
Effective and Efficient Learning at Scale

Adams Wei Yu

AUGUST 2019
CMU-ML-19-111

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Jaime Carbonell, Co-Chair

Alexander Smola, Co-Chair (Amazon)
Ruslan Salakhutdinov

Quoc Le (Google)
Christopher Manning (Stanford)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2019 Adams Wei Yu

This research was supported by a grant from the Boeing Company, a fellowship from the Nvidia Corporation, a
fellowship from the Snap Inc, a fellowship from the Thomas and Stacey Siebel Foundation and a Carnegie Mellon
University presidential fellowship.

Keywords: Large Scale Optmization, Deep Neural Networks, Machine Reading Compre-
hension, Natural Language Processing

To my beloved wife, Yanyu Long and son, Ziheng Yu.

iv

Abstract
How to enable efficient and effective machine learning at scale has been a long-

standing problem in modern artificial intelligence, which also motivates this thesis
research. In particular, we aim at solving the following problems:

1. How to efficiently train a machine learning model?
2. How to speed up inference after the model is trained?
3. How to make the model generalize better?

We approach those problems from two perspectives: models and algorithms.
On one hand, we design novel models that are intrinsically fast to train and/or test.
On the other, we develop new algorithms with rapid convergence guarantee. Not
surprisingly, the above three problem are not mutually exclusive and thus solving
one of them might also benefit others. For example, 1) a new model that can enable
parallel computation helps accelerate both training and inference; 2) a fast algorithm
can save time for hyper-parameter tuning and/or make it affordable for training with
more data, which in return boosts the generalization performance.

This thesis consists of two parts. The first part presents new machine learn-
ing models with a focus on sequential data such as natural language processing and
question answering. Firstly, we propose a model, LSTM-Jump, that can skip unim-
portant information in text, mimicking the skimming behavior of human reading.
Trained with an efficient reinforcement learning algorithm, this model can be sev-
eral times faster than a vanilla LSTM in inference time. Then we introduce a text
encoding model that totally discards recurrent networks, which thus fully supports
parallel training and inference. Based on this technique, a new question-answering
model, QANet, is proposed. Combined with data augmentation approach via back-
translation, this model stays at the No.1 place in the competitive Stanford Question
and Answer Dataset (SQuAD) from March to Aug 2018, while being times faster
than the prevalent models. It was also the deepest neural network model for NLP
when invented.

The second part proposes large scale learning algorithms with provable conver-
gence guarantee. To enable fast training of neural networks, we propose a general
gradient normalization algorithm for efficient deep networks training. This method
can not only alleviate the gradient vanishing problem, but also regularize the model
to achieve better generalization. When the amount of training data becomes huge,
we need appeal to distributed computation. We are particularly interested in the
ubiquitous problem, empirical risk minimization, and propose a few algorithms to
attack the challenges posed by the distributed environment. We first show that a ran-
domized primal-dual coordinate method DSPDC can achieve a linear convergence
rate in the single-machine setting. Then by further leveraging the structural informa-
tion of the problem, we propose an asynchronous algorithm DSCOVR, which enjoys
a linear convergence rate as well on the distributed parameter server environment,
by executing periodical variance reduction.

vi

Acknowledgments
It has been a great journey for me in the past few years as a PhD student at CMU,

filled with growing, learning and developing. I could not have asked for more.
The first person I am greatly indebted to along this journey is my advisor Jaime

Carbonell, the nicest person I have ever met in my life. Jaime always gives me a
lot of freedom in choosing research topics and publishing in different areas, which
helps me become a well-rounded young researcher. As a guru in machine learning
and natural language processing, he knows almost everything in these two areas and
provides plenty of insightful advices for each topic I had worked on. Without his
kind support and guidance, I could not have achieved what I have now, not even
close. Jaime is also a perfect role model of diligence. He is the only professor
I know who had worked at CMU for 40 years but never taken a sabbatical break.
Working with such an intelligent and hard-working person makes me hardly slow
down my pace in research.

I would also like to thank Alex Smola, my another advisor. Alex has tons of
research ideas every day, a lot more than what I can digest, yet most of which would
lead to great papers. Although it was a pity that Alex left CMU in the middle, his
last wisdom proved to be very important for me – “Walk out of your comfort zone”.
I followed his suggestion and started to work on deep learning in 2016, which totally
changed my research path.

I should thank Quoc Le as well, who recruited me to Google Brain as an intern,
even when he knew I was completely a layman of deep learning. Quoc opens the
door for me to neural networks, teaches me how to think out of the box, and shares
with me uncountably many crazy ideas. I am really lucky to have him as a mentor
and close friend in my career.

Thanks also goes to the other thesis committee members, Ruslan Salakhutdinov
and Chris Manning, for their time and effort on giving me invaluable feedbacks. As
a world-class expert, Russ always impresses me by his deep understanding of every
aspect of neural networks. I really enjoy the discussion with him, whose output turns
out to be part of this thesis. I still remember the questions raised by Chris when I
was giving a talk in Stanford NLP group, which helped shape my oral presentation.
The meeting in person after the talk was also enlightening. I was grateful that Chris
shared his viewpoint on the future of NLP under the deep learning era.

I am fortunate enough to have worked with so many talents in optimization,
which is a major part of this thesis. Firstly, I would thank Fatma Kılınç-Karzan, who
mentored me on my first paper in CMU, which turned out to be an INFORMS data
mining best student paper candidate. I need to thank Suvrit Sra, who taught a fantas-
tic course Advanced Optimization and Randomized Methods, the course project of
which turned out to be my second paper in CMU. The discussion and collaboration
after he moved to MIT continued, which was enjoyable. I also enjoy the collab-
oration with Qihang Lin, one of the solidest optimization researchers I have ever
met. I really appreciate Lin Xiao for hosting me in Microsoft Research Redmond
for a fruitful summer internship. He set up a good example for me, teaching me

the importance of patience in doing solid research in optimization. I was impressed
by the breadth of Yaoliang Yu’s horizon, and the discussion with him was always
enlightening.

I would not be able to grow to what I have been today without my fantastic
collaborators, whom I would like to thank here as well: Maria Florina Balcan, Jaime
Carbonell, Kai Chen, Weizhu Chen, David Dohan, Simon S. Du, Lei Huang, Fatma
Kılınç-Karzan, Quoc Le, Hongrae Lee, Bo Li, Mu Li, Qihang Lin, Thang Luong,
Wanli Ma, Mohammad Norouzi, Ruslan Salakhutdinov, Aarti Singh, Alex Smola,
Suvrit Sra, Yining Wang, Lin Xiao, Tianbao Yang, Yaoliang Yu and Rui Zhao.

I am also grateful to Diane Stidle, Mallory Deptola, Alison Chiocchi and all
other MLD stuff members for making our big ML family well-organized. I want to
say sorry to Diane for always bringing her trouble but she is consistently patient and
helpful. I apologize for forgetting someone who should be acknowledged.

