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Course Updates

Capture Project

- Now due next Monday (one week from today)

Final Project
- 3 minute pitches are due next class

- You should try to post your idea to the blog and get some
feedback before then

Reading Signup

- Everyone has signed up by this point?
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Plan for Today’s Class

- Review representation of skeleton motion

- Modeling shape and geometry of the body
- Skinning (rigid, linear, dual quaternion)
- Data-driven body models (SCAPE)

- Applications and discussion
- Shape estimation from images

- Image reshaping
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Skeleton Animations

Skeleton (tree hierarchy)

Hierarchical Structure

Common Data structure for Body Pose

=4 Root - Hips » Head —
-4 Chest
E% Neck, —L_

g Head - [ e -

E% Leftcallar —p Right Hand —y -
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EI% Leftshoulder

-4 LeftElhow Left Hand
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E%;Fh:g'm i > RightFoot — 1 eft Foot

P e & Leftwrist

-4 RightCollar .

EI% Rightshoulder » Root
Eﬁ RightElbows

Source: Meredith and Maddock, Motion Capture File Formats Explained
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Skeleton Animations

Skeleton (tree hierarchy)
- Nodes represent joints
- Joints are local coordinate
systems (frames)

- Edges represent bones

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Skeleton Animations

Skeleton (tree hierarchy)

- Nodes represent joints e

- Joints are local coordinate
systems (frames)

- Edges represent bones

Skin

- 3D model driven by the
skeleton

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Skeleton Animations

Skeleton (tree hierarchy)
- Nodes represent joints
- Joints are local coordinate
systems (frames)

- Edges represent bones

Skin

- 3D model driven by the
skeleton

Both are typically designed in a reference pose

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Skeleton in Reference Posture

Joint P(J)

N-joint skeleton in reference frame is given by
- Root frame expressed with respect to the world - R,

- Relative joint coordinate frames - R, R,. Rs...., Ry

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Skeleton in Reference Posture

Joint P(J)

N-joint skeleton in reference frame is given by
- Root frame expressed with respect to the world - R
- Relative joint coordinate frames - R, R,. Rs...., Ry
( i1 Ti2 Tz U \
to

21 T22 T23
R; =

| a1 r3e ras i3
\ 0 0 0 1/

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Skeleton in Reference Posture

Joint P(J)

N-joint skeleton in reference frame is given by
- Root frame expressed with respect to the world - R,

- Relative joint coordinate frames - R, R,. Rs...., Ry

Mapping from world to a coordinate frame of joint j
Aj= Ro-- - Ry R;

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Skeleton in Reference Posture

Joint P(J)

N-joint skeleton in reference frame is given by
- Root frame expressed with respect to the world - R,

- Relative joint coordinate frames - R, R,. Rs5...., Ry

Mapping from world to a coordinate frame of joint j
Aj= Ro-- - Ry R;

N\ parent of joint j

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Animating Skeleton

Achieved by rotating each joint from it’s reference posture

- Note: joint rotation effects the entire sub-tree (e.g., rotation
at the shoulder will induce motion of the whole arm)

Rotation at joint j is described by:

ry1 riz2 riz 0

T, — ro1 To2 T2z 0
r31 Tz 133 0

0 0 0 1

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Animating Skeleton

Mapping from world to a coordinate frame of joint j in
reference pose:

Aj = Ro--- Ry R;

Mapping from world to a coordinate frame of joint j in
animated pose:

by = Rolo. .. Ry Lyl

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Animating Skeleton

Mapping from world to a coordinate frame of joint j in
reference pose:

Aj = Ro--- Ry R;

Mapping from world to a coordinate frame of joint j in
animated pose:

by = Rolo. .. Ry Lyl

Note:if T; = L4y then F; = A;

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Character Rigging

|. Embed the skeleton into a 3D mesh (skin)

2.Assign vertices of the mesh to one or more bones to allow
skin to move with the skeleton

