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Course Updates

Capture Project

- Now due next Monday (one week from today)

Final Project
- 3 minute pitches are due next class 

- You should try to post your idea to the blog and get some 
feedback before then 

Reading Signup

- Everyone has signed up by this point? 
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Plan for Today’s Class

- Review representation of skeleton motion 

- Modeling shape and geometry of the body

- Skinning (rigid, linear, dual quaternion)

- Data-driven body models (SCAPE) 

- Applications and discussion

- Shape estimation from images

- Image reshaping
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Skeleton Animations

Skeleton (tree hierarchy)

- Nodes represent joints

- Joints are local coordinate 
systems (frames)

- Edges represent bones

Skin

- 3D model driven by the 
skeleton

Common Data structure for Body Pose
Hierarchical Structure

Source: Meredith and Maddock, Motion Capture File Formats Explained

Motion Capture File Formats Explained  2 

 

2 Background Information 
 
This section provides a short review of the terminology and notational style that will be used to 
describe the processes involved in reading and processing motion capture data. 
 
2.1 Terminology 
 
The following list outlines some of the more important keywords that will be used to identify and 
describe different aspects of a motion: 
 
• Skeleton – The whole character for which the motion represents. 
• Bone – The basic entity in representing a skeleton.  Each bone represents the smallest segment 

within the motion that is subject to individual translation and orientation changes during the 
animation.  A skeleton is comprised of a number of bones (usually in a hierarchical structure, as 
illustrated in figure 2.1), where each bone can be associated with a vertex mesh to represent a 
specific part of the character, for example the femur or humerus. 

• Channel or Degree of Freedom (DOF) – Each bone within a skeleton can be subject to position, 
orientation and scale changes over the course of the animation, where each parameter is referred 
to as a channel (or DOF).  The changes in the channel data over time give rise to the animation. 

• Frame – Every animation is comprised of a number of frames where for each frame the channel 
data for each bone is defined.  Motion capture data can be captured as high as 240 frames per 
second, however in many applications a rate of 30 or 60 frames per second tends to be the norm.  
High frame rates are used to capture motions that contain high frequency content such as a 
combination of karate actions.  Although in many cases the extra detail cannot be displayed 
during a real-time playback because of maximum refresh rates of display hardware7, it can 
provide useful information for adding motion blurring to the animation or simply for motion 
analysis. 

 
 
2.2 Notation 
 
During the discussion on transforming bones to correctly position and orientate them for an animation, 
matrix arithmetic will be used to demonstrate the motion decoding and displaying algorithms.  The 
nomenclature used when writing matrix expressions is right to left, as illustrated in Equation 2.1 where 
v’ and v are the transformed and original vertices respectfully and M is the transform matrix.  (This 
convention is used over the traditional left to right approach, v’ = vM, because it relates more directly 
to the OpenGL graphics pipeline, where vertices are pushed in after the transforms) 
 

                                                
7Affordable, everyday monitor refresh rates presently max out at about 100hz, and a sustained 60fps 
rate in a modern computer game is considered an excellent mark to reach. 
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Figure 2.1: Hierarchical Structure for a Human Figure 
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Skeleton Animations

Skeleton (tree hierarchy)

- Nodes represent joints

- Joints are local coordinate 
systems (frames)

- Edges represent bones

Skin

- 3D model driven by the 
skeleton

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
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Skeleton Animations

Skeleton (tree hierarchy)

- Nodes represent joints

- Joints are local coordinate 
systems (frames)

- Edges represent bones

Skin

- 3D model driven by the 
skeleton

Both are typically designed in a reference pose  
[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
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Skeleton in Reference Posture

N-joint skeleton in reference frame is given by 

- Root frame expressed with respect to the world - 

- Relative joint coordinate frames - 

Mapping from world to a coordinate frame of joint  j

R0

R1, R2, R3, . . . , RN

Aj = R0 · · ·Rp(j)Rj

p(j)

j

Rj

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
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Skeleton in Reference Posture

N-joint skeleton in reference frame is given by 

- Root frame expressed with respect to the world - 

- Relative joint coordinate frames - 

Mapping from world to a coordinate frame of joint  j

R0

R1, R2, R3, . . . , RN

Aj = R0 · · ·Rp(j)Rj

p(j)

j

Rj

Rj =

0

BB@

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

1

CCA
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Skeleton in Reference Posture

N-joint skeleton in reference frame is given by 

- Root frame expressed with respect to the world - 

- Relative joint coordinate frames - 

Mapping from world to a coordinate frame of joint  j

R0

R1, R2, R3, . . . , RN

Aj = R0 · · ·Rp(j)Rj

p(j)

j

Rj

parent of joint  j
[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
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Animating Skeleton

Achieved by rotating each joint from it’s reference posture 

- Note: joint rotation effects the entire sub-tree (e.g., rotation 
at the shoulder will induce motion of the whole arm)

Rotation at joint  j is described by: 

Tj =

0

BB@

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

1

CCA

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
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Animating Skeleton

Mapping from world to a coordinate frame of joint j in 
reference pose:

Mapping from world to a coordinate frame of joint j in 
animated pose:

Aj = R0 · · ·Rp(j)Rj

Fj = R0T0. . . Rp(j)Tp(j)RjTj

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
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Animating Skeleton

Mapping from world to a coordinate frame of joint j in 
reference pose:

Mapping from world to a coordinate frame of joint j in 
animated pose:

Aj = R0 · · ·Rp(j)Rj

Fj = R0T0. . . Rp(j)Tp(j)RjTj

Tj = I4⇥4 Fj = AjNote: if then
[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
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Character Rigging
1. Embed the skeleton into a 3D mesh (skin) 

2. Assign vertices of the mesh to one or more bones to allow 
skin to move with the skeleton

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
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Rigid Skinning
1. Embed the skeleton into a 3D mesh (skin) 

2. Assign vertices of the mesh to one or more bones to allow 
skin to move with the skeleton

Aj

Fj

Assign each vertex to one bone/joint - j

- position of vertex in reference mesh

- position of vertex in animated mesh

- joint  j in reference mesh
- joint  j in animated mesh

v̂i = Fj(Aj)
�1vi

vi

v̂i

vi
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Rigid Skinning

Aj

Fj

Assign each vertex to one bone/joint - j

- position of vertex in reference mesh

- position of vertex in animated mesh

- joint  j in reference mesh
- joint  j in animated mesh

Requires assignment of vertices on 3D mesh to joints on skeleton 

- Often done manually 

- Assigning to joint influencing the closest bone is usually a good 
automatic guess

v̂i = Fj(Aj)
�1vi

vi

v̂i

vi
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- Works well away from the ends of the bone (joints)

- Leads to unrealistic non-smooth deformations near joints

Rigid Skinning Limitations

In reference pose: In animated pose: 

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
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Linear Blend Skinning

Aj

Fj

Each vertex is assigned to multiple bone/joints

- position of vertex i in reference mesh

- position of vertex i in animated mesh

- joint j in reference mesh
- joint j in animated mesh

- influence of joint  j on the vertex 

v̂i =
NX

j=1

wjiFj(Aj)
�1vi

vi

vi

v̂i
wji
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Linear Blend Skinning

Aj

Fj

Each vertex is assigned to multiple bone/joints

- position of vertex i in reference mesh

- position of vertex i in animated mesh

- joint j in reference mesh
- joint j in animated mesh

- influence of joint  j on the vertex 

v̂i =
NX

j=1

wjiFj(Aj)
�1vi

Weights need to be convex: 
NX

j=1

wji = 1, wji � 0

vi

vi

v̂i
wji
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Linear Blend Skinning

Aj

Fj

Each vertex is assigned to multiple bone/joints

- position of vertex i in reference mesh

- position of vertex i in animated mesh

- joint j in reference mesh
- joint j in animated mesh

- influence of joint  j on the vertex 

v̂i =
NX

j=1

wjiFj(Aj)
�1vi

Weights need to be convex: 
NX

j=1

wji = 1, wji � 0

painted on or 
based on distance to 

joints 

vi

vi

v̂i
wji
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Linear Blend Skinning Weights

wlarm = 1

wuarm = 1

wlarm + wuarm = 1

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
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Linear Blend Skinning Weights

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 

wlarm = 1

wuarm = 1

wlarm + wuarm = 1
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Linear Blend Skinning Weights

Why weights must convex? 

