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Abstract

In this paper, we address the question of what kind of knowledge is gen-
erally transferable from unlabeled text. We suggest and analyze the se-
mantic correlation of words as a generally transferable structure of the
language and propose a new method to learn this structure using an ap-
propriately chosen latent variable model. This semantic correlation con-
tains structural information of the language space and can be used to
control the joint shrinkage of model parameters for any specific task in
the same space through regularization. In an empirical study, we con-
struct 190 different text classification tasks from a real-world benchmark,
and the unlabeled documents are a mixture from all these tasks. We test
the ability of various algorithms to use the mixed unlabeled text to en-
hance all classification tasks. Empirical results show that the proposed
approach is a reliable and scalable method for semi-supervised learn-
ing, regardless of the source of unlabeled data, the specific task to be
enhanced, and the prediction model used.

1 Introduction

The availability of large amounts of unlabeled data such as text on the Internet is a strong
motivation for research in semi-supervised learning [4]. Currently, most of these methods
assume that the unlabeled data belong to the same classes or share the generative distri-
butions with the labeled examples, e.g., generative models [10], low-density separation
[8, 13], and graph-based methods [3]. As indicated in [11], unlabeled data in real-world
applications do not necessarily follow the classes or distribution of labeled examples, and
semi-supervised learning algorithms that give up this assumption have wider applicability
in practice. As a result, some algorithms avoid using unlabeled examples directly in model
training and instead focus on “changes of representation” that find a more informative rep-
resentation from unlabeled data and use it to encode the labeled examples [4, 1, 11].



However, even algorithms for learning good features from unlabeled data still make a strong
assumption: those learned high-level features will be relevant to the specific prediction task
at hand. This assumption might be problematic. Many functions can be defined over an
input space and a specific task corresponds to only one of them. The feature extraction
on unlabeled data is an unsupervised process and thus a “blindly” learned representation
might be irrelevant to a specific task, especially when the unlabeled data are not from
the same task. To tackle this problem, some recent work avoids blind feature extraction by
incorporating external knowledge about the task being enhanced [1]: the high-level features
are learned by principal component analysis on the weights of several models, and these
models are trained from some “auxiliary” tasks constructed by domain knowledge.

In this paper, we explore the possibility of extracting generally transferable knowledge
from unlabeled text without information about the task to be enhanced. This knowledge
is represented as the semantic correlation structure of the words in the text domain and
is shown to be transferable among documents of different themes. This structure is ex-
tracted using a latent topic model combined with a bootstrapping procedure. The rationale
is that the latent topics (or more generally, high-level features) extracted from unlabeled
data might be irrelevant to a particular task, but the word distribution in these topics reveals
the structural information of the language, represented by the semantic correlation among
words. For any specific task defined on the same input space, this information can be used
to control the joint shrinkage of model parameters through informative regularization.

The use of covariance or correlation structure has already been mentioned in transfer learn-
ing [12, 9]. A covariance structure can be transferred from a few related tasks to a target
task [12] or inferred from meta-features [9]. In fact, one way to view the present work
is: 1) we automatically construct a large number of diverse but meaningful “tasks” from
unlabeled text without using external knowledge, where each “task” is actually extracted
as a latent variable; 2) we propose to learn the semantic correlation structure of the word
space from these dummy tasks and show that this structure is generally transferable regard-
less of the source of unlabeled data; 3) this structure can be efficiently incorporated into a
broad category of prediction models via regularization, which leads to a very scalable and
applicable semi-supervised learning framework.

2 Semantic Correlation: Transferable Structure from Unlabeled Text

2.1 Latent Topics and Semantic Structure

Latent topics extracted from unlabeled text might be irrelevant to a particular task, but the
composition of these topics in terms of word distribution reveals information about the
semantic structure of the language. Assume a latent topic model [7, 2] of the word space
X, or more generally, a latent variable model characterizing the input space X:

x = Az (1)

where x = [x1,x2, . . . ,xp]T is the p-dimensional vector of input variables, and z =
[z1, z2, . . . , zk]T represents latent variables in the k-dimensional latent space Z. A is a
p × k matrix, representing a generative process from a probabilistic view or a projection
from a deterministic view. For a latent topic model, x corresponds to the bag-of-words
vector of a document divided by the document length, z is the distribution of k latent topics
in the document, and A is the distribution of p words in k latent topics. Various models fit
in this formula including PCA, ICA, sparse coding, and non-negative matrix factorization.