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Rigid Skinning

. L Vi k
Assign each vertex to one bone/joint - ; \ %j
suscat . \w\
e o o =
b = Fy(A)) " Y -
Vi = Fj\4y Yi . f)\ o
v; - position of vertex in reference mesh \
A; -joint jin reference mesh 1y \
/ [

F; -joint jin animated mesh

‘5 -

v; - position of vertex in animated mesh
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Rigid Skinning

Requires assighment of vertices on 3D mesh to joints on skeleton

- Often done manually

- Assigning to joint influencing the closest bone is usually a good
automatic guess

Assign each vertex to one bone/joint - ; 7’\&1
K] \}.\‘
&ﬁ.__‘gd Ve
N 1 o
V; = Fj (Aj> U; | fj\ oot joint

v; - position of vertex in reference mesh '\
A, -joint jin reference mesh ) \

F; -joint jin animated mesh

5 -

v; - position of vertex in animated mesh
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Rigid Skinning Limitations
In reference pose: In animated pose:

.""'/ skID/ - — %\

vertex

- Works well away from the ends of the bone (joints)

- Leads to unrealistic non-smooth deformations near joints

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Linear Blend Skinning

Each vertex is assigned to multiple bone/joints
N
3 —1 ;=
0 = ) wjiFj(A;) "
e

v; - position of vertex i in reference mesh
A; -jointjin reference mesh

F; -jointjin animated mesh

U; - position of vertex i in animated mesh
w;; - influence of joint j on the vertex

0—- -
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Linear Blend Skinning

Each vertex is assigned to multiple bone/joints "%
\ N
N . 4%’ — - o i
0 = > wiiFy(A;) g .
ot /\
v; - position of vertex i in reference mesh I \
7/ /

A, -jointjin reference mesh

0—- -

F; -jointjin animated mesh
U; - position of vertex i in animated mesh
w;; - influence of joint j on the vertex

N

Weights need to be convex: Z wi; = 1,w;; > 0
j=1
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Linear Blend Skinning

Each vertex is assigned to multiple bone/joints U@\k

= 1 'S — F
0= ) w;iFj(A;) o f

j=1 \
v; - position of vertex i in reference mesh / \
A; -jointjin reference mesh ’
F; -jointjin animated mesh
U; - position of vertex i in animated mesh painted on or
wj; - influence of joint j on the vertex based on distance to

joints

Weights need to be convex: Z w;; = 1,|w;;| = 0
j=1
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Linear Blend Skinning Weights

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Linear Blend Skinning Weights

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]




Linear Blend Skinning Weights

Why weights must convex?

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Linear Blend Skinning Weights

N
QA)Z' — Z wjz-Fj (Aj)_lfl]f,;
1=1

Why weights must convex?

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Linear Blend Skinning Example

resulting vertex position

first bone transformation second bone transformation

: \,.‘_/ /

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]

Saturday, October 20, 12



Linear Blend Skinning Limitations

Joint twisting 180 degrees

produces a collapsing effect where skin collapses to a single point
(“‘candy-wrapper” artifact)

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Linear Blend Skinning Limitations

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Linear Blend Skinning Limitations

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]




Why LBS Produce Artifacts!?
U = ijiFj(Aj)_lvi > oy = (Z wjiMj) Uj

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]




Why LBS Produce Artifacts!?
U = ijiFj(Aj)_lvi > oy = (Z wjiMj) Uj

My
< >M2
SE(3)

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]




Why LBS Produce Artifacts!?
U = ijiFj(Aj)_lvi > oy = (Z wjiMj) Uj

My

SE(3)

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Why LBS Produce Artifacts!?

SE(3)

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Why LBS Produce Artifacts!?

SE(3)

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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SE(3) Intrinsic Blending

SE(3)

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Dual Quaternion Skinning

[Kavan et al., ACM TOG 2008]

Closed form approximation of SE(3) blending

0]

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Regular Quaternions

Remember: Euler angles

Rotation in 3D

X' cos(¢) sin(¢) O X
Y' | = | —sin(¢) cos(¢) O Y
A 0 0 1 Z
R,
X' cos(f) 0 sin(f) X
Y' | = 0 1 0 Y
[ z' ] { —sin(f) 0 cos(0) Z
Ry
X’ 1 0 0 X
Y’ ] = { 0 cos(yp) sin(3)) Y ]
z' 0 —sin(y) cos(¥) Z

R;

Note: I've overloaded the use of \phi in these slides. Earlier | used \phi to denote the original orientation. Here | am using it to
denote the rotation about the Z-axis.