Last but not the least, I need to thank my parents for their long-lasting support
and help during my life. I am particularly thankful to my wife Yanyu Long. Yanyu,
to maintain our family ship, you gave up the job in China, came with me to CMU,
started from scratch to become a surgeon in the US and gave birth to our lovely
boy in the meanwhile. You have faced much higher pressure and conquered way
more challenges than I have, both physically and psychologically, with your bravery,
courage and determination. You are simply my hero and this thesis is dedicated to
you!

viii

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Part One: Efficient and Effective Deep Learning Models for Sequential Data

Processing . 2
1.2.1 Fast Recurrent Model to Capture Important Information 2
1.2.2 Recurrence Free Model for Parallel Training and Inference 2

1.3 Part Two: Efficient Algorithms for General Model Training 3
1.3.1 Layer-wise Normalized Gradient Method for Training Deep Neural Net-

works . 3
1.3.2 Distributed Optimization on Parameter Servers 3

1.4 Excluded Research . 5

I Efficient and Effective Models for Sequential Data Processing 7

2 Learning to Skip Unimportant Information in Sequential Data 9
2.1 Introduction . 9
2.2 Related Work . 10
2.3 Methodology . 11

2.3.1 Model Overview . 11
2.3.2 Training with REINFORCE . 12
2.3.3 Inference . 13

2.4 Experimental Results . 13
2.4.1 Number Prediction with a Synthetic Dataset 14
2.4.2 Word Level Sentiment Analysis with Rotten Tomatoes and IMDB datasets 15
2.4.3 Character Level News Article Classification with AG dataset 17
2.4.4 Sentence Level Automatic Question Answering with Children’s Book

Test dataset . 18
2.5 Discussion . 21

3 Recurrency-Free Model for Fully Parallel Computation 23
3.1 Introduction . 23
3.2 Related Work . 24
3.3 The Model . 25

ix

3.3.1 Problem Formulation . 25
3.3.2 Model Overview . 25

3.4 Data Augmentation by Backtranslation . 28
3.5 Experiments . 31

3.5.1 Experiments on SQuAD . 31
3.5.2 Experiments on TriviaQA . 35

3.6 Discussion . 35

II Efficient Algorithms for Large Scale Optimization 41

4 Normalized Gradient Method for Training Deep Neural Networks 43
4.1 Introduction . 43
4.2 Related Work . 44
4.3 Algorithm Framework . 45
4.4 Convergence Analysis for A Concrete Case . 46
4.5 Numerical Experiments . 49

4.5.1 Multi Layer Perceptron for MNIST Image Classification 50
4.5.2 Residual Network on CIFAR10 and CIFAR100 50
4.5.3 Residual Network for ImageNet Classification 53
4.5.4 Language Modeling with Recurrent Neural Network 54
4.5.5 Sentiment Analysis with Convolution Neural Network 55

4.6 Discussion . 55

5 DSPDC: Doubly Stochastic Primal-Dual Coordinate Method for Bilinear Saddle-
Point Problem 57
5.1 Introduction . 57
5.2 Related Work . 59
5.3 Summary of Results . 61
5.4 Doubly Stochastic Primal-Dual Coordinate Method 62

5.4.1 Algorithm and Convergence Properties 62
5.4.2 Efficient Implementation for Factorized Data Matrix 65

5.5 Extension with Block Coordinate Updates . 66
5.5.1 Algorithm and Convergence Properties 67
5.5.2 Application 1: Matrix Risk Minimization 68
5.5.3 Application 2: Multi-task Large Margin Nearest Neighbor Problem . . . 69

5.6 Numerical Experiments . 72
5.6.1 Learning with factorized data . 72
5.6.2 Matrix Risk Minimization . 73
5.6.3 Multi-task Large Margin Nearest Neighbor Problem 73

5.7 Discussion . 75

x

6 DSCOVR: Randomized Primal-Dual Block Coordinate Algorithms for Asynchronous
Distributed Optimization 77
6.1 Introduction . 77
6.2 The DSCOVR Framework and Main Results . 79

6.2.1 Summary of Main Results . 83
6.2.2 Related Work . 86

6.3 The DSCOVR-SVRG Algorithm . 87
6.4 The DSCOVR-SAGA Algorithm . 91
6.5 Accelerated DSCOVR Algorithms . 93

6.5.1 Proximal Mapping for Accelerated DSCOVR 95
6.6 Conjugate-Free DSCOVR Algorithms . 96
6.7 Asynchronous Distributed Implementation . 97

6.7.1 Implementation of DSCOVR-SVRG . 97
6.7.2 Implementation of DSCOVR-SAGA . 99
6.7.3 Implementation of Accelerated DSCOVR 101

6.8 Experiments . 101
6.9 Discussion . 107

7 Concluding Remarks 109
7.1 Conclusions . 109
7.2 Future Directions . 110

III Appendices 113

A Convergence Analysis for DSPDC 115
A.1 Some technical lemmas . 115
A.2 Convergence in distance to the optimal solution 117
A.3 Convergence of objective gap . 123

B Convergence Analysis for DSCOVR 129
B.1 Proof of Theorem 6.3.1 . 129

B.1.1 Alternative bounds and step sizes . 138
B.2 Proof of Theorem 6.3.2 . 139
B.3 Proof of Theorem 6.4.1 . 145
B.4 Proof of Theorem 6.5.1 . 150

Bibliography 155

xi

xii

List of Figures

2.1 A synthetic example of the proposed model to process a text document. In this
example, the maximum size of jump K is 5, the number of tokens read before a
jump R is 2 and the number of jumps allowed N is 10. The green softmax are
for jumping predictions. The processing stops if a) the jumping softmax predicts
a 0 or b) the jump times exceeds N or c) the network processed the last token.
We only show the case a) in this figure. 10

3.1 An overview of the QANet architecture (left) which has several Encoder Blocks.
We use the same Encoder Block (right) throughout the model, only varying the
number of convolutional layers for each block. We use layernorm and residual
connection between every layer in the Encoder Block. We also share weights of
the context and question encoder, and of the three output encoders. A positional
encoding is added to the input at the beginning of each encoder layer consisting
of sin and cos functions at varying wavelengths, as defined in [183]. Each sub-
layer after the positional encoding (one of convolution, self-attention, or feed-
forward-net) inside the encoder structure is wrapped inside a residual block. . . . 27

3.2 An illustration of the data augmentation process with French as the pivot lan-
guage. Let k denote the beam width, which represents the number of translations
generated by the NMT system in each phase. In total for a given English input,
we will generate k2 paraphrases. 29

4.1 The training and testing objective curves on MNIST dataset with multi layer
perceptron. From left to right, the layer numbers are 6, 12 and 18 respectively.
The first row is the training curve and the second is testing. 49

4.2 The training and testing curves on CIFAR10 and CIFAR100 datasets with Resnet-
110. Left: CIFAR10; Right: CIFAR100; Upper: SGD+Momentum; Lower:
Adam. The thick curves are the training while the thin are testing. 53

4.3 The training and testing objective curves on Penn Tree Bank dataset with LSTM
recurrent neural networks. The first row is the training objective while the sec-
ond is the testing. From left to right, the training sequence (BPTT) length are
respectively 40, 400 and 1000. Dropout with 0.5 is imposed. 54

5.1 For all cases, m = 1. First row: λ1 = 10−3, λ2 = 10−2; Second row: λ1 =
10−6, λ2 = 10−5. First column: (n, p, q, d) = (5000, 100, 50, 20); Second col-
umn: (n, p, q, d) = (10000, 100, 50, 50); Third column: (n, p, q, d) = (10000, 500, 50, 50). 73

xiii

5.2 Performance on real datasets. Left: Covtype. Middle: RCV1. Right: Real-sim. . 74
5.3 Performance on matrix risk minimization. First row: d = 100. Second row: d =

200. Left: (m, q) = (5, 50). Middle: (m, q) = (50, 5). Right: (m, q) = (20, 20). 74
5.4 The result of different methods on large margin multi-task metric learning prob-

lem with ALOI data. There are p = 100 tasks and thus p + 1 = 101 metric
matrices to be learned, each being 128 × 128. The dual variable (triplet con-
straint) size is n = 1142658. For left to right, the primal and dual sampling
sizes of DSPDC are respectively (q,m) = (20, 2000), (q,m) = (20, 4000) and
(q,m) = (40, 8000). For SPDC and SDCA, the dual sampling sizes are the same
as DSPDC while they conduct full primal coordinate update (q = 101). 75