Different documents have different topic distributions, z, and thus different word dis-
tributions, x, but A can be considered an invariant structure of the language. Each p-
dimensional column vector of A denotes the word distribution in a latent topic, and serves
as an “observation” in the p dimensional word space, indicating the semantic roles of p



words in this topic. Given a large set of k latent topics represented by k p-dimensional vec-
tors {a(,1),a(,2), . . . ,a(,k)}, we can define the semantic covariance of p words as follows.
Let A denote the matrix formed by treating each vector a(,t), t = 1, 2, . . . , k as a column,
and let a(i,) and a(i,t) denote a row vector and an element of this matrix, respectively. The
semantic covariance of word i and word j is defined as:

covs(xi,xj) =
1
k

k∑
t=1

(ait − a(i,))(ajt − a(j,)) =
1
k

k∑
t=1

aitajt − a(i,)a(j,) (2)

where a(i,) is the mean of the ith row in A. Naturally, the semantic correlation is:

corrs(xi,xj) =
covs(xi,xj)√

covs(xi,xi)covs(xj ,xj)
(3)

2.2 Comparing Semantic Correlation and Data Correlation

Suppose we observe a set of n documents in word space X, denoted by an n × p data
matrix DX where each document corresponds to a p-dimensional bag-of-words vector of
counts. We refer to the correlation between words computed directly from DX as the data
correlation. This data correlation may not be transferable between tasks since documents
from different themes may have distinct topic distributions and word distributions, which
lead to different word correlations in data space.

Here we show intuitively why we expect the data correlation to have limited use across
distinct tasks, while we expect the semantic correlation to be transferable. Consider the
latent variable model in eq. (1), which relates A to data space X. We focus on semantic
covariance and data covariance, and assume that the bag-of-words vector is divided by the
length of the document so that it corresponds to x in eq. (1). From eq. (1), an input variable
xi can be written as xi =

∑k
t=1 aitzt, and therefore, the data covariance of word i and

word j can be expressed as:

cov(xi,xj) = E[(xi − Exi)(xj − Exj)] (4)

= E[
k∑

t=1

ait(zt − Ezt)
k∑

t=1

ajt(zt − Ezt)]

=
k∑

t=1

k∑

t′=1

aitajt′E[(zt − Ezt)(zt′ − Ezt′)]

=
k∑

t=1

k∑

t′=1

aitajt′cov(zt, zt′)

Thus, data covariance is directly related to the covariance among latent topics. Documents
from different sources have different topic distributions and thus different covariance terms
cov(zt, zt′) in latent space. As a result, the data covariance learned from one source of
documents may not be transferable to another class of documents. On the other hand, the
semantic covariance in eq. (2) is completely determined by the structure of A.

Intuitively, the data covariance among words must contain some information about the
semantic relationship of words. This can also be observed from eq. (4). If we ignore
the effect of the covariance among topics by assuming that latent topics are independently
distributed and have the same variance (denoted as σ2), eq. (4) can be written as:

cov(xi,xj) = σ2
k∑

t=1

aitajt (5)



Algorithm 1 Estimation of semantic correlation structure
Input: data D = Du ∪Dl, latent variable model M
Output: semantic correlation matrix Σs

Parameters: α, k, N
Initialize V ← ∅
repeat

Dsamp ← Sampling(D, α)
{(z1,a(,1)), (z2,a(,2)), . . . , (zk,a(,k))} ← M(k, Dsamp)
V ← V ∪ {a(,1),a(,2), . . . ,a(,k)}

until |V| ≥ kN
Compute Σs: Σs(i, j) ← corrs(xi,xj)

Comparing this to the last form in eq. (2), we see the similarity between data and semantic
covariance. In fact, our empirical study shows that data correlation from unlabeled text
does contain useful information, but is not as informative as semantic correlation.

3 Semantic Structure Learning and Informative Regularization

Consider a set of nl labeled documents Dl = {(xl
i, y

l
i) ∈ X × Yl, i = 1, · · ·nl}, where

X ⊆ Rp is the p-dimensional word space, and Yl = {−1, 1} for classification and Yl ⊆ R
for regression. Also assume that a large set of nu unlabeled documents Du = {xu

i ∈
X, i = 1, · · ·nu} is available. The goal is to learn a good function fl : X → Yl, which is
a classifier or a regressor. In this section we introduce a framework to transfer knowledge
from unlabeled text. Section 3.1 proposes an approach to learning the semantic structure
of the word space from a set of unlabeled text. In section 3.2, we discuss how to efficiently
apply the learned structure to a broad category of prediction models through regularization.