Interpolating Euler angles has similar issues as LBS skinning
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Regular Quaternions

- Quaternions are alternative representation for orientations
(defined using complex algebra)

- Represents orientation using 4 tuples (roughly speaking one
for amount of rotation and 3 for the axis)

qg=w -+ 21+ Y1+ 21
- However, there are only 3 degrees of freedom for a rotation

- Hence, to be a valid rotation, quaternion must be unit norm

gl =1
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Regular Quaternions

- Quaternions are alternative representation for orientations
(defined using complex algebra)

- Represents orientation using 4 tuples (roughly speaking one
for amount of rotation and 3 for the axis)

qg=w -+ 21+ Y1+ 21
- However, there are only 3 degrees of freedom for a rotation

- Hence, to be a valid rotation, quaternion must be unit norm
lql] =1

Interpretation: Quaternions live on a sphere in a 4D space
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Dual Quaternions ciford s

- Dual quaternions are able to model rigid transformations
(rotation + translation)

- Map a 6 dimensional manifold in an 8 dimensional space

- Need to be unit length to represent a valid rigid transform

+1.0+0.01+0.0j +0.0k

=

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Dual Quaternions ciford s

- Dual quaternions are able to model rigid transformations
(rotation + translation)

- Map a 6 dimensional manifold in an 8 dimensional space

- Need to be unit length to represent a valid rigid transform

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Dual Quaternion Skinning

[Kavan et al., ACM TOG 2008]

Closed form approximation of SE(3) blending

0]

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]

Saturday, October 20, 12



Comparison: Linear Blend Skinning

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]




Comparison: Dual Quaternion

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]
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Dual Quaternion Skinning

(®) BUNGE

- T—

= /BNCINS -

0%

[INDUSTRIAL
LIGHT & MAGIC

AAAAAAAAAAAAAAAAA

GAMES

[Slide content and illustrations from Ladislav Kavan and Olga Sorkine]




Skinning Limitations

- All skinning methods assume a fixed relationship between
skeleton motion and the mesh

- Humans are more complex (e.g., muscles lead to local
deformations)

- Skinning only allows animation of predefined body geometry
(created by an animator), do not help us create this geometry
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Data-driven Body Shape Models

[ Cyberware ]

|dea: Let’s scan real people and figure out how their body
deforms and what body types are possible




Data-driven Body Shape Models

7

Pipeline [ Cyberware ]
- Register all the scans
- Create (typically parametric) model of shape

- Use that model for an interesting application
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Registration / Correspondence

[Allen et al., 2003]
Marker-based Non-rigid Iterative Closest Point Registration

Goal: Fit a template mesh to triangulated 3D point cloud

b = akly _|_/6ES _|_’7Em

Amounts to estimating a 4x4 transform for
every vertex through optimization of above
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Registration / Correspondence

[Allen et al., 2003]
Marker-based Non-rigid Iterative Closest Point Registration

Goal: Fit a template mesh to triangulated 3D point cloud

E = aky _l_ﬁEs _I_’yEm

data term

Saturday, October 20, 12



Registration / Correspondence

[Allen et al., 2003]
Marker-based Non-rigid Iterative Closest Point Registration

Goal: Fit a template mesh to triangulated 3D point cloud

E = akby _l_ﬁEs _I_’VEm

data term smoothness
term
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Registration / Correspondence

[Allen et al., 2003]
Marker-based Non-rigid Iterative Closest Point Registration

Goal: Fit a template mesh to triangulated 3D point cloud

E = akby _l_ﬁEs _I_’VEm

data term smoothness marker anchor
term term
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Registration / Correspondence