6.1 Partition of primal variable w, dual variable α, and the data matrix X 79
6.2 Simultaneous data and model parallelism. At any given time, each machine is

busy updating one parameter block and its own dual variable. Whenever some
machine is done, it is assigned to work on a random block that is not being updated. 82

6.3 A distributed system for implementing DSCOVR consists of m workers, h pa-
rameter servers, and one scheduler. The arrows labeled with the numbers 1, 2
and 3 represent three collective communications at the beginning of each stage
in DSCOVR-SVRG. 98

6.4 Communication and computation processes for one inner iteration of DSCOVR-
SVRG (Algorithm 7). The blue texts in the parentheses are the additional vectors
required by DSCOVR-SAGA (Algorithm 8). There are always m iterations tak-
ing place in parallel asynchronously, each evolving around one worker. A server
may support multiple (or zero) iterations if more than one (or none) of its stored
parameter blocks are being updated. 100

6.5 rcv1-train: smoothed-hinge loss, λ = 10−4, randomly shuffled, m = 20,
n=37, h=10. 104

6.6 rcv1-train: smoothed-hinge loss, λ = 10−6, randomly shuffled, m = 20,
n=37, h=10. 104

6.7 webspam: logistic regression, λ = 10−4, randomly shuffled, m = 20, n = 50,
h = 10. 105

6.8 webspam: logistic regression, λ = 10−6, randomly shuffled, m = 20, n = 50,
h = 10. 105

6.9 webspam: logistic regression, λ = 10−4, sorted labels, m = 20, n = 50, h = 10. 106
6.10 webspam: logistic regression, λ = 10−6, sorted labels, m = 20, n = 50, h = 10. 106
6.11 splice-site: logistic loss, λ = 10−6. randomly shuffled,m = 100, n = 150,

h = 20. 107

xiv

List of Tables

2.1 Task and dataset statistics. 14
2.2 Notations referred to in experiments. 14
2.3 Testing accuracy and time of synthetic number prediction problem. The jumping

level is number. 16
2.4 Testing time and accuracy on the Rotten Tomatoes review classification dataset.

The maximum size of jumping K is set to 10 for all the settings. The jumping
level is word. 16

2.5 Testing time and accuracy on the IMDB sentiment analysis dataset. The max-
imum size of jumping K is set to 40 for all the settings. The jumping level is
word. 17

2.6 Testing time and accuracy on the AG news classification dataset. The maximum
size of jumping K is set to 40 for all the settings. The jumping level is character. 18

2.7 Testing time and accuracy on the Children’s Book Test dataset. The maximum
size of jumping K is set to 5 for all the settings. The jumping level is sentence. . 19

3.1 Comparison between answers in original sentence and paraphrased sentence. . . 30
3.2 The performances of different models on SQuAD dataset. Models references:

a.[147], b.[213], c.[187], d.[190] , e.[203] , f.[193], g.[164], h.[105], i.[95],
j.[193], k.[172], l.[23], m.[53], n.[217], o.[33], p.[188], q.[71]. 37

3.3 Speed comparison between our model and RNN-based models on SQuAD dataset,
all with batch size 32. RNN-x-y indicates an RNN with x layers each contain-
ing y hidden units. Here, we use bidirectional LSTM as the RNN. The speed is
measured by batches/second, so higher is faster. 37

3.4 Speed comparison between our model and BiDAF [164] on SQuAD dataset. . . . 38
3.5 An ablation study of data augmentation and other aspects of our model. The

reported results are obtained on the development set. For rows containing entry
“data augmentation”, “×N” means the data is enhanced to N times as large
as the original size, while the ratio in the bracket indicates the sampling ratio
among the original, English-French-English and English-German-English data
during training. 38

3.6 Error analysis on SQuAD. 38
3.7 The F1 scores on the adversarial SQuAD test set. Model references: a.[147],

b.[187], c.[105], d.[213], e.[164], f.[217], g.[53], h.[95], i.[190], j.[172], k.[71]. . 39

xv

3.8 The development set performances of different single-paragraph reading models
on the Wikipedia domain of TriviaQA dataset. Note that ∗ indicates the result on
test set. Model references: a.[79], b.[79], c.[164], d.[136], e.[71]. 39

3.9 Speed comparison between the proposed model and RNN-based models on Triv-
iaQA Wikipedia dataset, all with batch size 32. RNN-x-y indicates an RNN with
x layers each containing y hidden units. The RNNs used here are bidirectional
LSTM. The processing speed is measured by batches/second, so higher is faster. . 39

4.1 Error rates of ResNets with different depths on CIFAR 10. SGDM∗ indicates the
results reported in [60] with the same experimental setups as ours, where only
ResNet-110 has multiple runs. 51

4.2 Error rates of ResNets with different depths on CIFAR 100. Note that [60] did
not run experiment on CIFAR 100. 52

4.3 Top-1 and Top 5 error rates of ResNet on ImageNet classification with different
algorithms. 54

4.4 The Best validation accuracy achieved by the different algorithms. 55

5.1 The overall complexity of finding an ε-optimal solution when A = UV , n ≥ p
and U and V (but not A) are stored in memory. We choose (q,m) = (1, 1) in
DSPDC. 67

5.2 The overall complexity of finding an ε-optimal solution for (5.5.6) when n ≥ p. . 69

6.1 Computation and communication complexities of batch first-order methods and
DSCOVR (for both SVRG and SAGA variants). We omit the O(·) notation in all
entries and an extra log(1 + κrand/m) factor for accelerated DSCOVR algorithms. 84

6.2 Breakdown of communication complexities into synchronous and asynchronous
communications for two different types of DSCOVR algorithms. We omit the
O(·) notation and an extra log(1 + κrand/m) factor for accelerated DSCOVR
algorithms. 85

6.3 Configuration of each machine in the distributed computing system. 101
6.4 Statistics of three datasets. Each feature vector is normalized to have unit norm. . 102

xvi

Chapter 1

Introduction

1.1 Background and Motivation

The past decade has witnessed the great success of machine learning, especially deep learning
(also known as deep neural networks), in various areas, including image classification [61, 88],
speech recognition [67] and recently natural language processing [42]. The revival of deep neural
networks is mainly due to the following facts: 1) non-linear models, for example neural networks,
can capture such a broad function class that it is more powerful in learning representation for a
plethora of applications, compared to traditional linear models; 2) The recent boost of computa-
tional power, especially the wide use of GPU has made it feasible to train neural networks within
reasonable time.

However, as the modern neural network structures turn deeper and more sophisticated, and
the data scale grows larger, the training and inference time will become consistently longer, even
in presence of the significant acceleration brought by hardware development. For example, 1)
we still need a few days to train a 100-layer neural net for ImageNet classification with modern
computing facilities and 2) the current machine reading comprehension algorithms are not fast
enough to be deployed on a real-time service.

In other words, speed is always the bottleneck for the current machine/deep learning re-
search, which motivates this Ph.D study. This thesis encompasses deep learning and large scale
optimization, two important and closely related fields in modern artificial intelligence. In par-
ticular, it focuses on accelerating machine learning from two perspectives: 1) inventing novel
models to circumvent the disadvantages of existing architectures and 2) developing new algo-
rithms to address the long-standing optimization issues. While speedup is the main theme, we
also propose techniques to improve the generalization of the models, which could not have been
accomplished without the acceleration.

