fact, a procedure that looks a lot like local hill-climbing
search is guaranteed to find a solution for the two-player case
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• Lemke-Howson algorithm (stated very imprecisely)

• Start with some initial support A1,A2 and repeat:

1. Choose (according to a specific rule), to add, drop, or swap
action from support

2. Solve resulting linear systems, if they are consistent with mixed
strategy, we have found a NE

3. Otherwise, continue

• Essentially the same procedure as the simplex algorithm for
linear programming, for those who may be familiar with that
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N-player games

• For more than two players, precise analogue of Lemke-Howson
algorithm doesn’t exist, but local search can still be effective

• Can also formulate as optimization problem

minimize
s

N∑
i=1

∑
ai∈Ai

max{ui(ai, s−i)− ui(s), 0}2

subject to 1T si = 1, s ≥ 0

• At any NE, objective value will be zero (no incentive to any
other pure strategy)

• Of course, a non-convex problem, with potential local optima
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Special case: zero-sum games

• Two-player zero-sum games can be solved efficiently (in
polynomial time) by formulating it as a linear program

minimize
s1

maximize
s2

sT1 Cs2

subject to s1 ≥ 0, 1T s1 = 1, s2 ≥ 0, 1T s2 = 1

• Requiring player 2 to play a pure strategy, equivalent to

minimize
s1

max
i=1,...,|A2|

(CT s1)i

subject to s1 ≥ 0, 1T s1 = 1

which is equivalent to linear program

minimize
s1,t

t

subject to s1 ≥ 0, 1T s1 = 1, CTu ≤ t1
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• Somewhat surprisingly, this is actually the optimal strategy for
player 1, even if player 2 can play mixed strategies (proof
involves an optimization concept called duality)

• Key aspect of zero-sum game is that we could express game as
minimization and maximization over the same objective terms
by the two agents, can’t do this in general case
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