[Allen et al., 2003]
Marker-based Non-rigid Iterative Closest Point Registration

Goal: Fit a template mesh to triangulated 3D point cloud

E =aky _|_/6ES _|_’7Em

data term smoothness marker anchor
term term

Solved using gradient descent

Initialized by aligning centers of mass

Saturday, October 20, 12



Registration

[Image from Alexandru Balan]
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Mesh Deformation Gradients

[Sumner and Popovic, 2004]
3x3 transform for every triangle

Source
Mesh

[Image from Alexandru Balan]
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Mesh Deformation Gradients

[Sumner and Popovic, 2004]
3x3 transform for every triangle

Source
Mesh

[Image from Alexandru Balan]

Estimation:

T
arg min S: S: HAtAft,k — Agt,k|’2'
1AL AT g—2 3
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Mesh Deformation Gradients

[Sumner and Popovic, 2004]
3x3 transform for every triangle

Source
Mesh

[Image from Alexandru Balan]

Estimation:

T
. — — 2 °
argmin » Y |[JAAF - AGxll? under-constrained
1AL AT 41 =2 3
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Mesh Deformation Gradients

[Sumner and Popovic, 2004]
3x3 transform for every triangle

Source
Mesh

[Image from Alexandru Balan]

Estimation:

T
argmin Y Y [JA AT, — Afxl]? + ws Z AL, — ALl
{A1,,Ar} t=1 k=2,3 t1,t2 adj
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Mesh Deformation Gradients

[Sumner and Popovic, 2004]

Applying deformation gradients typically leads to inconsistent
edges and structures

Source
Mesh

[Image from Alexandru Balan]
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Mesh Deformation Gradients

[Sumner and Popovic, 2004]

Applying deformation gradients typically leads to inconsistent
edges and structures

Source
Mesh

Reconstruction:

.
arg min >: >: AL AZ, —Agt,kHQ

{g17'” 7gV} ‘[j:l k:273
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SCAPE: Shape Completion and Animation of

PEOPle [Angelov et al, ACMTOG, 2005]

Key Ildea: factor mesh deformation for a person into:
(1) Articulated rigid deformations
(2) Non-rigid deformations
(3) Body shape deformations
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SCAPE: Shape Completion and Animation of

PEOPle [Angelov et al, ACMTOG, 2005]

Key Ildea: factor mesh deformation for a person into:
(1) Articulated rigid deformations
(2) Non-rigid deformations
(3) Body shape deformations

Gives a parametric model of any person in any pose!
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Articulated Rigid Deformation

[Angelov et al., ACM TOG, 2005]

This is basically rigid skinning

R,(0)

Articulated Rigid
Deformation

0 — joint angles

[Image from Alexandru Balan]

Saturday, October 20, 12



Non-rigid Deformations

[Angelov et al., ACM TOG, 2005]

From a dataset of one person in different poses, learn residual
deformations

T
2
argmin 3} | Ry QAT . — AT || +ws > 1Qf, — QL%
{Ql?"' 7QT} t=1 k:2,3 tl,tg adJ
plti1]=plt2]

[Image from Alexandru Balan]
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Non-rigid Deformations

[Angelov et al., ACM TOG, 2005]

Let non-rigid deformations be linear functions of pose

Models bulging of muscles, etc.

[Image from Alexandru Balan]
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Body Shape

[Angelov et al., ACM TOG, 2005]

From a dataset of many people in one pose learn variations
- Extract mesh deformation gradients

- Do PCA on them (vectorizing them first)

- 6 PCA dimensions can capture > 80% of variation

[Image from Alexandru Balan]
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Men

Women

Body Shape

[Image from Peng Guan]

uoneuUeA pis ¢ F




Body Shape

It is also possible to create semantic parameters and regress from
them to PCA coefficients

10 04 ¢
I 4 i ¢

Diml Dim2 Dim3 Dimd4

uoneLeA P}S € T

Women

[Image from Peng Guan]
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Body Shape

It is also possible to create semantic parameters and regress from
them to PCA coefficients