In the rest of this chapter, we will give a general overview of the problems considered in this
thesis, followed by sketches of their solutions.

1

1.2 Part One: Efficient and Effective Deep Learning Models
for Sequential Data Processing

The first part of the thesis focuses on fast models for sequential data, a ubiquitous data format
in many applications, with a particular interest in applications on natural language processing
(NLP) and questions answering (QA). As deep neural networks become prevalent models in
modern natural language, or more broadly sequential data processing, this part aims to design
efficient and effective neural architectures.

1.2.1 Fast Recurrent Model to Capture Important Information

Recurrent neural networks (RNNs) have proven to be powerful tools to model sequence data,
such as videos, natural languages and time series, and hence serve as building blocks for varieties
of neural network architectures. Promising as they sound, there is a long-standing issue for RNNs
– They are hardly able to capture the long term dependency in the data due to the redundant and
noisy nature of most sequential data. It is analogous to human reading – one might forget or
misremember important contents in the previous chapters of a book as s/he moves on.

In Chapter 2, inspired by the skimming skills of humans, we propose a RNN model with
“skipping” connections, hoping that it can mimic the skim behavior that useful information is
stored while noisy information is skipped. Specifically, after processing a few elements of a
sequence, the model will predict how many immediate inputs can be skipped and directly “jump”
to the next informative input. The benefits are two-fold: keeping important tokens only and
processing much fewer inputs to enable speedup. Empirical study showed that we can achieve 6
times speedup on reading comprehension tasks with higher accuracy, while the visualization of
the result indicates the model can indeed capture the key information. This chapter is based on a
previous joint work [210] with Hongrae Lee and Quoc Le.

1.2.2 Recurrence Free Model for Parallel Training and Inference

While the RNN model with skip connections proposed in the previous section can alleviate the
long term dependency issue, the sequential nature of RNNs is another fundamental obstacle for
fast training. In a nutshell, that RNNs have to process the input tokens one after another makes
it infeasible to process all the tokens within a sequence in parallel. However, the advantages of
modern hardwares (such as GPUs or TPUs) for deep learning, can be exploited only when the
computation is parallelizable. So how to develop new models to fit this trait is the key for further
acceleration.

In Chapter 3, inspired by the parallelism friendly nature of convolution neural networks
(CNN) and self-attention mechanism, we propose to completely replace the recurrence with the
combination of those two components. The basic idea is to use convolution to sketch the local
dependency of adjacent tokens and apply the self-attention to capture the global interaction of
the distant tokens. The final architecture is a vertical pyramid rather than the horizontal long
chain (the traditional RNN). Such a structural change enables the parallel processing of all the
tokens of a sequence, resulting in 13 and 9 times speedup for training and inference respectively.

2

Upon proposed, this model was the deepest neural architecture in the NLP domain, consisting
of more than 130 layers and 3 times deeper than the previous record. The depth immediately
enables better generalization of the model. Furthermore, combined with a novel back-translation
data augmentation techniques, our model QANet were No.1 on the competitive Stanford Ques-
tion Answering (SQuAD) reading comprehension task in terms of both speed and accuracy. This
chapter is based on a previous joint work [212] with David Dohan, Thang Luong, Rui Zhao, Kai
Chen, Mohammad Norouzi and Quoc Le.

1.3 Part Two: Efficient Algorithms for General Model Train-
ing

The second part of the thesis aims to algorithmically improve the convergence of training, with
extensive theoretical analysis and empirical studies.

1.3.1 Layer-wise Normalized Gradient Method for Training Deep Neural
Networks

No matter what kind of neural networks (RNN/CNN/Attention) we use and how innovative we
are in designing the model, at the end of the day, we need to apply a certain optimization al-
gorithm to find the model parameters by minimizing some objective function that measures the
discrepancy between ground truth and the model prediction. Such a parameter-finding procedure
is called model training where the optimization algorithm is the dominating factor for conver-
gence. Among all the algorithmic challenges, we are particularly interested in addressing those
in training very deep neural networks, say, with more than 100 layers, as it has been a common
sense that the deeper the network is, the more expressive the model can be, while the harder the
training is.

One prominent challenge for training deep networks is due to the gradient vanishing phe-
nomenon. That is, the feedback signal (gradient of the discrepancy) from the last layer (predic-
tion) becomes weaker very quickly as it flows all the way down to the first layer (input), such that
the bottom layers can hardly get signals to update the parameters. In view of this problem, we
propose a normalized gradient with adaptive step-size method in Chapter 4. The idea is to main-
tain the gradient signal to a constant magnitude (gradient normalization) at each layer and then
adjust the parameter update rule adaptively with the re-scaled signal. We have shown that within
the same training time on a 101-layer neural network (ResNet-101), our algorithm significantly
outperforms the state-of-the-art training algorithms on an image classification task, indicating
the fast convergence of our method. This chapter is based on the previous joint work [211] with
Lei Huang, Qihang Lin, Ruslan Salakhutdinov and Jaime Carbonell.

1.3.2 Distributed Optimization on Parameter Servers
Machine learning is always hungry for data and in most scenarios, the volume of training data
would be so huge that it could no longer be stored in a single machine, where distributed storage

3

and computation are needed. A popular platform for this setting is the Parameter Server frame-
work where the server maintains the global parameters and coordinates simultaneous updates
of them at different data workers, while each data worker stores a portion of the training data
and only communicates with the server. Such a dedicated system may significantly increase our
capability of learning from big data, but at the same time, poses at least the following two new
challenges for developing efficient distributed algorithms:

• Communication Efficiency: During the whole process of computation with this framework,
write and read operations on the parameter server is extremely frequent, which results
in significant communication overhead in the network. However, network bandwidth is
much smaller than memory bandwidth and thus heavy communication cost would become
an obstacle to the efficiency of the algorithm. So designing a communication efficient
strategy is the key to improve the overall performance.

• Asynchrony: The computational speed of different data workers may vary a lot, which
makes the slowest machine the bottleneck of any synchronous algorithm. Besides, in real
distributed computing environment, the phenomenon of delay is inevitable and sometimes
unpredictable, which multiple factors could contribute to, such as the CPU speed, I/O of
disk, and network throughput. Therefore, to fully exploit the computation of all the data
workers rather than spending most of time waiting, it is necessary but also challenging to
develop asynchronous algorithms.

In Chapter 5, we attack those challenges starting from the simplest case, where there is only
one machine to store data and update the parameters. We develop a new algorithm for the empir-
ical risk minimization (ERM) problem, a generic form that can be instantiated as many machine
learning problems, such as support vector machine, linear regression and logistic regression.

We reformulate the ERM as a bilinear saddle point problem, and propose a doubly stochastic
primal-dual coordinate (DSPDC) optimization algorithm. In each iteration, our method ran-
domly samples a block of coordinates of the primal and dual solutions to update. The linear
convergence of our method could be established in terms of 1) the distance from the current it-
erate to the optimal solution and 2) the primal-dual objective gap. We show that the proposed
method has a lower overall complexity than existing coordinate methods when either the data
matrix has a factorized structure or the proximal mapping on each block is computationally ex-
pensive, e.g., involving an eigenvalue decomposition. The efficiency of DSPDC is confirmed by
empirical studies on several real applications, such as the multi-task large margin nearest neigh-
bor problem. This chapter is based on a previous joint work [209] with Qihang Lin and Tianbao
Yang.

