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ABSTRACT 
As data streams are gaining prominence in a growing 
number of emerging application domains, classification on 
data streams is becoming an active research area. Currently, 
the typical approach to this problem is based on ensemble 
learning, which learns basic classifiers from training data 
stream and forms the global predictor by organizing these 
basic ones. While this approach seems successful to some 
extent, its performance usually suffers from two 
contradictory elements existing naturally within many 
application scenarios: firstly, the need for gathering 
sufficient training data for basic classifiers and engaging 
enough basic learners in voting for bias-variance reduction; 
and secondly, the requirement for significant sensitivity to 
concept-drifts, which places emphasis on using recent 
training data and up-to-date individual classifiers. It results 
in such a dilemma that some algorithms are not sensitive 
enough to concept-drifts while others, although sensitive 
enough, suffer from unsatisfactory classification accuracy. 
In this paper, we propose an ensemble learning algorithm, 
which: (1) furnishes training data for basic classifiers, 
starting from the up-to-date data chunk and searching for 
complement from past chunks while ruling out the data 
inconsistent with current concept; (2) provides effective 
voting by adaptively distinguishing sensible classifiers 
from the else and engaging sensible ones as voters. 
Experimental results justify the superiority of this strategy 
in terms of both accuracy and sensitivity, especially in 
severe circumstances where training data is extremely 
insufficient or concepts are evolving frequently and 
significantly.  

1. INTRODUCTION 
 In many emerging applications such as network 

monitoring, sensor networks, etc., data are produced 
continually in the form of high-speed streams, which are 
required to be analyzed on-line. Thus, the applications 
which aim to classifying data streams rather than static 
relations are needed. Given the fact that data streams 
always have the properties such as high-velocity, extremely 
large volume, and frequently evolving concepts, today’s 
classification techniques meet unprecedented challenges: 
bounded memory usage, high processing speed, one-pass 
scanning, any-time available, and so on [4]. Especially, 

underlying concept of steaming data often alters (termed 
concept drift), which requests that algorithms must be 
sensitive enough to the up-to-date concept under the data 
stream [4, 13].  

Many strategies have been proposed in order to deal 
with concept-drifts. For instance, adapting existent models 
to data streams scenarios [7]; using novel data structure to 
maintain training data stream and to classify on demand [1]; 
exhaustively selecting training data by comparing all the 
sensible choices [5]; or building concept history and 
combining proactive and reactive modes in prediction [15]. 
Besides these technologies, the ensemble learning approach 
[2] appears as a promising solution: it seems reasonable to 
train individuals to deal with different parts of stream and 
organize these individual classifiers to make the final 
decision. This motivates more than a few attempts to 
develop novel ensemble learning mechanisms for data 
streams [9, 11, 12, 16]. However, all these models, 
although effective to some extent, do not provide satisfying 
solution to some open problems, due to the difficulties of: 
(1) seeking enough training data for individual classifiers 
with the guarantee that not importing old concepts; (2) 
finding adequate voters in global-prediction, while 
ensuring that experts (i.e. basic classifiers) built upon old 
concepts are excluded. We discuss these aspects as follows:  

Firstly, when building each basic classifier, we want to 
collect enough data while guarantee that concept-drifts are 
not imported into training data. To handle this problem, 
some works split the training data stream into data chunks, 
and build basic learner from each chunk [11, 12, 16]; while 
other works use incremental learner as the basic expert, i.e. 
each expert, after being built, keeps on updating itself until 
discarded [9]. In fact, both of these two methods can not 
furnish ideal solution. On the one hand, fixing the amount 
of training data for basic classifier by size of chunk is 
questionable. Given the fact that the velocity of training 
data stream is often limited by the manual labeling process, 
the size of data chunk can not be very large because large 
chunk needs relatively long period to be accumulated, thus 
leads to high possibility that concept-drift happens in this 
period. Nonetheless, if basic classifiers can not obtain 
sufficient training data, the ensemble will not work 
effectively. On the other hand, using incremental classifier 



also suffers from some flaws. It is true that allowing each 
individual expert to adjust itself according to future 
training data is beneficial to this individual [9]. But this 
approach has negative effects on the whole ensemble: 
when an old learner is incompatible with the latest concept, 
the most optimal policy is discarding it and allowing the 
“right ones” to make decision, rather than adjusting (if 
possible) the elder, which actually postpones its retirement. 
Moreover, though incremental learning gives the individual 
the chance for improving itself, the bias can not be 
completely corrected in that the learner is built from old 
data and merely “update” itself based on newcome data.  