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 

wlarm = 1

wuarm = 1

wlarm + wuarm = 1
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Linear Blend Skinning Weights

v̂i =
NX

j=1

wjiFj(Aj)
�1vi

Why weights must convex? 

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 

wlarm = 1

wuarm = 1

wlarm + wuarm = 1
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Linear Blend Skinning Example

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
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Linear Blend Skinning Limitations

Joint twisting 180 degrees

produces a collapsing effect where skin collapses to a single point 
(“candy-wrapper” artifact)

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
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Linear Blend Skinning Limitations
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Linear Blend Skinning Limitations

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
Saturday, October 20, 12



Why LBS Produce Artifacts?

v̂i =
NX

j=1

wjiFj(Aj)
�1vi v̂i =

0

@
NX

j=1

wjiMj

1

A vi
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Why LBS Produce Artifacts?

M1

M2

v̂i =
NX

j=1

wjiFj(Aj)
�1vi v̂i =

0

@
NX

j=1

wjiMj

1

A vi
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Why LBS Produce Artifacts?

M1

M2

v̂i =
NX

j=1

wjiFj(Aj)
�1vi v̂i =

0

@
NX

j=1

wjiMj

1

A vi
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Why LBS Produce Artifacts?

M1

M2

v̂i =
NX

j=1

wjiFj(Aj)
�1vi v̂i =

0

@
NX

j=1

wjiMj

1

A vi

Mblend
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M1

M2

Why LBS Produce Artifacts?

Mblend

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
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M1

M2

SE(3) Intrinsic Blending

Mblend

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
Saturday, October 20, 12



Dual Quaternion Skinning

Closed form approximation of SE(3) blending

[Kavan et al., ACM TOG 2008]

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
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Regular Quaternions

Rotation in 3D

X

Y

Z
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Note: I’ve overloaded the use of \phi in these slides. Earlier I used \phi to denote the original orientation. Here I am using it to 
denote the rotation about the Z-axis.

Remember: Euler angles

Interpolating Euler angles has similar issues as LBS skinning 
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Regular Quaternions

- Quaternions are alternative representation for orientations 
(defined using complex algebra)

- Represents orientation using 4 tuples (roughly speaking one 
for amount of rotation and 3 for the axis) 

- However, there are only  3 degrees of freedom for a rotation

- Hence, to be a valid rotation, quaternion must be unit norm

q = w + xi+ yi+ zi

||q|| = 1

Saturday, October 20, 12



Regular Quaternions

Interpretation: Quaternions live on a sphere in a 4D space 

- Quaternions are alternative representation for orientations 
(defined using complex algebra)

- Represents orientation using 4 tuples (roughly speaking one 
for amount of rotation and 3 for the axis) 

- However, there are only  3 degrees of freedom for a rotation

- Hence, to be a valid rotation, quaternion must be unit norm

q = w + xi+ yi+ zi

||q|| = 1
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Dual Quaternions
- Dual quaternions are able to model rigid transformations 

(rotation + translation) 

- Map a 6 dimensional manifold in an 8 dimensional space 

- Need to be unit length to represent a valid rigid transform

[Clifford 1873]

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
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Dual Quaternion Skinning

Closed form approximation of SE(3) blending

[Kavan et al., ACM TOG 2008]

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
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Comparison: Linear Blend Skinning

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
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Comparison: Dual Quaternion

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
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Dual Quaternion Skinning

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine] 
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Skinning Limitations

- All skinning methods assume a fixed relationship between 
skeleton motion and the mesh 

- Humans are more complex (e.g., muscles lead to local 
deformations)

- Skinning only allows animation of predefined body geometry 
(created by an animator), do not help us create this geometry 

Saturday, October 20, 12



Data-driven Body Shape Models
35

(a)

(b) (c)

Figure 3.2: Shape Acquisition using Laser Scanning. (a) A Cyberware whole-body laser
scanner measures the 3D position and appearance for hundreds of thousands of points on the surface
of the scanned body. (b) A typical surface scan is shown without texture, revealing common scanning
artifacts. Holes remain where the surface cannot be estimated due to self occlusion or grazing angle
views. (c) The same scan is shown front and back with the captured texture. Since the measured
points come with no semantic meaning, sparse white markers (visible in (c)) can optionally be
placed at anthropometric landmark locations on the body during scanning, providing context for
body measuring and scan registration. Their 3D locations are estimated and manually labeled in a
post-processing step and displayed as red dots in (b).

Idea: Let’s scan real people and figure out how their body 
deforms and what body types are possible

[ Cyberware ]
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Data-driven Body Shape Models
35

(a)

(b) (c)

Figure 3.2: Shape Acquisition using Laser Scanning. (a) A Cyberware whole-body laser
scanner measures the 3D position and appearance for hundreds of thousands of points on the surface
of the scanned body. (b) A typical surface scan is shown without texture, revealing common scanning
artifacts. Holes remain where the surface cannot be estimated due to self occlusion or grazing angle
views. (c) The same scan is shown front and back with the captured texture. Since the measured
points come with no semantic meaning, sparse white markers (visible in (c)) can optionally be
placed at anthropometric landmark locations on the body during scanning, providing context for
body measuring and scan registration. Their 3D locations are estimated and manually labeled in a
post-processing step and displayed as red dots in (b).

[ Cyberware ]Pipeline

- Register all the scans 

- Create (typically parametric) model of shape 

- Use that model for an interesting application
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Registration / Correspondence
Marker-based Non-rigid Iterative Closest Point Registration

39

(a) (b) (c)

Figure 3.4: Mesh Registration Process. (a) Sparse landmark correspondences between the
template mesh (green) and a raw scan (gray). (b) Vertices and edges located on the boundary of
a hole in the scan are highlighted in red. (c) Vertex weights wi for the data term. Black regions
correspond to vertices from the template mesh with a zero data-fitting weight, while white regions
have weight one.

where || · ||F denotes the Frobenius norm.
Applying this constraint is not the same as applying a surface smoothness constraint. This is

important because what we want is to preserve the surface details present in the template mesh,
particularly in regions where the target mesh contains holes.

Marker Error

In the presence of large surface deformations of the target mesh with respect to the template,
the data and smoothness constraints are often insu±cient for achieving a correct alignment. To
assist the alignment process and help guide the deformation of the template mesh into place, a set
of points on the target surface ~mi that correspond to known points on the template are identified.
We need to encourage the correspondences at marker locations to be correct. We use the marker
error term Em to minimize the distance between each marker’s location on the template surface and
its location on the target surface:

Em =
MX

i=1

||T∑i~v∑i ° ~mi||2 . (3.3)

Here ∑
1···M is a list of vertex indices from the template mesh that correspond to the markers on the

target surface (Figure 3.4a).

40

Objective Function - Optimization Strategy

The complete objective function is a weighted sum of the three error terms:

E = ÆEd + ØEs + ∞Em (3.4)

and can be optimized using gradient descent.
The optimization is initialized using a global transformation that aligns the center of mass of the

template to the target mesh and the overall orientation and scale. The optimization continues in
stages, following diÆerent weighting schedules that emphasize matching landmarks (10,000 iterations
with Æ = 0,Ø = 10, ∞ = 20), overall shape fitting (600 iterations with Æ = 2,Ø = 10, ∞ = 2), and
refinement of the surface geometry (400 iterations with Æ = 1, Ø = 0.1, ∞ = 0.1).