The study in Chapter 5 endows us with an efficient algorithm to deal with factorized data,
which can be further leveraged in the distributed computation. In Chapter 6, we continue our
studies on ERM in the real distributed computing environment, and propose a family of ran-
domized primal-dual block coordinate algorithms that are especially suitable for asynchronous
implementation with parameter servers. In particular, we work with the saddle-point formulation
of such problems which allows simultaneous data and model partitioning, and exploit its struc-
ture by a new algorithms called doubly stochastic coordinate optimization with variance reduc-
tion (DSCOVR). Compared with other first-order distributed algorithms, we show that DSCOVR
may require less amount of overall computation and communication, and less or no synchroniza-

4

tion. We discuss the implementation details of the DSCOVR algorithms, and present numerical
experiments on an industrial distributed computing system. This chapter is based on a previous
joint work [201] with Lin Xiao, Qihang Lin and Weizhu Chen.

1.4 Excluded Research
Besides my main stream research outlined above, I also have broad interests in designing and
analyzing algorithms for various problems. The following works conducted during my Ph.D.
study are excluded from the main content to keep this thesis succinct.
• Work on an accelerated perceptron algorithm for fast binary classification in [207].
• Work on a generalized condition gradient algorithm for structured matrix rank minimiza-

tion problem [208].
• Work on Adadelay, an delay-adaptive stochastic distributed optimization algorithm [179].
• Work on the gap-dependency analysis of the noisy power method [13].
• Work on subset selection algorithm for linear regression under measurement constraints [189].
• Work on orthogonal weight normalization for deep neural network training [73].

5

6

Part I

Efficient and Effective Models for
Sequential Data Processing

7

Chapter 2

Learning to Skip Unimportant Information
in Sequential Data

2.1 Introduction

The last few years have seen much success of applying neural networks to many important ap-
plications in natural language processing, e.g., part-of-speech tagging, chunking, named entity
recognition [30], sentiment analysis [176, 177], document classification [34, 82, 90, 218], ma-
chine translation [11, 81, 162, 181, 198], conversational/dialogue modeling [170, 178, 184],
document summarization [123, 157], parsing [6] and automatic question answering (Q&A) [63,
95, 164, 182, 187, 190, 194, 203]. An important characteristic of all these models is that they
read all the text available to them. While it is essential for certain applications, such as machine
translation, this characteristic also makes it slow to apply these models to scenarios that have long
input text, such as document classification or automatic Q&A. However, the fact that texts are
usually written with redundancy inspires us to think about the possibility of reading selectively.

In this chapter, we consider the problem of understanding documents with partial reading,
and propose a modification to the basic neural architectures that allows them to read input text
with skipping. The main benefit of this approach is faster inference because it skips irrelevant
information. An unexpected benefit of this approach is that it also helps the models generalize
better.

In our approach, the model is a recurrent network, which learns to predict the number of
jumping steps after it reads one or several input tokens. Such a discrete model is therefore not
fully differentiable, but it can be trained by a standard policy gradient algorithm, where the
reward can be the accuracy or its proxy during training.

In our experiments, we use the basic LSTM recurrent networks [69] as the base model and
benchmark the proposed algorithm on a range of document classification or reading comprehen-
sion tasks, using various datasets such as Rotten Tomatoes [137], IMDB [111], AG News [218]
and Children’s Book Test [65]. We find that the proposed approach of selective reading speeds up
the base model by two to six times. Surprisingly, we also observe our model beats the standard
LSTM in terms of accuracy.

In summary, the main contribution of our work is to design an architecture that learns to skim

9

Figure 2.1: A synthetic example of the proposed model to process a text document. In this
example, the maximum size of jump K is 5, the number of tokens read before a jump R is 2
and the number of jumps allowed N is 10. The green softmax are for jumping predictions. The
processing stops if a) the jumping softmax predicts a 0 or b) the jump times exceeds N or c) the
network processed the last token. We only show the case a) in this figure.

text and show that it is both faster and more accurate in practical applications of text processing.
Our model is simple and flexible enough that we anticipate it would be able to incorporate to
recurrent nets with more sophisticated structures to achieve even better performance in the future.

2.2 Related Work

Closely related to our work is the idea of learning visual attention with neural networks [9,
121, 165], where a recurrent model is used to combine visual evidence at multiple fixations
processed by a convolutional neural network. Similar to our approach, the model is trained
end-to-end using the REINFORCE algorithm [196]. However, a major difference between those
work and ours is that we have to sample from discrete jumping distribution, while they can
sample from continuous distribution such as Gaussian. The difference is mainly due to the inborn
characteristics of text and image. In fact, as pointed out by Mnih et al. [121], it was difficult to
learn policies over more than 25 possible discrete locations.

This idea has recently been explored in the context of natural language processing applica-
tions, where the main goal is to filter irrelevant content using a small network [25]. Perhaps the
most closely related to our work is the concurrent work on learning to reason with reinforcement
learning [172]. The key difference between our work and Shen et al. [172] is that they focus
on early stopping after multiple pass of data to ensure accuracy whereas our method focuses on
selective reading with single pass to enable fast processing.

The concept of “hard” attention has also been used successfully in the context of making
neural network predictions more interpretable [96]. The key difference between our work and Lei
et al. [96]’s method is that our method optimizes for faster inference, and is more dynamic in its
jumping. Likewise is the difference between our approach and the “soft” attention approach
by [11]. Recently, [56] investigate how machine can fixate and skip words, focusing on the
comparison between the behavior of machine and human, while our goal is to make reading
faster. They model the probability that each single word should be read in an unsupervised way
while ours directly model the probability of how many words should be skipped with supervised
learning.

10

Our method belongs to adaptive computation of neural networks, whose idea is recently
explored by [54, 76], where different amount of computations are allocated dynamically per
time step. The main difference between our method and Graves, Jernite et al.’s methods is
that our method can set the amount of computation to be exactly zero for many steps, thereby
achieving faster scanning over texts. Even though our method requires policy gradient methods to
train, which is a disadvantage compared to [54, 76], we do not find training with policy gradient
methods problematic in our experiments.

At the high-level, our model can be viewed as a simplified trainable Turing machine, where
the controller can move on the input tape. It is therefore related to the prior work on Neural
Turing Machines [55] and especially its RL version [216]. Compared to [216], the output tape
in our method is more simple and reward signals in our problems are less sparse, which explains
why our model is easy to train. It is worth noting that Zaremba and Sutskever report difficulty in
using policy gradients to train their model.

Our method, by skipping irrelevant content, shortens the length of recurrent networks, thereby
addressing the vanishing or exploding gradients in them [70]. The baseline method itself, Long
Short Term Memory [69], belongs to the same category of methods. In this category, there are
several recent methods that try to achieve the same goal, such as having recurrent networks that
operate in different frequency [87] or is organized in a hierarchical fashion [21, 28].

Lastly, we should point out that we are among the recent efforts that deploy reinforcement
learning to the field of natural language processing, some of which have achieved encourag-
ing results in the realm of such as neural symbolic machine [99], machine reasoning [172] and
sequence generation [148].

2.3 Methodology
In this section, we introduce the proposed model named LSTM-Jump. We first describe its main
structure, followed by the difficulty of estimating part of the model parameters because of non-
differentiability. To address this issue, we appeal to a reinforcement learning formulation and
adopt a policy gradient method.

2.3.1 Model Overview
The main architecture of the proposed model is shown in Figure 2.1, which is based on an
LSTM recurrent neural network. Before training, the number of jumps allowed N , the number
of tokens read between every two jumps R and the maximum size of jumping K are chosen
ahead of time. While K is a fixed parameter of the model, N and R are hyperparameters that
can vary between training and testing. Also, throughout the paper, we would use d1:p to denote a
sequence d1, d2, ..., dp.

