
An Automatic Construction and Organization Strategy
for Ensemble Learning on Data Streams

Yi Zhang Xiaoming Jin
School of Software

Tsinghua University, Beijing, 100084 China

zhang-yi@mails.tsinghua.edu.cn

School of Software
Tsinghua University, Beijing, 100084 China

 xmjin@tsinghua.edu.cn

ABSTRACT
As data streams are gaining prominence in a growing
number of emerging application domains, classification on
data streams is becoming an active research area. Currently,
the typical approach to this problem is based on ensemble
learning, which learns basic classifiers from training data
stream and forms the global predictor by organizing these
basic ones. While this approach seems successful to some
extent, its performance usually suffers from two
contradictory elements existing naturally within many
application scenarios: firstly, the need for gathering
sufficient training data for basic classifiers and engaging
enough basic learners in voting for bias-variance reduction;
and secondly, the requirement for significant sensitivity to
concept-drifts, which places emphasis on using recent
training data and up-to-date individual classifiers. It results
in such a dilemma that some algorithms are not sensitive
enough to concept-drifts while others, although sensitive
enough, suffer from unsatisfactory classification accuracy.
In this paper, we propose an ensemble learning algorithm,
which: (1) furnishes training data for basic classifiers,
starting from the up-to-date data chunk and searching for
complement from past chunks while ruling out the data
inconsistent with current concept; (2) provides effective
voting by adaptively distinguishing sensible classifiers
from the else and engaging sensible ones as voters.
Experimental results justify the superiority of this strategy
in terms of both accuracy and sensitivity, especially in
severe circumstances where training data is extremely
insufficient or concepts are evolving frequently and
significantly.

1. INTRODUCTION
 In many emerging applications such as network

monitoring, sensor networks, etc., data are produced
continually in the form of high-speed streams, which are
required to be analyzed on-line. Thus, the applications
which aim to classifying data streams rather than static
relations are needed. Given the fact that data streams
always have the properties such as high-velocity, extremely
large volume, and frequently evolving concepts, today’s
classification techniques meet unprecedented challenges:
bounded memory usage, high processing speed, one-pass
scanning, any-time available, and so on [4]. Especially,

underlying concept of steaming data often alters (termed
concept drift), which requests that algorithms must be
sensitive enough to the up-to-date concept under the data
stream [4, 13].

Many strategies have been proposed in order to deal
with concept-drifts. For instance, adapting existent models
to data streams scenarios [7]; using novel data structure to
maintain training data stream and to classify on demand [1];
exhaustively selecting training data by comparing all the
sensible choices [5]; or building concept history and
combining proactive and reactive modes in prediction [15].
Besides these technologies, the ensemble learning approach
[2] appears as a promising solution: it seems reasonable to
train individuals to deal with different parts of stream and
organize these individual classifiers to make the final
decision. This motivates more than a few attempts to
develop novel ensemble learning mechanisms for data
streams [9, 11, 12, 16]. However, all these models,
although effective to some extent, do not provide satisfying
solution to some open problems, due to the difficulties of:
(1) seeking enough training data for individual classifiers
with the guarantee that not importing old concepts; (2)
finding adequate voters in global-prediction, while
ensuring that experts (i.e. basic classifiers) built upon old
concepts are excluded. We discuss these aspects as follows:

Firstly, when building each basic classifier, we want to
collect enough data while guarantee that concept-drifts are
not imported into training data. To handle this problem,
some works split the training data stream into data chunks,
and build basic learner from each chunk [11, 12, 16]; while
other works use incremental learner as the basic expert, i.e.
each expert, after being built, keeps on updating itself until
discarded [9]. In fact, both of these two methods can not
furnish ideal solution. On the one hand, fixing the amount
of training data for basic classifier by size of chunk is
questionable. Given the fact that the velocity of training
data stream is often limited by the manual labeling process,
the size of data chunk can not be very large because large
chunk needs relatively long period to be accumulated, thus
leads to high possibility that concept-drift happens in this
period. Nonetheless, if basic classifiers can not obtain
sufficient training data, the ensemble will not work
effectively. On the other hand, using incremental classifier

also suffers from some flaws. It is true that allowing each
individual expert to adjust itself according to future
training data is beneficial to this individual [9]. But this
approach has negative effects on the whole ensemble:
when an old learner is incompatible with the latest concept,
the most optimal policy is discarding it and allowing the
“right ones” to make decision, rather than adjusting (if
possible) the elder, which actually postpones its retirement.
Moreover, though incremental learning gives the individual
the chance for improving itself, the bias can not be
completely corrected in that the learner is built from old
data and merely “update” itself based on newcome data.