Hole-filling

Large holes in the scanned mesh pose problems to the method described so far. In this case
many vertices on the template have no correct correspondence on the scanned mesh. The data term
encourages these vertices to move instead to the closest existing patch from the target mesh causing
undesirable stretching. Fortunately, at each iteration we can easily identify the vertices ~vi with no
true correspondence as the ones whose closest point on the target mesh is located on the boundary
edge of a hole (Figure 3.4b). For these vertices, we set the weight wi in Ed to zero so that the
transformations Ti will be driven by the smoothness constraint Es. The eÆect is that holes are filled
in by seamlessly transformed parts of the template surface.

3.4.2 Processing Pipeline

We apply the non-rigid mesh registration technique to our two training data sets, one containing
the same subject in diÆerent poses, and the other containing diÆerent subjects in the same canonical
standing pose.

Template Mesh

We choose a mesh from the pose training set standing in the canonical pose to be the template
mesh. The template mesh is hole-filled and subsampled to contain 25, 000 triangles with 12, 500
vertices (Figure 3.3a). The remaining instance meshes are brought into full correspondence with the
template mesh.

Acquisition of Marker Locations

Marker locations are obtained diÆerently for the two training sets. For the shape training set, we
use the location of the 74 anthropometric markers from the CAESAR dataset (see Figure 3.2b,c) to
establish sparse correspondences with the template mesh. In the case of the pose training set in which
the surface deformations due to articulated pose changes are more significant, many more marker

Goal: Fit a template mesh to triangulated 3D point cloud 

Amounts to estimating a 4x4 transform for
 every vertex through optimization of above

[Allen et al., 2003]
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Marker-based Non-rigid Iterative Closest Point Registration
39

(a) (b) (c)

Figure 3.4: Mesh Registration Process. (a) Sparse landmark correspondences between the
template mesh (green) and a raw scan (gray). (b) Vertices and edges located on the boundary of
a hole in the scan are highlighted in red. (c) Vertex weights wi for the data term. Black regions
correspond to vertices from the template mesh with a zero data-fitting weight, while white regions
have weight one.

where || · ||F denotes the Frobenius norm.
Applying this constraint is not the same as applying a surface smoothness constraint. This is

important because what we want is to preserve the surface details present in the template mesh,
particularly in regions where the target mesh contains holes.

Marker Error

In the presence of large surface deformations of the target mesh with respect to the template,
the data and smoothness constraints are often insu±cient for achieving a correct alignment. To
assist the alignment process and help guide the deformation of the template mesh into place, a set
of points on the target surface ~mi that correspond to known points on the template are identified.
We need to encourage the correspondences at marker locations to be correct. We use the marker
error term Em to minimize the distance between each marker’s location on the template surface and
its location on the target surface:

Em =
MX

i=1

||T∑i~v∑i ° ~mi||2 . (3.3)

Here ∑
1···M is a list of vertex indices from the template mesh that correspond to the markers on the

target surface (Figure 3.4a).

38

coarsely aligning surfaces that undergo significant articulated deformations and subsequently use
the alignment to initialize a standard non-rigid ICP algorithm (i. e. [Allen et al. (2003)]).

3.4.1 Marker-based Non-Rigid Iterative Closest Point Registration

Here we describe the method we applied for aligning a template mesh T to a deformed target mesh
D given some corresponding marker locations, as proposed by Allen et al. (2003). The template mesh
acts as a reference mesh that is smoothly deformed into other poses and body shapes to establish
correspondences between all training meshes. Each of these shapes are represented as triangular
meshes (although any polygon mesh representation can be used) consisting of a set of V vertices
and a set of T triangle faces sharing common vertices. An optimization problem is formulated that
solves for the 4 £ 4 a±ne transformation Ti for each vertex ~vi of the template mesh T using an
objective function that trades oÆ fit to the raw scan data, fit to known markers, and smoothness of the
transformation. For the purpose of mesh registration, vertex locations are expressed in homogeneous
coordinates: ~vi = [xi, yi, zi, 1]T.

Data Error

Our first objective is for the aligned template surface to be as close as possible to the target
surface. As such, we encourage vertices of the template mesh to move toward the closest respective
points on the surface of the target mesh in order to acquire the geometry of the raw scan. We use
the data error term Ed to penalize the remaining gap between the transformed vertices Ti~vi and
the target surface D:

Ed =
VX

i=1

wi gap2(Ti~vi,D) . (3.1)

Here, V denotes the number of vertices for the template mesh T and wi is used to control the influence
of the data term in the presence of holes in the target mesh. The function gap(·, ·) computes the
distance from a point to the closest compatible vertex of a surface and it is implemented using a
KD-tree data structure for computational e±ciency. The compatibility restriction safeguards against
front-facing surfaces being matched to back-facing surfaces and is measured in terms of the angle
between the surface normals. It also restricts the distance between them to a threshold to avoid
matching through holes in the target mesh.

Smoothness Error

Matching points to a wavy surface independently using the closest point strategy alone introduces
unnatural folding and stretching artifacts. The solution can be regularized by adding a deformation
smoothness constraint Es that require a±ne transformations applied to adjacent vertices on the
surface to be as similar as possible:

Es =
X

{i,j|(~vi,~vj)2edges(T )}

||Ti °Tj ||2F , (3.2)
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Objective Function - Optimization Strategy

The complete objective function is a weighted sum of the three error terms:

E = ÆEd + ØEs + ∞Em (3.4)

and can be optimized using gradient descent.
The optimization is initialized using a global transformation that aligns the center of mass of the

template to the target mesh and the overall orientation and scale. The optimization continues in
stages, following diÆerent weighting schedules that emphasize matching landmarks (10,000 iterations
with Æ = 0,Ø = 10, ∞ = 20), overall shape fitting (600 iterations with Æ = 2,Ø = 10, ∞ = 2), and
refinement of the surface geometry (400 iterations with Æ = 1, Ø = 0.1, ∞ = 0.1).
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Large holes in the scanned mesh pose problems to the method described so far. In this case
many vertices on the template have no correct correspondence on the scanned mesh. The data term
encourages these vertices to move instead to the closest existing patch from the target mesh causing
undesirable stretching. Fortunately, at each iteration we can easily identify the vertices ~vi with no
true correspondence as the ones whose closest point on the target mesh is located on the boundary
edge of a hole (Figure 3.4b). For these vertices, we set the weight wi in Ed to zero so that the
transformations Ti will be driven by the smoothness constraint Es. The eÆect is that holes are filled
in by seamlessly transformed parts of the template surface.

3.4.2 Processing Pipeline

We apply the non-rigid mesh registration technique to our two training data sets, one containing
the same subject in diÆerent poses, and the other containing diÆerent subjects in the same canonical
standing pose.

Template Mesh

We choose a mesh from the pose training set standing in the canonical pose to be the template
mesh. The template mesh is hole-filled and subsampled to contain 25, 000 triangles with 12, 500
vertices (Figure 3.3a). The remaining instance meshes are brought into full correspondence with the
template mesh.

Acquisition of Marker Locations

Marker locations are obtained diÆerently for the two training sets. For the shape training set, we
use the location of the 74 anthropometric markers from the CAESAR dataset (see Figure 3.2b,c) to
establish sparse correspondences with the template mesh. In the case of the pose training set in which
the surface deformations due to articulated pose changes are more significant, many more marker
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Figure 3.4: Mesh Registration Process. (a) Sparse landmark correspondences between the
template mesh (green) and a raw scan (gray). (b) Vertices and edges located on the boundary of
a hole in the scan are highlighted in red. (c) Vertex weights wi for the data term. Black regions
correspond to vertices from the template mesh with a zero data-fitting weight, while white regions
have weight one.

where || · ||F denotes the Frobenius norm.
Applying this constraint is not the same as applying a surface smoothness constraint. This is

important because what we want is to preserve the surface details present in the template mesh,
particularly in regions where the target mesh contains holes.