Secondly, when using basic classifiers to form global 
predictor, we want to engage adequate voters in final 
decision for the sake of bias-variance reduction [2], while 
ensure that outmoded classifiers are obviated. Although 
recent works place much stress on this point, none of them 
can make good balance. In [11], the global prediction is 
made by majority voting among N “high quality” 
individuals. The drawback of this method is clear-cut: Only 
after more than N/2 members in ensemble mastery the new 
concept (which needs at least N/2 new data chunks after 
concept-drift occurs), the majority voting will make correct 
prediction. Thereafter, some works focus on improving 
voting’s sensitivity to concept-drift [9, 12]. For example in 
[9]: (1) the ensemble is composed of classifiers whose 
“quality” larger than an threshold q0 rather than uses fixed 
amount of basic classifiers; (2) The global prediction is 
based on weighted voting rather than majority voting. 
Although this approach improves ensemble‘s sensitivity to 
concept-drift, it still has problems. First of all, q0 is difficult 
to choose: we want good voters, but we also need enough 
voters. Second of all, weight-based voting can not 
eliminate the negative effect of out-of-date experts ---- they 
still can overwhelm the sensible ones by larger total weight. 
Since neither of majority voting and weight-based voting 
can produce sensitive ensemble, the “apparently” 
substituted way is “trusting in” the best rather than voting 
by the masses [16]. Whereas, simply engaging the best 
classifier will lose important advantage of voting-based 
ensemble: bias and variance reduction [2]. In fact, when 
using some unstable learners such as C4.5 [10], voting-
based ensemble such as bagging can improve the accuracy 
by dramatically reducing variance [2, 3]. Even for stable 
classifiers such as naïve Bayes [8], voting strategy as 
boosting [6] has positive effect by decreasing bias [2]. 

In this paper, we propose a dynamic ensemble learning 
algorithm, termed Dynamic Construction and Organization 
(DCO), which concentrates on these two difficulties. The 
contributions and key ideas of this work are: (1) the 
individual-construction strategy which provides training 
data for basic classifiers, starting from the latest data chunk 
and searching complement from history while excluding 
the data inconsistent with current concept; (2) the global-

prediction policy which offers effective voting by 
adaptively differentiating between sensible experts and the 
else and engaging sensible ones as voters. Experimental 
results show that our ensemble approach achieves high 
accuracy and remains sensitivity to concept-drifts.  

This paper is organized as follows. Section 2 describes 
our approach, section 3 provides the experimental results, 
and section 4 concludes the paper. 

2. Dynamic Construction and Organization 
Strategy for Ensemble Learning 

In this section, we put forward our DCO (Dynamic 
Construction and Organization) approach. After 
introducing the problem definition and framework of the 
algorithm, we mainly focus on the individual-construction 
and global-prediction strategies. It is assumed that training 
data and testing data are given as data streams, termed S 
and T in our paper, respectively. Data items in S are 
divided into data chunks, with size of chunkSize. As a rule, 
we set the latest chunk from S as evaluation dataset. When 
future chunk is available, current evaluation dataset can be 
used as training chunk and the coming chunk is set as new 
evaluation dataset. The algorithm framework is: (1) when a 
new training chunk is available, we use individual-
construction strategy to create a new basic classifier from 
this chunk plus the old chunks; (2) we set the most recent N 
basic classifiers as the ensemble; (3) for each test point, we 
use the ensemble to classify the data based on global-
prediction strategy. 

2.1 Individual-Construction Strategy 
Table 2 shows our Individual-Construction Strategy 

which pursues a balance between data sufficiency and 
sensitivity, especially when single chunk is not enough for 
training basic learner. Function create is depend on the 
basic learner. In this paper, we have tested both C4.5 [10] 
and naïve Bayes [8], see section 3 for details. What is more, 
there are two additional functions, dataSelect and 
outperform, discussed in following subsections. 