Secondly, when using basic classifiers to form global
predictor, we want to engage adequate voters in final
decision for the sake of bias-variance reduction [2], while
ensure that outmoded classifiers are obviated. Although
recent works place much stress on this point, none of them
can make good balance. In [11], the global prediction is
made by majority voting among N “high quality”
individuals. The drawback of this method is clear-cut: Only
after more than N/2 members in ensemble mastery the new
concept (which needs at least N/2 new data chunks after
concept-drift occurs), the majority voting will make correct
prediction. Thereafter, some works focus on improving
voting’s sensitivity to concept-drift [9, 12]. For example in
[9]: (1) the ensemble is composed of classifiers whose
“quality” larger than an threshold q0 rather than uses fixed
amount of basic classifiers; (2) The global prediction is
based on weighted voting rather than majority voting.
Although this approach improves ensemble‘s sensitivity to
concept-drift, it still has problems. First of all, q0 is difficult
to choose: we want good voters, but we also need enough
voters. Second of all, weight-based voting can not
eliminate the negative effect of out-of-date experts ---- they
still can overwhelm the sensible ones by larger total weight.
Since neither of majority voting and weight-based voting
can produce sensitive ensemble, the “apparently”
substituted way is “trusting in” the best rather than voting
by the masses [16]. Whereas, simply engaging the best
classifier will lose important advantage of voting-based
ensemble: bias and variance reduction [2]. In fact, when
using some unstable learners such as C4.5 [10], voting-
based ensemble such as bagging can improve the accuracy
by dramatically reducing variance [2, 3]. Even for stable
classifiers such as naïve Bayes [8], voting strategy as
boosting [6] has positive effect by decreasing bias [2].

In this paper, we propose a dynamic ensemble learning
algorithm, termed Dynamic Construction and Organization
(DCO), which concentrates on these two difficulties. The
contributions and key ideas of this work are: (1) the
individual-construction strategy which provides training
data for basic classifiers, starting from the latest data chunk
and searching complement from history while excluding
the data inconsistent with current concept; (2) the global-

prediction policy which offers effective voting by
adaptively differentiating between sensible experts and the
else and engaging sensible ones as voters. Experimental
results show that our ensemble approach achieves high
accuracy and remains sensitivity to concept-drifts.

This paper is organized as follows. Section 2 describes
our approach, section 3 provides the experimental results,
and section 4 concludes the paper.

2. Dynamic Construction and Organization
Strategy for Ensemble Learning

In this section, we put forward our DCO (Dynamic
Construction and Organization) approach. After
introducing the problem definition and framework of the
algorithm, we mainly focus on the individual-construction
and global-prediction strategies. It is assumed that training
data and testing data are given as data streams, termed S
and T in our paper, respectively. Data items in S are
divided into data chunks, with size of chunkSize. As a rule,
we set the latest chunk from S as evaluation dataset. When
future chunk is available, current evaluation dataset can be
used as training chunk and the coming chunk is set as new
evaluation dataset. The algorithm framework is: (1) when a
new training chunk is available, we use individual-
construction strategy to create a new basic classifier from
this chunk plus the old chunks; (2) we set the most recent N
basic classifiers as the ensemble; (3) for each test point, we
use the ensemble to classify the data based on global-
prediction strategy.

2.1 Individual-Construction Strategy
Table 2 shows our Individual-Construction Strategy

which pursues a balance between data sufficiency and
sensitivity, especially when single chunk is not enough for
training basic learner. Function create is depend on the
basic learner. In this paper, we have tested both C4.5 [10]
and naïve Bayes [8], see section 3 for details. What is more,
there are two additional functions, dataSelect and
outperform, discussed in following subsections.