Marker Error

In the presence of large surface deformations of the target mesh with respect to the template,
the data and smoothness constraints are often insu±cient for achieving a correct alignment. To
assist the alignment process and help guide the deformation of the template mesh into place, a set
of points on the target surface ~mi that correspond to known points on the template are identified.
We need to encourage the correspondences at marker locations to be correct. We use the marker
error term Em to minimize the distance between each marker’s location on the template surface and
its location on the target surface:

Em =
MX

i=1

||T∑i~v∑i ° ~mi||2 . (3.3)

Here ∑
1···M is a list of vertex indices from the template mesh that correspond to the markers on the

target surface (Figure 3.4a).
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Objective Function - Optimization Strategy

The complete objective function is a weighted sum of the three error terms:

E = ÆEd + ØEs + ∞Em (3.4)

and can be optimized using gradient descent.
The optimization is initialized using a global transformation that aligns the center of mass of the

template to the target mesh and the overall orientation and scale. The optimization continues in
stages, following diÆerent weighting schedules that emphasize matching landmarks (10,000 iterations
with Æ = 0,Ø = 10, ∞ = 20), overall shape fitting (600 iterations with Æ = 2,Ø = 10, ∞ = 2), and
refinement of the surface geometry (400 iterations with Æ = 1, Ø = 0.1, ∞ = 0.1).

Hole-filling

Large holes in the scanned mesh pose problems to the method described so far. In this case
many vertices on the template have no correct correspondence on the scanned mesh. The data term
encourages these vertices to move instead to the closest existing patch from the target mesh causing
undesirable stretching. Fortunately, at each iteration we can easily identify the vertices ~vi with no
true correspondence as the ones whose closest point on the target mesh is located on the boundary
edge of a hole (Figure 3.4b). For these vertices, we set the weight wi in Ed to zero so that the
transformations Ti will be driven by the smoothness constraint Es. The eÆect is that holes are filled
in by seamlessly transformed parts of the template surface.

3.4.2 Processing Pipeline

We apply the non-rigid mesh registration technique to our two training data sets, one containing
the same subject in diÆerent poses, and the other containing diÆerent subjects in the same canonical
standing pose.

Template Mesh

We choose a mesh from the pose training set standing in the canonical pose to be the template
mesh. The template mesh is hole-filled and subsampled to contain 25, 000 triangles with 12, 500
vertices (Figure 3.3a). The remaining instance meshes are brought into full correspondence with the
template mesh.

Acquisition of Marker Locations

Marker locations are obtained diÆerently for the two training sets. For the shape training set, we
use the location of the 74 anthropometric markers from the CAESAR dataset (see Figure 3.2b,c) to
establish sparse correspondences with the template mesh. In the case of the pose training set in which
the surface deformations due to articulated pose changes are more significant, many more marker
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coarsely aligning surfaces that undergo significant articulated deformations and subsequently use
the alignment to initialize a standard non-rigid ICP algorithm (i. e. [Allen et al. (2003)]).

3.4.1 Marker-based Non-Rigid Iterative Closest Point Registration

Here we describe the method we applied for aligning a template mesh T to a deformed target mesh
D given some corresponding marker locations, as proposed by Allen et al. (2003). The template mesh
acts as a reference mesh that is smoothly deformed into other poses and body shapes to establish
correspondences between all training meshes. Each of these shapes are represented as triangular
meshes (although any polygon mesh representation can be used) consisting of a set of V vertices
and a set of T triangle faces sharing common vertices. An optimization problem is formulated that
solves for the 4 £ 4 a±ne transformation Ti for each vertex ~vi of the template mesh T using an
objective function that trades oÆ fit to the raw scan data, fit to known markers, and smoothness of the
transformation. For the purpose of mesh registration, vertex locations are expressed in homogeneous
coordinates: ~vi = [xi, yi, zi, 1]T.

Data Error

Our first objective is for the aligned template surface to be as close as possible to the target
surface. As such, we encourage vertices of the template mesh to move toward the closest respective
points on the surface of the target mesh in order to acquire the geometry of the raw scan. We use
the data error term Ed to penalize the remaining gap between the transformed vertices Ti~vi and
the target surface D:

Ed =
VX

i=1

wi gap2(Ti~vi,D) . (3.1)

Here, V denotes the number of vertices for the template mesh T and wi is used to control the influence
of the data term in the presence of holes in the target mesh. The function gap(·, ·) computes the
distance from a point to the closest compatible vertex of a surface and it is implemented using a
KD-tree data structure for computational e±ciency. The compatibility restriction safeguards against
front-facing surfaces being matched to back-facing surfaces and is measured in terms of the angle
between the surface normals. It also restricts the distance between them to a threshold to avoid
matching through holes in the target mesh.

Smoothness Error

Matching points to a wavy surface independently using the closest point strategy alone introduces
unnatural folding and stretching artifacts. The solution can be regularized by adding a deformation
smoothness constraint Es that require a±ne transformations applied to adjacent vertices on the
surface to be as similar as possible:

Es =
X

{i,j|(~vi,~vj)2edges(T )}

||Ti °Tj ||2F , (3.2)
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Figure 3.4: Mesh Registration Process. (a) Sparse landmark correspondences between the
template mesh (green) and a raw scan (gray). (b) Vertices and edges located on the boundary of
a hole in the scan are highlighted in red. (c) Vertex weights wi for the data term. Black regions
correspond to vertices from the template mesh with a zero data-fitting weight, while white regions
have weight one.

where || · ||F denotes the Frobenius norm.
Applying this constraint is not the same as applying a surface smoothness constraint. This is

important because what we want is to preserve the surface details present in the template mesh,
particularly in regions where the target mesh contains holes.

Marker Error

In the presence of large surface deformations of the target mesh with respect to the template,
the data and smoothness constraints are often insu±cient for achieving a correct alignment. To
assist the alignment process and help guide the deformation of the template mesh into place, a set
of points on the target surface ~mi that correspond to known points on the template are identified.
We need to encourage the correspondences at marker locations to be correct. We use the marker
error term Em to minimize the distance between each marker’s location on the template surface and
its location on the target surface:
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Here ∑
1···M is a list of vertex indices from the template mesh that correspond to the markers on the

target surface (Figure 3.4a).
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The complete objective function is a weighted sum of the three error terms:

E = ÆEd + ØEs + ∞Em (3.4)

and can be optimized using gradient descent.
The optimization is initialized using a global transformation that aligns the center of mass of the

template to the target mesh and the overall orientation and scale. The optimization continues in
stages, following diÆerent weighting schedules that emphasize matching landmarks (10,000 iterations
with Æ = 0,Ø = 10, ∞ = 20), overall shape fitting (600 iterations with Æ = 2,Ø = 10, ∞ = 2), and
refinement of the surface geometry (400 iterations with Æ = 1, Ø = 0.1, ∞ = 0.1).

Hole-filling

Large holes in the scanned mesh pose problems to the method described so far. In this case
many vertices on the template have no correct correspondence on the scanned mesh. The data term
encourages these vertices to move instead to the closest existing patch from the target mesh causing
undesirable stretching. Fortunately, at each iteration we can easily identify the vertices ~vi with no
true correspondence as the ones whose closest point on the target mesh is located on the boundary
edge of a hole (Figure 3.4b). For these vertices, we set the weight wi in Ed to zero so that the
transformations Ti will be driven by the smoothness constraint Es. The eÆect is that holes are filled
in by seamlessly transformed parts of the template surface.