In the following, we describe in detail how the model operates when processing text. Given
a training example x1:T , the recurrent network will read the embedding of the first R tokens
x1:R and output the hidden state. Then this state is used to compute the jumping softmax that
determines a distribution over the jumping steps between 1 andK. The model then samples from
this distribution a jumping step, which is used to decide the next token to be read into the model.

11

Let κ be the sampled value, then the next starting token is xR+κ. Such process continues until
either

a) the jump softmax samples a 0; or
b) the number of jumps exceeds N ; or
c) the model reaches the last token xT .

After stopping, as the output, the latest hidden state is further used for predicting desired targets.
How to leverage the hidden state depends on the specifics of the task at hand. For example,
for classification problems in Section 2.4.1, 2.4.2 and 2.4.3, it is directly applied to produce
a softmax for classification, while in automatic Q&A problem of Section 2.4.4, it is used to
compute the correlation with the candidate answers in order to select the best one. Figure 2.1
gives an example with K = 5, R = 2 and N = 10 terminating on condition a).

2.3.2 Training with REINFORCE
Our goal for training is to estimate the parameters of LSTM and possibly word embedding, which
are denoted as θm, together with the jumping action parameters θa. Once obtained, they can be
used for inference.

The estimation of θm is straightforward in the tasks that can be reduced as classification prob-
lems (which is essentially what our experiments cover), as the cross entropy objective J1(θm) is
differentiable over θm that we can directly apply backpropagation to minimize.

However, the nature of discrete jumping decisions made at every step makes it difficult to
estimate θa, as cross entropy is no longer differentiable over θa. Therefore, we formulate it as
a reinforcement learning problem and apply policy gradient method to train the model. Specifi-
cally, we need to maximize a reward function over θa which can be constructed as follows.

Let j1:N be the jumping action sequence during the training with an example x1:T . Suppose
hi is a hidden state of the LSTM right before the i-th jump ji,1 then it is a function of j1:i−1 and
thus can be denoted as hi(j1:i−1). Now the jump is attained by sampling from the multinomial
distribution p(ji|hi(j1:i−1); θa), which is determined by the jump softmax. We can receive a re-
ward R after processing x1:T under the current jumping strategy.2 The reward should be positive
if the output is favorable or non-positive otherwise. In our experiments, we choose

R =

{
1 if prediction correct;
−1 otherwise.

Then the objective function of θa we want to maximize is the expected reward under the distri-
bution defined by the current jumping policy, i.e.,

J2(θa) = Ep(j1:N ;θa)[R]. (2.3.1)

where p(j1:N ; θa) =
∏

i p(j1:i|hi(j1:i−1); θa).

1The i-th jumping step is usually not xi.
2In the general case, one may receive (discounted) intermediate rewards after each jump. But in our case, we

only consider final reward. It is equivalent to a special case that all intermediate rewards are identical and without
discount.

12

Optimizing this objective numerically requires computing its gradient, whose exact value
is intractable to obtain as the expectation is over high dimensional interaction sequences. By
running S examples, an approximated gradient can be computed by the following REINFORCE
algorithm [196]:

∇θaJ2(θa) =
N∑
i=1

Ep(j1:N ;θa)[∇θa log p(j1:i|hi; θa)R]

≈ 1

S

S∑
s=1

N∑
i=1

[∇θa log p(js1:i|hsi ; θa)Rs]

where the superscript s denotes a quantity belonging to the s-th example. Now the term∇θa log p(j1:i|hi; θa)
can be computed by standard backpropagation.

Although the above estimation of ∇θaJ2(θa) is unbiased, it may have very high variance.
One widely used remedy to reduce the variance is to subtract a baseline value bsi from the reward
Rs, such that the approximated gradient becomes

∇θaJ2(θa) ≈
1

S

S∑
s=1

N∑
i=1

[∇θa log p(js1:i|hsi ; θ)(Rs − bsi)]

It is shown [196, 216] that any number bsi will yield an unbiased estimation. Here, we adopt the
strategy of Mnih et al. [121] that bsi = wbh

s
i + cb and the parameter θb = {wb, cb} is learned by

minimizing (Rs − bsi)2. Now the final objective to minimize is

J(θm, θa, θb) = J1(θm)− J2(θa) +
S∑
s=1

N∑
i=1

(Rs − bsi)2,

which is fully differentiable and can be solved by standard backpropagation.

2.3.3 Inference
During inference, we can either use sampling or greedy evaluation by selecting the most probable
jumping step suggested by the jump softmax and follow that path. In the our experiments, we
will adopt the sampling scheme.

2.4 Experimental Results
In this section, we present our empirical studies to understand the efficiency of the proposed
model in reading text. The tasks under experimentation are: synthetic number prediction, sen-
timent analysis, news topic classification and automatic question answering. Those, except the
first one, are representative tasks in text reading involving different sizes of datasets and vari-
ous levels of text processing, from character to word and to sentence. Table 2.1 summarizes the
statistics of the dataset in our experiments.

13

Task Dataset Level Vocab AvgLen #train #valid #test #class
Number Prediction synthetic word 100 100 words 1M 10K 10K 100
Sentiment Analysis Rotten Tomatoes word 18,764 22 words 8,835 1,079 1,030 2
Sentiment Analysis IMDB word 112,540 241 words 21,143 3,857 25,000 2
News Classification AG character 70 200 characters 101,851 18,149 7,600 4

Q/A Children Book Test-NE sentence 53,063 20 sentences 108,719 2,000 2,500 10
Q/A Children Book Test-CN sentence 53,185 20 sentences 120,769 2,000 2,500 10

Table 2.1: Task and dataset statistics.

To exclude the potential impact of advanced models, we restrict our comparison between the
vanilla LSTM [69] and our model, which is referred to as LSTM-Jump. In a nutshell, we show
that, while achieving the same or even better testing accuracy, our model is up to 6 times and 66
times faster than the baseline LSTM model in real and synthetic datasets, respectively, as we are
able to selectively skip a large fraction of text.

In fact, the proposed model can be readily extended to other recurrent neural networks with
sophisticated mechanisms such as attention and/or hierarchical structure to achieve higher accu-
racy than those presented below. However, this is orthogonal to the main focus of this work and
would be left as an interesting future work.

General Experiment Settings We use the Adam optimizer [83] with a learning rate of 0.001 in
all experiments. We also apply gradient clipping to all the trainable variables with the threshold
of 1.0. The dropout rate between the LSTM layers is 0.2 and the embedding dropout rate is 0.1.
We repeat the notations N,K,R defined previously in Table 2.2, so readers can easily refer to
when looking at Tables 2.4,2.5,2.6 and 2.7. While K is fixed during both training and testing,
we would fix R and N at training but vary their values during test to see the impact of parameter
changes. Note that N is essentially a constraint which can be relaxed. Yet we prefer to enforce
this constraint here to let the model learn to read fewer tokens. Finally, the reported test time is
measured by running one pass of the whole test set instance by instance, and the speedup is over
the base LSTM model. The code is written with TensorFlow.3

Notation Meaning
N number of jumps allowed
K maximum size of jumping
R number of tokens read before a jump

Table 2.2: Notations referred to in experiments.

2.4.1 Number Prediction with a Synthetic Dataset
We first test whether LSTM-Jump is indeed able to learn how to jump if a very clear jumping
signal is given in the text. The input of the task is a sequence of L positive integers x0:T−1

3https://www.tensorflow.org/

14

https://www.tensorflow.org/

and the output is simply xx0 . That is, the output is chosen from the input sequence, with index
determined by x0 . Here are two examples to illustrate the idea:

input1 : 4, 5, 1, 7, 6, 2. output1 : 6

input2 : 2, 4, 9, 4, 5, 6. output2 : 9

One can see that x0 is essentially the oracle jumping signal, i.e. the indicator of how many steps
the reading should jump to get the exact output and obviously, the remaining number of the
sequence are useless. After reading the first token, a “smart” network should be able to learn
from the training examples to jump to the output position, skipping the rest.