Table 2. Individual-construction strategy

Input:
Dn, Dn-1, …D1: data chunks available

Output:
Cn : resulting new expert

Variable:
D: training data for new basic learner
△ :selected data from old chunk
Cn’ : alternative expert

D Dn
Cn create (D)
for i = n -1 to 1

△ dataSelect (Di)
Cn’ create (D+△)

if outperform(Cn’, Cn)
Cn Cn’

 D D+△
else
 return Cn
end-if

end-for
return Cn

2.1.1 Data Selection Function
This function aims at selecting complementary data

for D. Here we assume no concept-drift in Di
(outperform will deal with concept-drift). But even under
stationary concept, unselectively importing old data is
harmful because (1) it makes the learner over-fit the old
part; (2) unnecessarily large amount of training data
slows down the learning. In this sense, we define the
dataSelect as choosing: (1) data in Di that are
misclassified by Cn, plus (2) data that are misclassified
by previous learner Cn-1. Choosing data misclassified by
Cn is based on the hypothesis that Cn has not mastered
this part of data and thus needs further learning. The idea
of importing data misclassified by Cn-1 is inspired by
Boosting [2, 6]: each learner puts emphasis on the
“difficult” part for its predecessor. From this perspective,
dataSelect may bring additive benefits in two aspects [2,
6]: (1) reducing bias; (2) augmenting the diversity
among individuals. Both of these will improve the
performance of ensemble.

2.1.2 Evaluation Function
Outperform evaluates Cn and Cn’, and makes decision

that whether importing △ to D is sensible. Since △ is
made up of misclassified data, we must be wary of two
possibilities: (1) Misclassification caused by concept-drift;
(2) Misclassification caused by noise. In these two cases,
introducing such misclassified data will do harm to training.
Furthermore, when improvement is insignificant, importing
should also be stopped for the sake of efficiency.

The process for evaluating Cn and Cn’ is as follows:
Firstly, compute the prediction accuracy of Cn and Cn’
(termed p and p’, respectively) based upon evaluation
dataset. Secondly, calculate lower-bound (termed low and
low’) for p and p’ under confidence conf, according to
equation (1). Thirdly, if and only if ε>−lowlow' holds
for thresholdε , we judge that Cn’ outperform Cn.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−−+=

V
z

V
z

V
p

V
pz

V
zplow

2

2

222

1
42

 (1)

In equation (1), z satisfies confzXP =≥)(under normal
distribution and chunkSizeV = . The intuition of this
equation is: given a prediction accuracy p based on a test
set of size V, we assume p is a random variable that has

mean m and standard deviation Vmm /)1(− . Then (2) holds,
which naturally leads to (1) where low is one solution of m.

confz
Vmm

mpzP =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<

−
−<−

/)1(
)((2)

2.2 Global-Prediction Strategy
In section 1, we have reviewed different policies to

organize global predictor, such as majority voting, weight-
based voting and select-best. In fact, the ideal strategy
should strike a balance between these choices. On one hand,
it should retain the benefits of voting by masses rather than
simply select the best individual. On the other hand, we
want the sensible experts to dominate the voting, thus
render the global predictor sensitive to concept-drift.

2.2.1 Dynamic Voting
Our strategy is based upon the fact that we only want

to divide the ensemble into two categories: the “good
enough” experts and the else. Since we assume merely two
categories in basic learners, it is reasonable to expect
certain simple method to “judge good and evil in such a
melodrama”. Here we put forward an efficient procedure to
choose voters from ensemble.

(1) Sort N basic classifiers in ensemble according to their
accuracies on evaluation dataset.
(2) Among N-1 distances between sorted classifiers, find
the maximal one.
(3) The maximal distance naturally divides the learners into
two groups.
(4) Engage the “better” group as voting group.