3.4.2 Processing Pipeline

We apply the non-rigid mesh registration technique to our two training data sets, one containing
the same subject in diÆerent poses, and the other containing diÆerent subjects in the same canonical
standing pose.

Template Mesh

We choose a mesh from the pose training set standing in the canonical pose to be the template
mesh. The template mesh is hole-filled and subsampled to contain 25, 000 triangles with 12, 500
vertices (Figure 3.3a). The remaining instance meshes are brought into full correspondence with the
template mesh.

Acquisition of Marker Locations

Marker locations are obtained diÆerently for the two training sets. For the shape training set, we
use the location of the 74 anthropometric markers from the CAESAR dataset (see Figure 3.2b,c) to
establish sparse correspondences with the template mesh. In the case of the pose training set in which
the surface deformations due to articulated pose changes are more significant, many more marker
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Figure 3.4: Mesh Registration Process. (a) Sparse landmark correspondences between the
template mesh (green) and a raw scan (gray). (b) Vertices and edges located on the boundary of
a hole in the scan are highlighted in red. (c) Vertex weights wi for the data term. Black regions
correspond to vertices from the template mesh with a zero data-fitting weight, while white regions
have weight one.

where || · ||F denotes the Frobenius norm.
Applying this constraint is not the same as applying a surface smoothness constraint. This is

important because what we want is to preserve the surface details present in the template mesh,
particularly in regions where the target mesh contains holes.

Marker Error

In the presence of large surface deformations of the target mesh with respect to the template,
the data and smoothness constraints are often insu±cient for achieving a correct alignment. To
assist the alignment process and help guide the deformation of the template mesh into place, a set
of points on the target surface ~mi that correspond to known points on the template are identified.
We need to encourage the correspondences at marker locations to be correct. We use the marker
error term Em to minimize the distance between each marker’s location on the template surface and
its location on the target surface:

Em =
MX

i=1

||T∑i~v∑i ° ~mi||2 . (3.3)

Here ∑
1···M is a list of vertex indices from the template mesh that correspond to the markers on the

target surface (Figure 3.4a).
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of points on the target surface ~mi that correspond to known points on the template are identified.
We need to encourage the correspondences at marker locations to be correct. We use the marker
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The complete objective function is a weighted sum of the three error terms:
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and can be optimized using gradient descent.
The optimization is initialized using a global transformation that aligns the center of mass of the

template to the target mesh and the overall orientation and scale. The optimization continues in
stages, following diÆerent weighting schedules that emphasize matching landmarks (10,000 iterations
with Æ = 0,Ø = 10, ∞ = 20), overall shape fitting (600 iterations with Æ = 2,Ø = 10, ∞ = 2), and
refinement of the surface geometry (400 iterations with Æ = 1, Ø = 0.1, ∞ = 0.1).
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many vertices on the template have no correct correspondence on the scanned mesh. The data term
encourages these vertices to move instead to the closest existing patch from the target mesh causing
undesirable stretching. Fortunately, at each iteration we can easily identify the vertices ~vi with no
true correspondence as the ones whose closest point on the target mesh is located on the boundary
edge of a hole (Figure 3.4b). For these vertices, we set the weight wi in Ed to zero so that the
transformations Ti will be driven by the smoothness constraint Es. The eÆect is that holes are filled
in by seamlessly transformed parts of the template surface.

3.4.2 Processing Pipeline

We apply the non-rigid mesh registration technique to our two training data sets, one containing
the same subject in diÆerent poses, and the other containing diÆerent subjects in the same canonical
standing pose.

Template Mesh

We choose a mesh from the pose training set standing in the canonical pose to be the template
mesh. The template mesh is hole-filled and subsampled to contain 25, 000 triangles with 12, 500
vertices (Figure 3.3a). The remaining instance meshes are brought into full correspondence with the
template mesh.

Acquisition of Marker Locations

Marker locations are obtained diÆerently for the two training sets. For the shape training set, we
use the location of the 74 anthropometric markers from the CAESAR dataset (see Figure 3.2b,c) to
establish sparse correspondences with the template mesh. In the case of the pose training set in which
the surface deformations due to articulated pose changes are more significant, many more marker
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Figure 3.5: Mesh Registration Results. Example meshes obtained using the mesh registration
process, where the template mesh (top left) has been brought into alignment with the scans. By
construction, these meshes maintain full per-vertex and per-triangle correspondence with the tem-
plate mesh and are hole-filled. Given a segmentation of the template mesh into 15 body parts,
the segmentation transfers naturally to the example meshes using the learned correspondences. We
illustrate the transfer by assigning a diÆerent color to each body part. (Top) example meshes from
the pose training set; (Bottom) example meshes from the shape training set.

The registered pose training set can be used for unsupervised learning of the articulated structure
of the body. Anguelov (2005) proposes an algorithm that uses a set of meshes corresponding to
diÆerent configurations of an articulated object to automatically recover a decomposition of the
object into approximately rigid parts. It defines a graphical model to capture the spatial contiguity
of parts and performs segmentation using the EM algorithm. The method produces an initial
segmentation of the template mesh into 18 parts, where the front and back of the pelvis area and the
torso were split into several pieces. After manually merging some of them, we obtain a segmentation
of the template triangles into 15 body parts corresponding to pelvis, torso, head, upper and lower
arms and legs, hands and feet. Since the training data is in full triangle correspondence, the division
into parts naturally applies to all meshes. Figure 3.5 shows the aligned meshes with the individual
body parts color-coded.

Next, we are using the meshes in full correspondence for shape morphing and statistical modeling
of the shape deformation space.

Registration

[Image from Alexandru Balan]
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Figure 3.7: Deformations Based on Shape Gradients. Shape deformation gradients are the
non-translational component At of an a±ne transformation that align the edge vectors ¢~xt,k of a
source mesh (left) to a target mesh (right). Since the shape deformation gradients are translation
invariant, applying the deformations to each triangle of the source mesh independently results in a
disconnected triangle “soup”, but with the desired orientation, scale and skew (middle). A consistent
mesh (right) can be obtained by solving a least squares problem over the shared triangle vertices
which implicitly encodes the mesh connectivity.

using inspiration from the work of Sumner and Popović (2004) on mesh deformation transfer.
The deformation gradients are based on the a±ne transformations that align corresponding

triangles between X and Y. For a given triangle t of the source mesh X containing the vertices
(~xt,1, ~xt,2, ~xt,3) and the corresponding triangle of the target mesh Y with vertices (~yt,1, ~yt,2, ~yt,3), we
consider an a±ne transformation defined by a 3 £ 3 matrix At and a displacement vector ~tt such
that

At~xt,k + ~tt = ~yt,k , k 2 {1, 2, 3} . (3.6)

By substructing the first equation from the others to eliminate the translation component ~tt we
obtain

At (~xt,k ° ~xt,1) = ~yt,k ° ~yt,1 , k 2 {2, 3} , (3.7)

which can be rewritten in matrix form as

At [¢~xt,2 , ¢~xt,3] = [¢~yt,2 , ¢~yt,3] , (3.8)

where the ¢ operator computes the edge vector: ¢~xt,k = ~xt,k ° ~xt,1.
The deformation gradient for each triangle is given by At, the non-translational component of

the a±ne transformation, which encodes only the local change in orientation, scale and skew induced

Mesh Deformation Gradients
[Sumner and Popovic, 2004]
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The deformation gradients are based on the a±ne transformations that align corresponding

triangles between X and Y. For a given triangle t of the source mesh X containing the vertices
(~xt,1, ~xt,2, ~xt,3) and the corresponding triangle of the target mesh Y with vertices (~yt,1, ~yt,2, ~yt,3), we
consider an a±ne transformation defined by a 3 £ 3 matrix At and a displacement vector ~tt such
that