We generate 1 million training and 10,000 validation examples with the rule above, each
with sequence length T = 100. We also impose 1 ≤ x0 < T to ensure the index is valid. We
find that directly training the LSTM-Jump with full sequence is unlikely to converge, therefore,
we adopt a curriculum training scheme. More specifically, we generate sequences with lengths
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and train the model starting from the shortest. Whenever
the training accuracy reaches a threshold, we shift to longer sequences. We also train an LSTM
with the same curriculum training scheme. The training stops when the validation accuracy is
larger than 98%. We choose such stopping criterion simply because it is the highest that both
models can achieve.4 All the networks are single layered, with hidden size 512, embedding size
32 and batch size 100. During testing, we generate sequences of lengths 10, 100 and 1000 with
the same rule, each having 10,000 examples. As the training size is large enough, we do not have
to worry about overfitting so dropout is not applied. In fact, we find that the training, validation
and testing accuracies are almost the same.

The results of LSTM and our method, LSTM-Jump, are shown in Table 2.3. The first obser-
vation is that LSTM-Jump is faster than LSTM; the longer the sequence is, the more significant
speed-up LSTM-Jump can gain. This is because the well-trained LSTM-Jump is aware of the
jumping signal at the first token and hence can directly jump to the output position to make pre-
diction, while LSTM is agnostic to the signal and has to read the whole sequence. As a result,
the reading speed of LSTM-Jump is hardly affected by the length of sequence, but that of LSTM
is linear with respect to length. Besides, LSTM-Jump also outperforms LSTM in terms of test
accuracy under all cases. This is not surprising either, as LSTM has to read a large amount of
tokens that are potentially not helpful and could interfere with the prediction. In summary, the
results indicate LSTM-Jump is able to learn to jump if the signal is clear.

2.4.2 Word Level Sentiment Analysis with Rotten Tomatoes and IMDB
datasets

As LSTM-Jump has shown great speedups in the synthetic dataset, we would like to understand
whether it could carry this benefit to real-world data, where “jumping” signal is not explicit. So
in this section, we conduct sentiment analysis on two movie review datasets, both containing
equal numbers of positive and negative reviews.

The first dataset is Rotten Tomatoes, which contains 10,662 documents. Since there is not
a standard split, we randomly select around 80% for training, 10% for validation, and 10% for

4In fact, our model can get higher but we stick to 98% for ease of comparison.

15

Seq length LSTM-Jump LSTM Speedup
Test accuracy

10 98% 96% n/a
100 98% 96% n/a

1000 90% 80% n/a
Test time (Avg tokens read)

10 13.5s (2.1) 18.9s (10) 1.40x
100 13.9s (2.2) 120.4s (100) 8.66x

1000 18.9s (3.0) 1250s (1000) 66.14x

Table 2.3: Testing accuracy and time of synthetic number prediction problem. The jumping level
is number.

testing. The average and maximum lengths of the reviews are 22 and 56 words respectively, and
we pad each of them to 60. We choose the pre-trained word2vec embeddings5 [120] as our fixed
word embedding that we do not update this matrix during training. Both LSTM-Jump and LSTM
contain 2 layers, 256 hidden units and the batch size is 100. As the amount of training data is
small, we slightly augment the data by sampling a continuous 50-word sequence in each padded
reviews as one training sample. During training, we enforce LSTM-Jump to read 8 tokens before
a jump (R = 8), and the maximum skipping tokens per jump is 10 (K = 10), while the number
of jumps allowed is 3 (N = 3).

The testing result is reported in Table 2.4. In a nutshell, LSTM-Jump is always faster than
LSTM under different combinations of R and N . At the same time, the accuracy is on par with
that of LSTM. In particular, the combination of (R,N) = (7, 4) even achieves slightly better
accuracy than LSTM while having a 1.5x speedup.

Model (R,N) Accuracy Time Speedup

LSTM-Jump
(9, 2) 0.783 6.3s 1.98x
(8, 3) 0.789 7.3s 1.71x
(7, 4) 0.793 8.1s 1.54x

LSTM n/a 0.791 12.5s 1x

Table 2.4: Testing time and accuracy on the Rotten Tomatoes review classification dataset. The
maximum size of jumping K is set to 10 for all the settings. The jumping level is word.

The second dataset is IMDB [111],6 which contains 25,000 training and 25,000 testing movie
reviews, where the average length of text is 240 words, much longer than that of Rotten Toma-
toes. We randomly set aside about 15% of training data as validation set. Both LSTM-Jump and
LSTM has one layer and 128 hidden units, and the batch size is 50. Again, we use pretrained
word2vec embeddings as initialization but they are updated during training. We either pad a
short sequence to 400 words or randomly select a 400-word segment from a long sequence as a
training example. During training, we set R = 20, K = 40 and N = 5.

5https://code.google.com/archive/p/word2vec/
6http://ai.Stanford.edu/amaas/data/sentiment/index.html

16

https://code.google.com/archive/p/word2vec/
http://ai.Stanford.edu/amaas/data/sentiment/index.html

Model (R,N) Accuracy Time Speedup

LSTM-Jump

(80, 8) 0.894 769s 1.62x
(80, 3) 0.892 764s 1.63x
(70, 3) 0.889 673s 1.85x
(50, 2) 0.887 585s 2.12x
(100, 1) 0.880 489s 2.54x

LSTM n/a 0.891 1243s 1x

Table 2.5: Testing time and accuracy on the IMDB sentiment analysis dataset. The maximum
size of jumping K is set to 40 for all the settings. The jumping level is word.

As Table 2.5 shows, the result exhibits a similar trend as found in Rotten Tomatoes that
LSTM-Jump is uniformly faster than LSTM under many settings. The various (R,N) combina-
tions again demonstrate the trade-off between efficiency and accuracy. If one cares more about
accuracy, then allowing LSTM-Jump to read and jump more times is a good choice. Otherwise,
shrinking either one would bring a significant speedup though at the price of losing some ac-
curacy. Nevertheless, the configuration with the highest accuracy still enjoys a 1.6x speedup
compared to LSTM. With a slight loss of accuracy, LSTM-Jump can be 2.5x faster .

2.4.3 Character Level News Article Classification with AG dataset

We now present results on testing the character level jumping with a news article classification
problem. The dataset contains four classes of topics (World, Sports, Business, Sci/Tech) from
the AG’s news corpus,7 a collection of more than 1 million news articles. The data we use is
the subset constructed by Zhang et al. [218] for classification with character-level convolutional
networks. There are 30,000 training and 1,900 testing examples for each class respectively,
where 15% of training data is set aside as validation. The non-space alphabet under use are:
abcdefghijklmnopqrstuvwxyz0123456
789-,;.!?:/\|_@#$%&*˜‘+-=<>()[]{}

Since the vocabulary size is small, we choose 16 as the embedding size. The initialized entries
of the embedding matrix are drawn from a uniform distribution in [−0.25, 0.25], which are pro-
gressively updated during training. Both LSTM-Jump and LSTM have 1 layer and 64 hidden
units and the batch sizes are 20 and 100 respectively. The training sequence is again of length
400 that it is either padded from a short sequence or sampled from a long one. During training,
we set R = 30, K = 40 and N = 5.