The time complexity of this procedure depends on
sorting step, which is trivial when N only refers to the
capacity of ensemble. Furthermore, this procedure is
executed only when the evaluation dataset is replaced by
new chunk (the ensemble will be updated at the same time).
Based on this voting policy, choosing ensemble capacity N
is easy ---- we can choose a larger quantity than other
voting-based algorithms, for the reason that outmoded
experts in ensemble will be excluded from voting group by
our dynamic voting. It will benefit in two aspects: (1)
Under stationary concept, large ensemble furnishes
sufficient voters; (2) In concept-drift scenario, large
ensemble offers more opportunities for finding sensible
experts, especially when concept switches in a repeated
way.

2.2.2 Discussion: Other Choices?
Now we discuss that whether some other simper

strategies can be used instead of our dynamic voting: (1)
“select best-k”: For N experts in ensemble, select k best
experts as voters. (2) “Performance threshold”: according
to a threshold p0, define experts in ensemble whose

accuracies higher than p0 as voters. Firstly, the “select best-
k” policy aims at retaining the sensitivity of “select-best”
policy and gaining the benefits of voting. Nonetheless, this
strategy is obviously incompetent in that it is actually the
similar with “majority voting” where N = k, whose flaws
have been discussed in Section 1. Secondly, the
“performance threshold” is not an ideal approach, either. In
fact, we can not decide this threshold in order to divide the
ensemble into “sensible” ones and the else: (1)
Performance of basic classifier changes dramatically on
different classification problems. (2) It is unknown that to
what extent the concept-drift will degrade the performance
of outmoded experts and where should we set this
threshold.

3. Empirical Study and Results
This section presents the results of our experimental

evaluation of the proposed method. The goal of our
experiments is to demonstrate the ability of our algorithm
to: (1) handle data insufficiency when training basic
classifiers; (2) form effective voting; (3) keep sensitive to
concept-drifts.

3.1 Dataset and System Implementation
To determine the performance of our algorithm on

problems involving concept-drifts, we design the problem
in which each data points has three attributes x, y, z ∈R,
randomly sampled from range [0, 10]. The data point that
satisfies the target concept 2222 rzyx <++ is labeled by 1.
Otherwise the item will be labeled as 0. Radius r is used to
control the concept-drifts. Experiments are implemented on
Weka toolkit [14].

3.2 Concept-drift Tests and Results
Four algorithms are tested: (1) SEA: algorithm in [11];

(2) DWM: algorithm in [9]; (3) DCS: algorithm in [16]; (4)
DCO: our algorithm. DWM does not take part in Test1 and
Test2 since it must use incremental basic classifier. All
results are averaged from 30 independent runs.

(1) Test1: Testing SEA, DCS, and DCO based on C4.5,
chunkSize = 50.

(2) Test2: Testing SEA, DCS, and DCO based on C4.5,
chunkSize = 100.

(3) Test3: Testing SEA, DCS, DCO and DWM based
on Naïve Bayes, chunkSize = 50.

(4) Test4: Testing SEA, DCS, DCO and DWM based
on Naïve Bayes, chunkSize = 100.

The procedure of experiment is: There are entirely 50
chunkSize training data points. For the first fourth the
radius r in target concept is 9; for the second r = 11.5; for
the third r = 8.5; for the last r = 11. For each fourth, we
randomly generate a testing dataset of 2500 data points on
corresponding radius. Each time after chunkSize training

data points are offered, we test all the algorithms using
appropriate testing dataset. For our algorithm, conf = 0.9
and ε = 1% in outperform function. For all algorithms with
fixed-size ensemble, we set N = 50. Other parameters are
set according to original papers. See Fig.1~Fig.4 for results,
the analysis of these results is as follows:

(1) Prediction accuracy: DCO has the best classification
accuracy, and this advantage appears more evident when
the size of data chunk is limited (chunkSize = 50). Such
superiority dues great part to our novel strategies for
individual-construction and global-prediction. In one sense,
the former policy guarantees the sufficiency of training
data for basic learners, augments the diversity among
individuals, and reduces the bias of basic learners. In
another sense, the latter strategy strikes a balance between
the quantity of voters and the quality of voters, and thus
renders the voting process much more effective in terms of
variance-reduction.