At~xt,k + ~tt = ~yt,k , k 2 {1, 2, 3} . (3.6)

By substructing the first equation from the others to eliminate the translation component ~tt we
obtain

At (~xt,k ° ~xt,1) = ~yt,k ° ~yt,1 , k 2 {2, 3} , (3.7)

which can be rewritten in matrix form as

At [¢~xt,2 , ¢~xt,3] = [¢~yt,2 , ¢~yt,3] , (3.8)

where the ¢ operator computes the edge vector: ¢~xt,k = ~xt,k ° ~xt,1.
The deformation gradient for each triangle is given by At, the non-translational component of

the a±ne transformation, which encodes only the local change in orientation, scale and skew induced

3x3 transform for every triangle
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mesh (right) can be obtained by solving a least squares problem over the shared triangle vertices
which implicitly encodes the mesh connectivity.
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by the deformation of the triangle edges (Figure 3.7). The set of deformation gradients tabulated
for each triangle provide only an intrinsic representation of the mesh geometry. Therefore we need
address two problems: how to compute the deformations for example meshes and how to reconstruct
meshes from shape gradients.

Since for a given triangle only two of its edges are actually constraining the shape gradient in
Eq. 3.8, At is not uniquely determined. Sumner and Popović (2004) propose adding an ad hoc
forth vertex to each triangle along the direction perpendicular to the triangle plane to implicitly
add a third constraint for the subspace orthogonal to the triangle. We follow a more principled
approach and regularize the solution by introducing a smoothness constraint which prefers similar
deformations in adjacent triangles. We formulate a least-squares linear regression problem and solve
for all deformations gradients at once:

arg min
{A1,··· ,AT }

TX

t=1

X

k=2,3

||At¢~xt,k °¢~yt,k||2 + ws

X

t1,t2 adj

||At1 °At2 ||2F . (3.9)

This approach eÆectively removes high-frequency noise from the mesh geometry and leads to better
generalization when modeling the deformations in subsequent steps.

We now consider the problem of reconstructing a mesh from a set of shape gradients. Due to the
local nature of the deformations gradients that contain no notion of translation or connectivity, if
we were to transform individual triangles of the template by the corresponding deformation At, we
would get inconsistent edge vectors and unknown placement with respect to the neighbor triangles
(Figure 3.7). Given a set of deformation gradients, reconstructing a consistent mesh requires solving
a linear least squares problem over shared vertex coordinates:

arg min
{~y1,··· ,~yV }

TX

t=1

X

k=2,3

||At¢~xt,k °¢~yt,k||2 . (3.10)

This approach computes the best possible connected mesh whose edges ¢~yt,k are best aligned in a
least-square sense to the individually predicted deformed edges within each triangle At¢~xt,k. Since
all constraints are local, a global translational degree of freedom remains over the entire mesh. This
can be accounted for by anchoring one of the vertices of the target mesh (assuming that the mesh
is a single connected component).

We have shown how to extract shape deformation gradients from the example shapes and how to
reconstruct meshes from a set of deformation gradients. We note however that for a mesh topology
with 25, 000 triangles, each associated with a 3 £ 3 matrix At, the space of shape deformations is
very high dimensional with 225, 000 dimensions and highly redundant.

In order to reduce the dimensionality, we take advantage of the deformation gradients being local
and translation invariant and decouple the deformation transformations into a rigid and a non-rigid
pose component and a body shape component, each modeled independently. We then express the
triangle deformations as a sequence of linear transformations

At = Rp[t]DtQt . (3.11)
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Figure 3.7: Deformations Based on Shape Gradients. Shape deformation gradients are the
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source mesh (left) to a target mesh (right). Since the shape deformation gradients are translation
invariant, applying the deformations to each triangle of the source mesh independently results in a
disconnected triangle “soup”, but with the desired orientation, scale and skew (middle). A consistent
mesh (right) can be obtained by solving a least squares problem over the shared triangle vertices
which implicitly encodes the mesh connectivity.
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Figure 3.7: Deformations Based on Shape Gradients. Shape deformation gradients are the
non-translational component At of an a±ne transformation that align the edge vectors ¢~xt,k of a
source mesh (left) to a target mesh (right). Since the shape deformation gradients are translation
invariant, applying the deformations to each triangle of the source mesh independently results in a
disconnected triangle “soup”, but with the desired orientation, scale and skew (middle). A consistent
mesh (right) can be obtained by solving a least squares problem over the shared triangle vertices
which implicitly encodes the mesh connectivity.
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by the deformation of the triangle edges (Figure 3.7). The set of deformation gradients tabulated
for each triangle provide only an intrinsic representation of the mesh geometry. Therefore we need
address two problems: how to compute the deformations for example meshes and how to reconstruct
meshes from shape gradients.

Since for a given triangle only two of its edges are actually constraining the shape gradient in
Eq. 3.8, At is not uniquely determined. Sumner and Popović (2004) propose adding an ad hoc
forth vertex to each triangle along the direction perpendicular to the triangle plane to implicitly
add a third constraint for the subspace orthogonal to the triangle. We follow a more principled
approach and regularize the solution by introducing a smoothness constraint which prefers similar
deformations in adjacent triangles. We formulate a least-squares linear regression problem and solve
for all deformations gradients at once:

arg min
{A1,··· ,AT }

TX

t=1

X

k=2,3

||At¢~xt,k °¢~yt,k||2 + ws

X

t1,t2 adj

||At1 °At2 ||2F . (3.9)

This approach eÆectively removes high-frequency noise from the mesh geometry and leads to better
generalization when modeling the deformations in subsequent steps.

We now consider the problem of reconstructing a mesh from a set of shape gradients. Due to the
local nature of the deformations gradients that contain no notion of translation or connectivity, if
we were to transform individual triangles of the template by the corresponding deformation At, we
would get inconsistent edge vectors and unknown placement with respect to the neighbor triangles
(Figure 3.7). Given a set of deformation gradients, reconstructing a consistent mesh requires solving
a linear least squares problem over shared vertex coordinates:

arg min
{~y1,··· ,~yV }

TX

t=1

X

k=2,3

||At¢~xt,k °¢~yt,k||2 . (3.10)

This approach computes the best possible connected mesh whose edges ¢~yt,k are best aligned in a
least-square sense to the individually predicted deformed edges within each triangle At¢~xt,k. Since
all constraints are local, a global translational degree of freedom remains over the entire mesh. This
can be accounted for by anchoring one of the vertices of the target mesh (assuming that the mesh
is a single connected component).

We have shown how to extract shape deformation gradients from the example shapes and how to
reconstruct meshes from a set of deformation gradients. We note however that for a mesh topology
with 25, 000 triangles, each associated with a 3 £ 3 matrix At, the space of shape deformations is
very high dimensional with 225, 000 dimensions and highly redundant.

In order to reduce the dimensionality, we take advantage of the deformation gradients being local
and translation invariant and decouple the deformation transformations into a rigid and a non-rigid
pose component and a body shape component, each modeled independently. We then express the
triangle deformations as a sequence of linear transformations

At = Rp[t]DtQt . (3.11)

Estimation:
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Figure 3.7: Deformations Based on Shape Gradients. Shape deformation gradients are the
non-translational component At of an a±ne transformation that align the edge vectors ¢~xt,k of a
source mesh (left) to a target mesh (right). Since the shape deformation gradients are translation
invariant, applying the deformations to each triangle of the source mesh independently results in a
disconnected triangle “soup”, but with the desired orientation, scale and skew (middle). A consistent
mesh (right) can be obtained by solving a least squares problem over the shared triangle vertices
which implicitly encodes the mesh connectivity.
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that
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by the deformation of the triangle edges (Figure 3.7). The set of deformation gradients tabulated
for each triangle provide only an intrinsic representation of the mesh geometry. Therefore we need
address two problems: how to compute the deformations for example meshes and how to reconstruct
meshes from shape gradients.