3.1 Learning the Semantic Correlation

The semantic correlation among words can be estimated using eq. (3) by observing a large
number of different latent topics. However, obtaining a large set of diverse but meaningful
topics is hard, since the number of meaningful topics extracted by a latent topic model is
usually not very large. To solve this problem, resampling techniques such as bootstrapping
[5] can be combined with a chosen latent variable model, which provides a principled way
to estimate the semantic correlation. The procedure is given in Algorithm 1, which uses
all the available data D = Du ∪ Dl and a latent variable model M as the input. The
algorithm repeats N iterations. In each iteration it draws an α percentage sample1 from
the data and extracts k latent topics from the sample by applying the model M . After N
iterations, the p× p semantic correlation matrix Σs is estimated from the kN observations
of word distribution in latent topics. The algorithm requires an appropriate latent variable
model M (e.g., latent dirichlet allocation for text data), and a number k of latent variables
extracted each iteration from the sampled data. The number of iterations N is set as large
as necessary to obtain a reliable estimation.

3.2 Knowledge Transfer by Informative Regularization

This section discusses how to use the semantic structure Σs in any specific learning task
defined on the input space X . For the prediction model, we mainly consider regularized
linear models with an l-2 norm penalty, e.g., support vector machines, ridge regression,
logistic regression with a Gaussian prior, etc. The model is represented by a p-dimensional
weight vector w and an intercept b. The prediction is computed as wT x + b for regression

1In this paper, we use α = 50% sampling without replacement. Other choices can be made.



or by setting a threshold θ (usually θ = 0) on wT x + b for classification. To learn w and
b, we minimize a loss function L on the training examples plus a regularization term on w:

argmin
w,b

nl∑

i=1

L(yl
i,w

T xl
i + b) + λwT w (6)

Different models correspond to different loss functions [6], e.g., SVMs use hinge loss, lo-
gistic regression uses log-likelihood loss, and ridge regression uses squared error loss. The
regularization term λwT w = λwT I−1w is well known to be equivalent to the Bayesian
approach that imposes a Gaussian prior with zero mean and an identity correlation matrix.
The correlation is often set to an identity matrix due to lack of knowledge about the input
space. If a covariance or correlation structure is known, e.g., the semantic structure of the
word space, the prior can be more informative [12]. Incorporating Σs into the Gaussian
prior leads to a new regularization term and the resulting model is:

argmin
w,b

nl∑

i=1

L(yl
i,w

T xl
i + b) + λwT Σ−1

s w (7)

Extending the discussion on SVMs in [9], all regularized linear models in the form of
eq. (7) can be easily solved by three steps. First, transform the training examples by

x̃l
i = Σ

1
2
s xl

i (8)

Second, learn the standard linear model in the transformed space:

argmin
w̃,b

nl∑

i=1

L(yl
i, w̃

T x̃l
i + b) + λw̃T w̃ (9)

Finally, the optimal solution for (7) is obtained by:

w = Σ
1
2
s w̃ (10)

This equivalence is derived from wT xl
i = w̃T x̃l

i and wT Σ−1
s w = w̃T w̃. Semantic

correlation is transferable to any specific task and thus can be computed offline. As a
result, semi-supervised learning for any task simply requires the linear transformation in
eq. (8) before training on the labeled examples, which is very scalable.

4 Experiments

We use the by-date version of the 20-NewsGroups data set2, where 11314 training and 7532
testing documents are divided by date and denoted as Dtr and Dts here. Documents are
represented by bag-of-words vectors. The vocabulary is built to include the most frequent
200 words in each of the 20 newsgroups, while the 20 most frequent words over all 20
newsgroups are removed. This yields an input space X with p = 1443 features (words).

Documents come from 20 newsgroups, so we construct 190 binary classification tasks, one
for each pair of newsgroups. For each task, a few documents in the two newsgroups are
selected from Dtr as the labeled examples, denoted as Dl in section 3. The rest of the
documents in Dtr are used as the unlabeled data, denoted by Du. Note that Du is a mixture
from all the 20 newsgroups. In this sense, semi-supervised learning algorithms that assume
the unlabeled data come from the target task or the same generative distribution are unlikely
to work very well. The test data for each binary task are all the relevant documents in Dts,
i.e., documents in Dts that belong to one of the two chosen newsgroups. For any task we

2http://people.csail.mit.edu/jrennie/20Newsgroups/



always have Du ∪Dl = Dtr, so Algorithm 1 is run only once on Dtr to learn the semantic
correlation structure Σs that is used by all 190 tasks.