(2) Sensitivity for concept-drift: DCO and DCS are quite
sensitive to concept-drift: they recover from
misclassification very fast; DWM is not as sensitive as
DCO and DCS, but still much better than SEA. DCS’s
sensitivity obviously dues to its “select-best” policy; DCO
relies on dynamic voting to exclude outmoded experts, thus
remains as sensitive as DCS; DWM uses weighted-based

Figure 2: Results of test 2.

Figure 1: Results of test 1.

voting, and does not fix the capacity of ensemble, therefore
has better alertness than SEA, which engages majority
voting on fixed amount of voters in ensemble.

(3) DCS and basic learner: DCS algorithm performed
much better under naïve Bayes than using C4.5, because
the former is a stable basic learner which is not in dire need
of voting to reduce its variance. However, using unstable
classifiers such as C4.5, DCS will appear ineffective.
Furthermore, DCO beats DCS even based on naïve Bayes,
since DCO enhances data sufficiency, individual diversity,
and further reduces the bias-variance by dynamic voting.

(4) Efficiency of algorithms: We test the efficiency of the
four algorithms, represented by the time consumed in their
30 independent runs and shown in Table 1. SEA is time-
consuming, especially when using Naïve Bayes. DCO is as
efficient as DCS based on C4.5, and retains a reasonable
speed on Naïve Bayes. In fact, the most complex part of
DCO, the individual construction process mentioned in
section 2.1, always stops after combining a few old blocks.
Note that DWM used more time in test3 than in test4 since
small data blocks lead to frequent creation of new classifers.

3.3 Performance in Severe Circumstance
What is more interesting is the performance of these

algorithms in severe conditions: data insufficiency plus

frequent and sudden concept-drifts, where data
insufficiency calls for the ability to seek enough data for
training basic classifiers; and frequent abrupt concept-drifts
require excluding old concepts from training data. We set
chunkSize as 25. For totally 40 chunkSize training data
points, concept-drift happens after each 4 chunks. The
radius starts with r=8, switches between 8 and 12 (i.e. r = 8,
12, 8, 12 …). For each concept, we randomly generate
2500 data points by corresponding radius. Each time after a
chunk of training data is offered, we test all the algorithms
using appropriate testing points. Other settings are similar
with section 3.2. Test5 concerns SEA, DCS, and DCO
based on C4.5; test6 measures SEA, DCS, DCO and DWM
on naïve Bayes. The results are shown in Fig. 5 and Fig. 6.
We can observe that: (1) the individual-construction policy
effectively handles the data insufficiency; (2) the dynamic
voting strategy furnishes successful voting, while retains
the sensitivity to sudden and frequent concept-drifts.

Table 1. Efficiency of Algorithms

 SEA DCS DCO DWM

Test1 6min 11sec 1min 4sec 1min 39sec ---

Test2 8min 1sec 1min 46sec 1min 51sec ---

Test3 51min 9sec 3min 7sec 14min 9sec 11min 5sec

Test4 78min 4sec 5min 21sec 15min 3sec 6min 1sec

Figure 6: Results of test 6.

Figure 5: Results of test 5. Figure 3: Results of test 3.

Figure 4: Results of test 4.

3.4 Real-world Dataset
In this section, we proposed our empirical results on

“adult” dataset [17]. We test SEA, DCS and DCO upon
C4.5. The training and testing dataset contain 32561 and
16281 instances, respectively. Data has 14 attributes such
as the age, occupation and sex of a person. The label
indicates whether this person has an income larger than 50k
dollar. The preprocessing step aims to produce sufficient
concept drifts: partition the dataset by “occupation”
attribute, then collect instances in three occupations –
“Adm-clerical”, “Exec-managerial” and “Other-service”;
finally we get three training subsets with 3770, 4066 and
3295 instances and three test subsets with 1841, 2020 and
1628 instances, respectively. We set blockSize as 100.
Totally 90 data blocks are engaged for training: 15 blocks
from subset1, 15 blocks from subset2, 15 blocks from
subset3, and then repeat. After each block, we test all the
algorithms using corresponding test dataset. For all
algorithms, ensemble size is 30. The results are shown in
Table 2, which justifies the superiority of DCO.