Since for a given triangle only two of its edges are actually constraining the shape gradient in
Eq. 3.8, At is not uniquely determined. Sumner and Popović (2004) propose adding an ad hoc
forth vertex to each triangle along the direction perpendicular to the triangle plane to implicitly
add a third constraint for the subspace orthogonal to the triangle. We follow a more principled
approach and regularize the solution by introducing a smoothness constraint which prefers similar
deformations in adjacent triangles. We formulate a least-squares linear regression problem and solve
for all deformations gradients at once:

arg min
{A1,··· ,AT }

TX

t=1

X

k=2,3

||At¢~xt,k °¢~yt,k||2 + ws

X

t1,t2 adj

||At1 °At2 ||2F . (3.9)

This approach eÆectively removes high-frequency noise from the mesh geometry and leads to better
generalization when modeling the deformations in subsequent steps.

We now consider the problem of reconstructing a mesh from a set of shape gradients. Due to the
local nature of the deformations gradients that contain no notion of translation or connectivity, if
we were to transform individual triangles of the template by the corresponding deformation At, we
would get inconsistent edge vectors and unknown placement with respect to the neighbor triangles
(Figure 3.7). Given a set of deformation gradients, reconstructing a consistent mesh requires solving
a linear least squares problem over shared vertex coordinates:

arg min
{~y1,··· ,~yV }

TX

t=1

X

k=2,3

||At¢~xt,k °¢~yt,k||2 . (3.10)

This approach computes the best possible connected mesh whose edges ¢~yt,k are best aligned in a
least-square sense to the individually predicted deformed edges within each triangle At¢~xt,k. Since
all constraints are local, a global translational degree of freedom remains over the entire mesh. This
can be accounted for by anchoring one of the vertices of the target mesh (assuming that the mesh
is a single connected component).

We have shown how to extract shape deformation gradients from the example shapes and how to
reconstruct meshes from a set of deformation gradients. We note however that for a mesh topology
with 25, 000 triangles, each associated with a 3 £ 3 matrix At, the space of shape deformations is
very high dimensional with 225, 000 dimensions and highly redundant.

In order to reduce the dimensionality, we take advantage of the deformation gradients being local
and translation invariant and decouple the deformation transformations into a rigid and a non-rigid
pose component and a body shape component, each modeled independently. We then express the
triangle deformations as a sequence of linear transformations

At = Rp[t]DtQt . (3.11)

Estimation:

Source
Mesh Target

Mesh

[Image from Alexandru Balan]

�
~y t
,2

�~yt,3

�
~

x

t,3

�~xt,2

Saturday, October 20, 12



44

Figure 3.7: Deformations Based on Shape Gradients. Shape deformation gradients are the
non-translational component At of an a±ne transformation that align the edge vectors ¢~xt,k of a
source mesh (left) to a target mesh (right). Since the shape deformation gradients are translation
invariant, applying the deformations to each triangle of the source mesh independently results in a
disconnected triangle “soup”, but with the desired orientation, scale and skew (middle). A consistent
mesh (right) can be obtained by solving a least squares problem over the shared triangle vertices
which implicitly encodes the mesh connectivity.
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The deformation gradients are based on the a±ne transformations that align corresponding

triangles between X and Y. For a given triangle t of the source mesh X containing the vertices
(~xt,1, ~xt,2, ~xt,3) and the corresponding triangle of the target mesh Y with vertices (~yt,1, ~yt,2, ~yt,3), we
consider an a±ne transformation defined by a 3 £ 3 matrix At and a displacement vector ~tt such
that

At~xt,k + ~tt = ~yt,k , k 2 {1, 2, 3} . (3.6)

By substructing the first equation from the others to eliminate the translation component ~tt we
obtain

At (~xt,k ° ~xt,1) = ~yt,k ° ~yt,1 , k 2 {2, 3} , (3.7)

which can be rewritten in matrix form as

At [¢~xt,2 , ¢~xt,3] = [¢~yt,2 , ¢~yt,3] , (3.8)

where the ¢ operator computes the edge vector: ¢~xt,k = ~xt,k ° ~xt,1.
The deformation gradient for each triangle is given by At, the non-translational component of

the a±ne transformation, which encodes only the local change in orientation, scale and skew induced
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Applying deformation gradients typically leads to inconsistent 
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Figure 3.7: Deformations Based on Shape Gradients. Shape deformation gradients are the
non-translational component At of an a±ne transformation that align the edge vectors ¢~xt,k of a
source mesh (left) to a target mesh (right). Since the shape deformation gradients are translation
invariant, applying the deformations to each triangle of the source mesh independently results in a
disconnected triangle “soup”, but with the desired orientation, scale and skew (middle). A consistent
mesh (right) can be obtained by solving a least squares problem over the shared triangle vertices
which implicitly encodes the mesh connectivity.
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triangles between X and Y. For a given triangle t of the source mesh X containing the vertices
(~xt,1, ~xt,2, ~xt,3) and the corresponding triangle of the target mesh Y with vertices (~yt,1, ~yt,2, ~yt,3), we
consider an a±ne transformation defined by a 3 £ 3 matrix At and a displacement vector ~tt such
that

At~xt,k + ~tt = ~yt,k , k 2 {1, 2, 3} . (3.6)

By substructing the first equation from the others to eliminate the translation component ~tt we
obtain

At (~xt,k ° ~xt,1) = ~yt,k ° ~yt,1 , k 2 {2, 3} , (3.7)

which can be rewritten in matrix form as

At [¢~xt,2 , ¢~xt,3] = [¢~yt,2 , ¢~yt,3] , (3.8)

where the ¢ operator computes the edge vector: ¢~xt,k = ~xt,k ° ~xt,1.
The deformation gradient for each triangle is given by At, the non-translational component of

the a±ne transformation, which encodes only the local change in orientation, scale and skew induced

Mesh Deformation Gradients
[Sumner and Popovic, 2004]

Applying deformation gradients typically leads to inconsistent 
edges and structures
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by the deformation of the triangle edges (Figure 3.7). The set of deformation gradients tabulated
for each triangle provide only an intrinsic representation of the mesh geometry. Therefore we need
address two problems: how to compute the deformations for example meshes and how to reconstruct
meshes from shape gradients.

Since for a given triangle only two of its edges are actually constraining the shape gradient in
Eq. 3.8, At is not uniquely determined. Sumner and Popović (2004) propose adding an ad hoc
forth vertex to each triangle along the direction perpendicular to the triangle plane to implicitly
add a third constraint for the subspace orthogonal to the triangle. We follow a more principled
approach and regularize the solution by introducing a smoothness constraint which prefers similar
deformations in adjacent triangles. We formulate a least-squares linear regression problem and solve
for all deformations gradients at once:

arg min
{A1,··· ,AT }

TX

t=1

X

k=2,3

||At¢~xt,k °¢~yt,k||2 + ws

X

t1,t2 adj

||At1 °At2 ||2F . (3.9)

This approach eÆectively removes high-frequency noise from the mesh geometry and leads to better
generalization when modeling the deformations in subsequent steps.