Table 2. Individual-construction strategy 

Input: 
Dn, Dn-1, …D1: data chunks available 

Output: 
Cn : resulting new expert 

Variable: 
D:  training data for new basic learner 
△ :selected data from old chunk 
Cn’ : alternative expert 
 

D  Dn 
Cn  create (D) 
for i = n -1 to 1 

△  dataSelect (Di) 
Cn’  create (D+△) 



if outperform(Cn’, Cn ) 
Cn  Cn’ 

        D  D+△ 
else  
        return Cn 
end-if 

end-for 
return Cn 

2.1.1 Data Selection Function 
This function aims at selecting complementary data 

for D. Here we assume no concept-drift in Di 
(outperform will deal with concept-drift). But even under 
stationary concept, unselectively importing old data is 
harmful because (1) it makes the learner over-fit the old 
part; (2) unnecessarily large amount of training data 
slows down the learning. In this sense, we define the 
dataSelect as choosing: (1) data in Di that are 
misclassified by Cn, plus (2) data that are misclassified 
by previous learner Cn-1. Choosing data misclassified by 
Cn is based on the hypothesis that Cn has not mastered 
this part of data and thus needs further learning. The idea 
of importing data misclassified by Cn-1 is inspired by 
Boosting [2, 6]: each learner puts emphasis on the 
“difficult” part for its predecessor. From this perspective, 
dataSelect may bring additive benefits in two aspects [2, 
6]: (1) reducing bias; (2) augmenting the diversity 
among individuals. Both of these will improve the 
performance of ensemble. 

2.1.2 Evaluation Function 
Outperform evaluates Cn and Cn’, and makes decision 

that whether importing △ to D is sensible. Since △ is 
made up of misclassified data, we must be wary of two 
possibilities: (1) Misclassification caused by concept-drift; 
(2) Misclassification caused by noise. In these two cases, 
introducing such misclassified data will do harm to training. 
Furthermore, when improvement is insignificant, importing 
should also be stopped for the sake of efficiency. 

The process for evaluating Cn and Cn’ is as follows: 
Firstly, compute the prediction accuracy of Cn and Cn’ 
(termed p and p’, respectively) based upon evaluation 
dataset. Secondly, calculate lower-bound (termed low and 
low’) for p and p’ under confidence conf, according to 
equation (1). Thirdly, if and only if ε>−lowlow'  holds 
for thresholdε , we judge that Cn’ outperform Cn. 
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In equation (1), z satisfies confzXP =≥ )( under normal 
distribution and chunkSizeV = . The intuition of this 
equation is: given a prediction accuracy p based on a test 
set of size V, we assume p is a random variable that has 

mean m and standard deviation Vmm /)1( − . Then (2) holds, 
which naturally leads to (1) where low is one solution of m. 
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2.2 Global-Prediction Strategy 
In section 1, we have reviewed different policies to 

organize global predictor, such as majority voting, weight-
based voting and select-best. In fact, the ideal strategy 
should strike a balance between these choices. On one hand, 
it should retain the benefits of voting by masses rather than 
simply select the best individual. On the other hand, we 
want the sensible experts to dominate the voting, thus 
render the global predictor sensitive to concept-drift. 

2.2.1 Dynamic Voting 
Our strategy is based upon the fact that we only want 

to divide the ensemble into two categories: the “good 
enough” experts and the else. Since we assume merely two 
categories in basic learners, it is reasonable to expect 
certain simple method to “judge good and evil in such a 
melodrama”. Here we put forward an efficient procedure to 
choose voters from ensemble. 

(1) Sort N basic classifiers in ensemble according to their 
accuracies on evaluation dataset. 
(2) Among N-1 distances between sorted classifiers, find 
the maximal one. 
(3) The maximal distance naturally divides the learners into 
two groups. 
(4) Engage the “better” group as voting group. 

The time complexity of this procedure depends on 
sorting step, which is trivial when N only refers to the 
capacity of ensemble. Furthermore, this procedure is 
executed only when the evaluation dataset is replaced by 
new chunk (the ensemble will be updated at the same time). 
Based on this voting policy, choosing ensemble capacity N 
is easy ---- we can choose a larger quantity than other 
voting-based algorithms, for the reason that outmoded 
experts in ensemble will be excluded from voting group by 
our dynamic voting. It will benefit in two aspects: (1) 
Under stationary concept, large ensemble furnishes 
sufficient voters; (2) In concept-drift scenario, large 
ensemble offers more opportunities for finding sensible 
experts, especially when concept switches in a repeated 
way. 