4 4
i

Demo

it 00 0

Diml Dim2 Dim3 Dim4

uoneLeA P}S € T

Women

[Image from Peng Guan]
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SCAPE: Putting it all together

[Angelov et al., ACM TOG, 2005]

6 — joint angles v — shape parameters

We can simply concatenate all the deformations by
multiplying them together
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SCAPE Model

[Video curtesy of Peng Guan]
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Applications: Shape Estimation

[Sigal et al., NIPS2007]
Goal: learn functional mapping from image features to pose

and shape parameters of the SCAPE model

(from synthesized input-output pairs)
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Applications: Shape Estimation

[Sigal et al., NIPS2007]
Goal: learn functional mapping from image features to pose

and shape parameters of the SCAPE model

(from synthesized input-output pairs)

Remember how Kinect works? Let’s try that for shape
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Applications: Shape Estimation

[Sigal et al., NIPS2007]
Goal: learn functional mapping from image features to pose

and shape parameters of the SCAPE model

(from synthesized input-output pairs)

| ()
"
- . O 9 i 3
/ \ \ ‘,"’v/
[ ‘) s
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Applications: Shape Estimation

[Sigal et al., NIPS2007]
Goal: learn functional mapping from image features to pose

and shape parameters of the SCAPE model

(from synthesized input-output pairs)

bz

o | S \| |/ sen
A A A

feature space SCAPE space

()
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Applications: Shape Estimation

[Sigal et al., NIPS2007]
Goal: learn functional mapping from image features to pose

and shape parameters of the SCAPE model

(from synthesized input-output pairs)

bz

o | S \| |/ sen
B R e I A

feature space SCAPE space
SCAPE parameters = g ( features )

()
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Proof of concept results

[Sigal et al., NIPS2007]

Can we estimate weight loss discriminatively from
monocular images?

Before

After
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Proof of concept results

[Sigal et al., NIPS2007]

Can we estimate weight loss discriminatively from
monocular images?
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Proof of concept results

[Sigal et al., NIPS2007]

Can we estimate weight loss discriminatively from
monocular images?
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Proof of concept results

[Sigal et al., NIPS2007]

Can we estimate weight loss discriminatively from
monocular images?

Assume density of water
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Proof of concept results

[Sigal et al., NIPS2007]

Can we estimate weight loss discriminatively from
monocular images?

Assume density of water

N

After
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Proof of concept results

[Sigal et al., NIPS2007]

Can we estimate weight loss discriminatively from
monocular images?

Assume density of water

N

After

Estimated Weight Loss: 22Ib
Reported Weight Loss: 24Ib
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Proof of concept results

[Sigal et al., NIPS2007]

Can we estimate weight loss discriminatively from
monocular images?

S

Estimated Weight Loss: 32Ib
Reported Weight Loss: 64lb

Saturday, October 20, 12



Silhouettes is not enough

[Guan et al., ICCV, 2009]

Silhouettes are ambiguous
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Silhouettes is not enough

[Guan et al., ICCV, 2009]

Silhouettes are ambiguous
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Silhouettes is not enough

[Guan et al., ICCV, 2009]

Silhouettes are ambiguous Adding edges
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Silhouettes is not enough

[Guan et al., ICCV, 2009]

Silhouettes are ambiguous Adding edges

They also add shading cues
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Estimating Pose and Shape from Image

[Guan et al., ICCV, 2009]

Training . 7 Model
- Parametric
A 3D body
S model
(SCAPE)
: Shape Database - -
Single mage Initialization Optimization l

3 ‘ ' '
r..‘_‘__.'.ill'oio&tte

Output
3D pose
o® and
% € shape
§ model
Animation
Caricature
Measurement :

Applications
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Fun Results

[Guan et al., ICCV, 2009]

Internet Images:
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Parametric Body Reshaping

[Zhou et al., ACM TOG, 2010]

Height = sl e +
Weight — sl o +
Girth = sl +
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Parametric Body Reshaping

[Zhou et al,ACM TOG, 2010]