We now consider the problem of reconstructing a mesh from a set of shape gradients. Due to the
local nature of the deformations gradients that contain no notion of translation or connectivity, if
we were to transform individual triangles of the template by the corresponding deformation At, we
would get inconsistent edge vectors and unknown placement with respect to the neighbor triangles
(Figure 3.7). Given a set of deformation gradients, reconstructing a consistent mesh requires solving
a linear least squares problem over shared vertex coordinates:

arg min
{~y1,··· ,~yV }

TX

t=1

X

k=2,3

||At¢~xt,k °¢~yt,k||2 . (3.10)

This approach computes the best possible connected mesh whose edges ¢~yt,k are best aligned in a
least-square sense to the individually predicted deformed edges within each triangle At¢~xt,k. Since
all constraints are local, a global translational degree of freedom remains over the entire mesh. This
can be accounted for by anchoring one of the vertices of the target mesh (assuming that the mesh
is a single connected component).

We have shown how to extract shape deformation gradients from the example shapes and how to
reconstruct meshes from a set of deformation gradients. We note however that for a mesh topology
with 25, 000 triangles, each associated with a 3 £ 3 matrix At, the space of shape deformations is
very high dimensional with 225, 000 dimensions and highly redundant.

In order to reduce the dimensionality, we take advantage of the deformation gradients being local
and translation invariant and decouple the deformation transformations into a rigid and a non-rigid
pose component and a body shape component, each modeled independently. We then express the
triangle deformations as a sequence of linear transformations

At = Rp[t]DtQt . (3.11)
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SCAPE: Shape Completion and Animation of 
PEople [Angelov et al., ACM TOG, 2005]

Key Idea: factor mesh deformation for a person into:

    (1) Articulated rigid deformations

    (2) Non-rigid deformations

    (3) Body shape deformations
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SCAPE: Shape Completion and Animation of 
PEople [Angelov et al., ACM TOG, 2005]

Key Idea: factor mesh deformation for a person into:

    (1) Articulated rigid deformations

    (2) Non-rigid deformations

    (3) Body shape deformations

Gives a parametric model of any person in any pose!
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Articulated Rigid Deformation

θ – joint angles

Articulated Rigid 
Deformation

Rp (θ)

This is basically rigid skinning

[Angelov et al., ACM TOG, 2005]

[Image from Alexandru Balan]
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Non-rigid Deformations

From a dataset of one person in different poses, learn residual 
deformations 

47

(a) (b) (c) (d)

Figure 3.8: Articulated Rigid and Non-rigid Deformations. (a) Template mesh. (b) Example
scanned mesh for which we compute the part-based rotation matrices Rp[t]. (c) Reconstructed mesh
that assumes only articulated rigid deformations, using the rotation matrices as shape gradients
(Equation 3.12). Since non-rigid deformations are not captured at this stage, significant artifacts
remain mainly at the joints. The torso and shoulders retain the orientation of the template as
the arms are raised, making the skin fold on the boundary between adjacent body parts. (d)
Reconstructed mesh using articulated rigid and predicted non-rigid pose-dependent deformations
(Equation 3.16), closely resembling the example mesh in (b), albeit slightly smoother in regions
such as armpits, abdomen and knees.

matrices for each mesh Yi directly from training data using the same idea as in Equation 3.9:

arg min
{Qi

1,··· ,Qi
T }

TX

t=1

X

k=2,3

ØØØ
ØØØRi

p[t]Q
i
t¢~xt,k °¢~y i

t,k

ØØØ
ØØØ
2

+ ws

X

t1,t2 adj

p[t1]=p[t2]

||Qi
t1 °Qi

t2 ||
2

F . (3.14)

As before, since the Q matrices are not fully constrained by the triangle edge vectors, we regularize
the solution by adding smoothing constraints that require similar deformations in adjacent triangles.
However, due to the foldings occurring at the boundary between adjacent body parts, as noted in
Figure 3.8c, we do not enforce smoothing constraints across the boundaries, bur rather on adjacent
triangles belonging to the same part. The smoothing factor ws is set to equal 0.001Ω, where Ω is the
mesh resolution, computed as the median value of the template mesh edge lengths.

Similar to [Anguelov (2005)], we assume that the non-rigid deformations Q can be expressed as
a linear function of the pose parameters R. We use the example set of non-rigid deformations to
learn prediction models of these deformations given arbitrary new poses not present in the training
set. Such non-rigid deformations are induced by rotations of the joints whose eÆect is localized to
the body parts connected to moving joints. We learn a linear regression function for each triangle
t which expresses the transformation matrix Qt as a function of the relative joint rotations at the

[Image from Alexandru Balan]

[Angelov et al., ACM TOG, 2005]
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Let non-rigid deformations be linear functions of pose

Models bulging of muscles, etc. 

Non-rigid Deformations

[Image from Alexandru Balan]

[Angelov et al., ACM TOG, 2005]
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Body Shape

From a dataset of many people in one pose learn variations 

- Extract mesh deformation gradients 

- Do PCA on them (vectorizing them first)

- 6 PCA dimensions can capture > 80% of variation 

[Image from Alexandru Balan]

[Angelov et al., ACM TOG, 2005]
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Body Shape

[Image from Peng Guan]
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Body Shape

[Image from Peng Guan]

It is also possible to create semantic parameters and regress from 
them to PCA coefficients 
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Body Shape

[Image from Peng Guan]

It is also possible to create semantic parameters and regress from 
them to PCA coefficients 

Demo
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SCAPE: Putting it all together

St (v)Rp (θ) Qt (Rp (θ))

θ – joint angles v – shape parameters 

We can simply concatenate all the deformations by 
multiplying them together

[Angelov et al., ACM TOG, 2005]
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SCAPE Model

[Video curtesy of Peng Guan]
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 Goal: learn functional mapping from image features to pose 
and shape parameters of the SCAPE model 

	

 	

 	

        (from synthesized input-output pairs)

Applications: Shape Estimation
[Sigal et al., NIPS‘2007]
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 Goal: learn functional mapping from image features to pose 
and shape parameters of the SCAPE model 

	

 	

 	

        (from synthesized input-output pairs)

Applications: Shape Estimation
[Sigal et al., NIPS‘2007]

Remember how Kinect works? Let’s try that for shape
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 Goal: learn functional mapping from image features to pose 
and shape parameters of the SCAPE model 

	

 	

 	

        (from synthesized input-output pairs)

feature space SCAPE space

Applications: Shape Estimation
[Sigal et al., NIPS‘2007]
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 Goal: learn functional mapping from image features to pose 
and shape parameters of the SCAPE model 

	

 	

 	

        (from synthesized input-output pairs)

SCAPE parameters = g ( features )
feature space SCAPE space

Applications: Shape Estimation
[Sigal et al., NIPS‘2007]
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 Can we estimate weight loss discriminatively from 
monocular images?

B
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or
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r
Proof of concept results

[Sigal et al., NIPS‘2007]
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 Can we estimate weight loss discriminatively from 
monocular images?

Estimated Weight Loss: 22lb
Reported Weight Loss:  24lb
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r

Assume density of water 

Proof of concept results
[Sigal et al., NIPS‘2007]
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Estimated Weight Loss: 32lb
Reported Weight Loss:  64lb
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Assume density of water 

	

 Can we estimate weight loss discriminatively from 
monocular images?

Proof of concept results
[Sigal et al., NIPS‘2007]
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Silhouettes is not enough
[Guan et al., ICCV, 2009]

Silhouettes are ambiguous
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Silhouettes is not enough
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Silhouettes is not enough

Adding edges

[Guan et al., ICCV, 2009]

Silhouettes are ambiguous
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Silhouettes is not enough

Adding edges

They also add shading cues

[Guan et al., ICCV, 2009]

Silhouettes are ambiguous
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[Guan et al., ICCV, 2009]

Estimating Pose and Shape from Image
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Internet Images:

Paintings:

[Guan et al., ICCV, 2009]

Fun Results
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Parametric Body Reshaping
[Zhou et al., ACM TOG, 2010]
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Parametric Body Reshaping
[Zhou et al., ACM TOG, 2010]
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