2.2.2 Discussion: Other Choices? 
Now we discuss that whether some other simper 

strategies can be used instead of our dynamic voting: (1) 
“select best-k”: For N experts in ensemble, select k best 
experts as voters. (2) “Performance threshold”: according 
to a threshold p0, define experts in ensemble whose 



accuracies higher than p0 as voters. Firstly, the “select best-
k” policy aims at retaining the sensitivity of “select-best” 
policy and gaining the benefits of voting. Nonetheless, this 
strategy is obviously incompetent in that it is actually the 
similar with “majority voting” where N = k, whose flaws 
have been discussed in Section 1. Secondly, the 
“performance threshold” is not an ideal approach, either. In 
fact, we can not decide this threshold in order to divide the 
ensemble into “sensible” ones and the else: (1) 
Performance of basic classifier changes dramatically on 
different classification problems. (2) It is unknown that to 
what extent the concept-drift will degrade the performance 
of outmoded experts and where should we set this 
threshold. 

3. Empirical Study and Results 
This section presents the results of our experimental 

evaluation of the proposed method. The goal of our 
experiments is to demonstrate the ability of our algorithm 
to: (1) handle data insufficiency when training basic 
classifiers; (2) form effective voting; (3) keep sensitive to 
concept-drifts. 

3.1 Dataset and System Implementation 
To determine the performance of our algorithm on 

problems involving concept-drifts, we design the problem 
in which each data points has three attributes x, y, z ∈R, 
randomly sampled from range [0, 10]. The data point that 
satisfies the target concept 2222 rzyx <++  is labeled by 1. 
Otherwise the item will be labeled as 0. Radius r is used to 
control the concept-drifts. Experiments are implemented on 
Weka toolkit [14]. 

3.2 Concept-drift Tests and Results 
Four algorithms are tested: (1) SEA: algorithm in [11]; 

(2) DWM: algorithm in [9]; (3) DCS: algorithm in [16]; (4) 
DCO: our algorithm. DWM does not take part in Test1 and 
Test2 since it must use incremental basic classifier. All 
results are averaged from 30 independent runs. 

(1) Test1: Testing SEA, DCS, and DCO based on C4.5, 
chunkSize = 50. 

(2) Test2: Testing SEA, DCS, and DCO based on C4.5, 
chunkSize = 100. 

(3) Test3: Testing SEA, DCS, DCO and DWM based 
on Naïve Bayes, chunkSize = 50. 

(4) Test4: Testing SEA, DCS, DCO and DWM based 
on Naïve Bayes, chunkSize = 100. 

The procedure of experiment is: There are entirely 50 
chunkSize training data points. For the first fourth the 
radius r in target concept is 9; for the second r = 11.5; for 
the third r = 8.5; for the last r = 11. For each fourth, we 
randomly generate a testing dataset of 2500 data points on 
corresponding radius. Each time after chunkSize training 

data points are offered, we test all the algorithms using 
appropriate testing dataset. For our algorithm, conf = 0.9 
and ε = 1% in outperform function. For all algorithms with 
fixed-size ensemble, we set N = 50. Other parameters are 
set according to original papers. See Fig.1~Fig.4 for results, 
the analysis of these results is as follows: 

(1) Prediction accuracy: DCO has the best classification 
accuracy, and this advantage appears more evident when 
the size of data chunk is limited (chunkSize = 50). Such 
superiority dues great part to our novel strategies for 
individual-construction and global-prediction. In one sense, 
the former policy guarantees the sufficiency of training 
data for basic learners, augments the diversity among 
individuals, and reduces the bias of basic learners. In 
another sense, the latter strategy strikes a balance between 
the quantity of voters and the quality of voters, and thus 
renders the voting process much more effective in terms of 
variance-reduction. 

(2) Sensitivity for concept-drift: DCO and DCS are quite 
sensitive to concept-drift: they recover from 
misclassification very fast; DWM is not as sensitive as 
DCO and DCS, but still much better than SEA. DCS’s 
sensitivity obviously dues to its “select-best” policy; DCO 
relies on dynamic voting to exclude outmoded experts, thus 
remains as sensitive as DCS; DWM uses weighted-based 

Figure 2: Results of test 2. 

Figure 1: Results of test 1. 



voting, and does not fix the capacity of ensemble, therefore 
has better alertness than SEA, which engages majority 
voting on fixed amount of voters in ensemble. 

(3) DCS and basic learner: DCS algorithm performed 
much better under naïve Bayes than using C4.5, because 
the former is a stable basic learner which is not in dire need 
of voting to reduce its variance. However, using unstable 
classifiers such as C4.5, DCS will appear ineffective. 
Furthermore, DCO beats DCS even based on naïve Bayes, 
since DCO enhances data sufficiency, individual diversity, 
and further reduces the bias-variance by dynamic voting. 