Table 2. Empirical Results on “Adult” Dataset

SEA DCS DCO

0.7773 0.8401 0.8510

4. Conclusions
Current algorithms for mining data streams are

confronted with two contradictory elements: Firstly is the
need for seeking adequate training data for each basic
classifier and gathering sufficient voters for final-decision;
and secondly, is the requirement for sensitivity to concept-
drift, which calls for using recent training data and up-to-
date basic classifier. In this work, we initially point out the
essential reasons for the incompetence of several recent
algorithms in solving these conflicting elements. Then, we
propose a dynamic ensemble learning algorithm, termed
DCO (Dynamic Construction and Organization), which
aims at reconciling these contradictions. Experimental
results justify the superiority of our approach over the
state-of-the-art algorithms in that individual-construction
strategy provides solution to data insufficiency under
concept-drift scenario; and the dynamic voting strategy
strikes a balance between the quantity and quality of voters.

5. Acknowledgement
This work is supported by the National Science

Foundation of China (60403021) and the 973 Program
(2004CB719400).

6. References
[1] CC Aggarwal, J Han, J Wang, PS Yu. On Demand

Classification of Data Streams. In Proceedings of the 10th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2004.

[2] E. Bauer, R. Kohavi. An Empirical Comparison of Voting
Classification Algorithms: Bagging, Boosting, and Variants.
Machine Learning, vol 36, pp 105-139, 1999.

[3] L. Breiman. Bagging Predictors. Machine Learning, vol 24,
pp 123-140, 1996.

[4] GZ Dong, JW Han, Laks V.s. Lakshmanan, J Pei, HX Wang,
Philip S. Yu. Online Mining of Changes from Data Streams:
Research Problems and Preliminary Results. ACM SIGMOD
MPDS`03 San Diego, CA, USA.

[5] W Fan. Systematic Data Selection to Mine Concept-Drifting
Data Streams. In Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 2004.

[6] Y Freund, RE Schapire. Experiments with a New Boosting
Algorithm. Machine Learning: Proceedings of the 13th
International Conference, 1996.

[7] G. Hulten, L. Spencer, and P. Domingos. Mining time-
changing data streams. In Proceedings of the 7th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2001.

[8] G. H. John and P. Langley. Estimating Continuous
Distributions in Bayesian Classifiers. In Proc. of the
Eleventh Conference on Uncertainty in Artificial Intelligence.
Morgan Kaufmann, San Mateo, 1995, 338-345.

[9] JZ Kolter, MA Maloof. Dynamic Weighted Majority: A New
Ensemble Method for Tracking Concept Drift. Proceedings
of the Third IEEE International Conference on Data Mining,
2003.

[10] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA, 1993.

[11] W. N. Street, YS Kim. A streaming ensemble algorithm
(SEA) for large-scale classification. In: Proc. of the 7th
ACM SIGKDD Int’l Conf. on Knowledge Discovery and
Data Mining, San Francisco, CA, ACM Press, 2001, 377-382.

[12] H Wang, W Fan, PS Yu, J Han. Mining concept-drifting data
streams using ensemble classifiers. In Proceedings of the 9th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2003.

[13] G. Widmer and M. Kubat. Learning in the Presence of
Concept Drift and Hidden Contexts. Machine Learning,
vol23, issue1, 1996, 69-101.

[14] I. H. Witten and E. Frank. 1999. Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann, San Mateo, CA.

[15] Y Yang, X Wu, X Zhu. Combining Proactive and Reactive
Predictions for Data Streams. In Proceedings of the 11th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2005.

[16] XQ Zhu, XD Wu and Y Yang. Dynamic Classifier Selection
for Effective Mining from Noisy Data Streams. In: Proc. 4th
IEEE Int’l Conf. on Data Mining, 2004, 305-312.

[17] http://www.ics.uci.edu/~mlearn/MLRepository.html