The documents are well distributed over the 20 newsgroups and thus there are large num-
bers of training documents in Dtr for each newsgroup. To limit the number of labeled
examples for each binary prediction task, we use 5%, 10%, 20% of the relevant documents
in Dtr as the labeled examples Dl, and the rest of the relevant and all irrelevant docu-
ments in Dtr as the unlabeled data Du. We denote these tests as 5%-Test, 10%-Test, and
20%-Test. The result of each test is averaged over 10 random runs, with Dl randomly
selected from Dtr. The testing data for each task are fixed to be all relevant documents
in Dts, which is invariant for a task among different tests and random runs. Methods for
comparison are as follows.

(1) Comparison based on SVM. For each classification task, we compare: SVM di-
rectly trained on labeled examples Dl (denoted SV M ), SVM trained on Dl in the latent
topic space extracted by latent dirichlet allocation on Dl ∪ Du [2] (denoted SV MLDA),
SVM trained on Dl in principal component space extracted by PCA on Dl ∪Du (denoted
SV MPCA), SVM trained on Dl via informative regularization with semantic correlation
Σs in the prior (denoted SV MIR), SVM trained on Dl via informative regularization with
data correlation in the prior (denoted SV MIR(data)), where data correlation Σ is estimated
from bag-of-words vectors of documents in Dl ∪Du.
(2) Comparison based on L-2 Regularized Logistic Regression. Analogous to the SVM
comparison with logistic regression (denoted LGR) as the base classifier.
(3) Comparison based on ridge regression. Ridge regression (denoted RR) is used as the
base classifier: examples are labeled as +1 and−1, and prediction is made by wT x+b > 0.
(4) Comparison to semi-supervised SVM. Recently a fast semi-supervised SVM using
L-2 loss was proposed [13], which make it possible to handle large-scale unlabeled doc-
uments. We compare: L2-SVM directly trained on Dl (L2-SV M ), semi-supervised L2-
SVM trained on Dl ∪Du (L2-S3V M ), and L2-SVM trained on Dl via informative regu-
larization with semantic correlation (L2-SV MIR). The semi-supervised SVM should not
work well since the unlabeled data is a mixture from all tasks. Therefore, we also test an
“oracle” semi-supervised SVM, using labeled examples together with unlabeled examples
coming only from the two relevant newsgroups (L2-S3V Moracle).

Here are additional implementation details. The regularization parameter λ for each
model is determined by 5-fold cross-validation in the range 10−6 to 106. LibSVM 2.85
is used for SVM. For PCA, we tried 10, 20, 30, 50, 100, 200, 400 principal components
and report PCA using 200 principal components as the best result. For latent dirichlet
allocation, we use the implementation at http://chasen.org/∼daiti-m/dist/lda/. We tried
k = 10, 20, 30, 50, 100, 200 latent topics with 30 topics performing best. For the proposed
method, Algorithm 1 uses latent dirichlet allocation with k = 30 topics per sampling, re-
peats N = 100 iterations, and Σs is estimated from these 3000 latent topics. L2-S3V M
(code available as SVMlin [13]) has a second parameter λu for unlabeled examples, which
is set to 1 as in [13]. Unlabeled data for L2-S3V M is downsampled to 3000 documents
for each run to make training (and cross-validation) feasible.

Empirical results are shown in Tables 1- 4. For each semi-supervised learning algorithm,
we report two performance measures: the average classification error over all 190 tasks,
and the gain/loss ratio compared to the corresponding supervised learning method. The
former measures the effectiveness of using the unlabeled data, while the latter measures
the reliability of the knowledge transfer. From Tables 1 - 3, IR based methods with seman-
tic correlation significantly outperform standard supervised learning, LDA based methods,
PCA based methods, and is also generally more effective than IR with data correlation. The
LDA based algorithms slightly improve the prediction performance when using SVM or lo-
gistic regression as the base classifier, while decreasing the performance when using ridge



Table 1: Comparison over 190 tasks, based on SVMs
5%-Test 10%-Test 20%-Test

SV M 14.22% 10.34% 7.88%
SV MLDA(30) 9.76% (179/11) 8.01% (171/19) 6.90% (161/29)
SV MPCA(200) 13.32% (123/67) 10.31% (104/86) 8.29% (89/101)