(4) Efficiency of algorithms: We test the efficiency of the 
four algorithms, represented by the time consumed in their 
30 independent runs and shown in Table 1. SEA is time-
consuming, especially when using Naïve Bayes. DCO is as 
efficient as DCS based on C4.5, and retains a reasonable 
speed on Naïve Bayes. In fact, the most complex part of 
DCO, the individual construction process mentioned in 
section 2.1, always stops after combining a few old blocks. 
Note that DWM used more time in test3 than in test4 since 
small data blocks lead to frequent creation of new classifers. 

3.3 Performance in Severe Circumstance 
What is more interesting is the performance of these 

algorithms in severe conditions: data insufficiency plus 

frequent and sudden concept-drifts, where data 
insufficiency calls for the ability to seek enough data for 
training basic classifiers; and frequent abrupt concept-drifts 
require excluding old concepts from training data. We set 
chunkSize as 25. For totally 40 chunkSize training data 
points, concept-drift happens after each 4 chunks. The 
radius starts with r=8, switches between 8 and 12 (i.e. r = 8, 
12, 8, 12 …). For each concept, we randomly generate 
2500 data points by corresponding radius. Each time after a 
chunk of training data is offered, we test all the algorithms 
using appropriate testing points. Other settings are similar 
with section 3.2. Test5 concerns SEA, DCS, and DCO 
based on C4.5; test6 measures SEA, DCS, DCO and DWM 
on naïve Bayes. The results are shown in Fig. 5 and Fig. 6. 
We can observe that: (1) the individual-construction policy 
effectively handles the data insufficiency; (2) the dynamic 
voting strategy furnishes successful voting, while retains 
the sensitivity to sudden and frequent concept-drifts. 

Table 1. Efficiency of Algorithms 

 SEA DCS DCO DWM 

Test1 6min 11sec 1min 4sec 1min 39sec --- 

Test2 8min 1sec 1min 46sec 1min 51sec --- 

Test3 51min 9sec 3min 7sec 14min 9sec 11min 5sec

Test4 78min 4sec 5min 21sec 15min 3sec 6min 1sec

Figure 6: Results of test 6. 

Figure 5: Results of test 5. Figure 3: Results of test 3. 

Figure 4: Results of test 4. 



3.4 Real-world Dataset 
In this section, we proposed our empirical results on 

“adult” dataset [17]. We test SEA, DCS and DCO upon 
C4.5. The training and testing dataset contain 32561 and 
16281 instances, respectively. Data has 14 attributes such 
as the age, occupation and sex of a person. The label 
indicates whether this person has an income larger than 50k 
dollar. The preprocessing step aims to produce sufficient 
concept drifts: partition the dataset by “occupation” 
attribute, then collect instances in three occupations – 
“Adm-clerical”, “Exec-managerial” and “Other-service”; 
finally we get three training subsets with 3770, 4066 and 
3295 instances and three test subsets with 1841, 2020 and 
1628 instances, respectively. We set blockSize as 100. 
Totally 90 data blocks are engaged for training: 15 blocks 
from subset1, 15 blocks from subset2, 15 blocks from 
subset3, and then repeat. After each block, we test all the 
algorithms using corresponding test dataset. For all 
algorithms, ensemble size is 30. The results are shown in 
Table 2, which justifies the superiority of DCO. 

Table 2. Empirical Results on “Adult” Dataset 

SEA DCS DCO 

0.7773 0.8401 0.8510 

4. Conclusions 
Current algorithms for mining data streams are 

confronted with two contradictory elements: Firstly is the 
need for seeking adequate training data for each basic 
classifier and gathering sufficient voters for final-decision; 
and secondly, is the requirement for sensitivity to concept-
drift, which calls for using recent training data and up-to-
date basic classifier. In this work, we initially point out the 
essential reasons for the incompetence of several recent 
algorithms in solving these conflicting elements. Then, we 
propose a dynamic ensemble learning algorithm, termed 
DCO (Dynamic Construction and Organization), which 
aims at reconciling these contradictions. Experimental 
results justify the superiority of our approach over the 
state-of-the-art algorithms in that individual-construction 
strategy provides solution to data insufficiency under 
concept-drift scenario; and the dynamic voting strategy 
strikes a balance between the quantity and quality of voters.  
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