SV MIR 7.58% (190/0) 6.11% (190/0) 5.13% (183/7)
SV MIR(data) 9.40% (185/5) 7.14% (183/7) 5.70% (180/10)

Table 2: Comparison over 190 tasks, based on regularized logistic regression
5%-Test 10%-Test 20%-Test

LGR 11.70% 8.43% 6.67%
LGRLDA(30) 8.21% (171/19) 7.38% (156/34) 6.79% (134/56)
LGRPCA(200) 11.43% (105/85) 8.95% (65/125) 7.28% (64/122)

LGRIR 6.70% (189/1) 5.78% (181/9) 5.19% (169/21)
LGRIR(data) 8.46% (172/18) 7.21% (157/33) 6.46% (132/58)

Table 3: Comparison over 190 tasks, based on ridge regression
5%-Test 10%-Test 20%-Test

RR 14.13% 10.73% 8.90%
RRLDA(30) 14.08% (111/101) 11.98% (67/102) 11.34% (42/148)
RRPCA(200) 15.50% (56/132) 12.80% (33/157) 11.53% (17/173)

RRIR 10.55% (182/8) 8.88% (161/29) 8.01% (134/56)
RRIR(data) 10.68% (176/14) 8.94% (157/33) 7.99% (139/51)

Table 4: Comparison to semi-supervised SVMs over 190 tasks, based on L2-SVM
5%-Test 10%-Test 20%-Test

L2-SV M 11.18% 8.41% 6.65%
L2-S3V M 14.14% (14/176) 11.64% (5/185) 10.04% (1/189)

L2-S3V Moracle 8.22% (189/1) 6.95% (185/5) 6.00% (164/24)
L2-SV MIR 6.87% (188/2) 5.73% (180/10) 4.98% (177/13)

regression. This is possibly because the loss function of ridge regression is not a good ap-
proximation to the 0/1 classification error, and therefore, ridge regression is more sensitive
to irrelevant latent features extracted from mixed unlabeled documents. The PCA based
methods are generally worse than standard supervised learning, which indicates they are
sensitive to the mixed unlabeled data. In Table 4, the L2-S3V M performs worse than stan-
dard L2-SV M , showing that traditional semi-supervised learning cannot handle unlabeled
data outside the target task. We can also see that the L2-SV MIR even outperforms the
oracle version of semi-supervised SVM (L2-S3V Moracle) by achieving similar gain/loss
ratio but better average classification error. This is a very promising result since it shows
that information can be gained from other tasks even in excess of what can be gained from
a significant amount of unlabeled data on the task at hand. In conclusion, the empirical
results show that the proposed approach is an effective and reliable (also scalable) method
for semi-supervised learning, regardless of the source of unlabeled data, the specific task
to be enhanced, and the base prediction model used.

It is interesting to directly compare the semantic correlation Σs and the data correlation
Σ matrices learned from the data. We make three observations: 1) The average value
of entries is 0.0147 in the semantic correlation and 0.0341 in the data correlation. We



Table 5: Top 10 distinct word pairs in terms of semantic correlation vs. data correlation
gaza/lebanes biker/yamaha motorcycl/yamaha batter/clemen yanke/catcher
0.956/0.007 0.937/−0.004 0.970/0.030 0.932/−0.002 0.934/0.002

palestin/lebanes cage/ama toyota/mileag mileag/mustang brave/batter
0.946/0.181 0.921/−0.005 0.934/0.009 0.923/−0.002 0.950/0.025

have 1617834 entries with higher data correlation and 462972 entries with higher semantic
correlation. Thus overall word pairs tend to have higher values in the data correlation.
2) However, if we list the top 1000 pairs of words with the largest absolute difference
between the two correlations, they all have very high semantic correlation and low data
correlation. 3) We list the top 10 such word pairs and their semantic/data correlations in
Table 5. The words are indeed quite related. In conclusion, entries in Σs seem to have
a power-law distribution where a few pairs of words have very high correlation and the
rest have low correlation, which is consistent with our intuition about words. However,
the data correlation misses highly correlated words found by the semantic correlation even
though it generally assigns higher correlation to most word pairs. This is consistent with
the data correlation not being transferable among documents of different themes. When the
unlabeled documents are a mixture from different sources, the estimation of data correlation
is affected by the fact that the mixture of input documents are not consistent.
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