The result is summarized in Table 2.6. It is interesting to see that even with skipping, LSTM-
Jump is not always faster than LSTM. This is mainly due to the fact that the embedding size and
hidden layer are both much smaller than those used previously, and accordingly the processing
of a token is much faster. In that case, other computation overhead such as calculating and
sampling from the jump softmax might become a dominating factor of efficiency. By this cross-
task comparison, we can see that the larger the hidden unit size of recurrent neural network and

7http://www.di.unipi.it/˜gulli/AG_corpus_of_news_articles.html

17

http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

the embedding are, the more speedup LSTM-Jump can gain, which is also confirmed by the task
below.

Model (R,N) Accuracy Time Speedup

LSTM-Jump

(50, 5) 0.854 102s 0.80x
(40, 6) 0.874 98.1s 0.83x
(40, 5) 0.889 83.0s 0.98x
(30, 5) 0.885 63.6s 1.28x
(30, 6) 0.893 74.2s 1.10x

LSTM n/a 0.881 81.7s 1x

Table 2.6: Testing time and accuracy on the AG news classification dataset. The maximum size
of jumping K is set to 40 for all the settings. The jumping level is character.

2.4.4 Sentence Level Automatic Question Answering with Children’s Book
Test dataset

The last task is automatic question answering, in which we aim to test the sentence level skim-
ming of LSTM-Jump. We benchmark on the data set Children’s Book Test (CBT) [65].8 In each
document, there are 20 contiguous sentences (context) extracted from a children’s book followed
by a query sentence. A word of the query is deleted and the task is to select the best fit for this
position from 10 candidates. Originally, there are four types of tasks according to the part of
speech of the missing word, from which, we choose the most difficult two, i.e., the name entity
(NE) and common noun (CN) as our focus, since simple language models can already achieve
human-level performance for the other two types .

The models, LSTM or LSTM-Jump, firstly read the whole query, then the context sentences
and finally output the predicted word. While LSTM reads everything, our jumping model would
decide how many context sentences should skip after reading one sentence. Whenever a model
finishes reading, the context and query are encoded in its hidden state ho, and the best answer
from the candidate words has the same index that maximizes the following:

softmax(CWho) ∈ R10,

where C ∈ R10×d is the word embedding matrix of the 10 candidates and W ∈ Rd×hidden size

is a trainable weight variable. Using such bilinear form to select answer basically follows the
idea of Chen et al. [22], as it is shown to have good performance. The task is now distilled to a
classification problem of 10 classes.

We either truncate or pad each context sentence, such that they all have length 20. The
same preprocessing is applied to the query sentences except that the length is set as 30. For
both models, the number of layers is 2, the number of hidden units is 256 and the batch size is
32. Pretrained word2vec embeddings are again used and they are not adjusted during training.
The maximum number of context sentences LSTM-Jump can skip per time is K = 5 while the

8http://www.thespermwhale.com/jaseweston/babi/CBTest.tgz

18

 http://www.thespermwhale.com/jaseweston/babi/CBTest.tgz

number of total jumping is limited toN = 5. We let the model jump after reading every sentence,
so R = 1 (20 words).

The result is reported in Table 2.7. The performance of LSTM-Jump is superior to LSTM
in terms of both accuracy and efficiency under all settings in our experiments. In particular,
the fastest LSTM-Jump configuration achieves a remarkable 6x speedup over LSTM, while also
having respectively 1.4% and 4.4% higher accuracy in Children’s Book Test - Named Entity and
Children’s Book Test - Common Noun.

Model (R,N) Accuracy Time Speedup
Children’s Book Test - Named Entity

LSTM-Jump
(1, 5) 0.468 40.9s 3.04x
(1, 3) 0.464 30.3s 4.11x
(1, 1) 0.452 19.9s 6.26x

LSTM n/a 0.438 124.5s 1x
Children’s Book Test - Common Noun

LSTM-Jump
(1, 5) 0.493 39.3s 3.09x
(1, 3) 0.487 29.7s 4.09x
(1, 1) 0.497 19.8s 6.14x

LSTM n/a 0.453 121.5s 1x

Table 2.7: Testing time and accuracy on the Children’s Book Test dataset. The maximum size of
jumping K is set to 5 for all the settings. The jumping level is sentence.

The dominant performance of LSTM-Jump over LSTM might be interpreted as follows. Af-
ter reading the query, both LSTM and LSTM-Jump know what the question is. However, LSTM
still has to process the remaining 20 sentences and thus at the very end of the last sentence,
the long dependency between the question and output might become weak that the prediction is
hampered. On the contrary, the question can guide LSTM-Jump on how to read selectively and
stop early when the answer is clear. Therefore, when it comes to the output stage, the “memory”
is both fresh and uncluttered that a more accurate answer is likely to be picked.

In the following, we show two examples of how the model reads the context given a query
(bold face sentences are those read by our model in the increasing order). XXXXX is the missing
word we want to fill. Note that due to truncation, a few sentences might look uncompleted.

Example 1 In the first example, the exact answer appears in the context multiple times, which
makes the task relatively easy, as long as the reader has captured their occurrences.

(a) Query: ‘XXXXX!
(b) Context:
1. said Big Klaus, and he ran off at once to Little Klaus.
2. ‘Where did you get so much money from?’
3. ‘Oh, that was from my horse-skin.
4. I sold it yesterday evening.’
5. ‘That ’s certainly a good price!’

19

6. said Big Klaus; and running home in great haste, he took an axe, knocked all his four
7. ‘Skins!
8. skins!
9. Who will buy skins?’

10. he cried through the streets.
11. All the shoemakers and tanners came running to ask him what he wanted for them.’
12. A bushel of money for each,’ said Big Klaus.
13. ‘Are you mad?’
14. they all exclaimed.
15. ‘Do you think we have money by the bushel?’
16. ‘Skins!
17. skins!
18. Who will buy skins?’
19. he cried again, and to all who asked him what they cost, he answered,’ A bushel
20. ‘He is making game of us,’ they said; and the shoemakers seized their yard measures and
(c) Candidates: Klaus | Skins | game | haste | head | home | horses | money | price| streets
(d) Answer: Skins

The reading behavior might be interpreted as follows. The model tries to search for clues, and
after reading sentence 8, it realizes that the most plausible answer is “Klaus” or “Skins”, as they
both appear twice. “Skins” is more likely to be the answer as it is followed by a “!”. The model
searches further to see if ”Klaus!” is mentioned somewhere, but it only finds “Klaus” without “!”
for the third time. After the last attempt at sentence 14, it is confident about the answer and stops
to output with “Skins”.

Example 2 In this example, the answer is illustrated by a word “nuisance” that does not show
up in the context at all. Hence, to answer the query, the model has to understand the meaning of
both the query and context and locate the synonym of “nuisance”, which is not merely verbatim
and thus much harder than the previous example. Nevertheless, our model is still able to make a
right choice while reading much fewer sentences.

(a) Query: Yes, I call XXXXX a nuisance.
(b) Context:
1. But to you and me it would have looked just as it did to Cousin Myra – a very discon-

tented
2. “I’m awfully glad to see you, Cousin Myra, ”explained Frank carefully, “and your
3. But Christmas is just a bore – a regular bore.”
4. That was what Uncle Edgar called things that didn’t interest him, so that Frank felt

pretty sure of
5. Nevertheless, he wondered uncomfortably what made Cousin Myra smile so queerly.

20

6. “Why, how dreadful!”
7. she said brightly.
8. “I thought all boys and girls looked upon Christmas as the very best time in the year.”
9. “We don’t, ”said Frank gloomily.

10. “It’s just the same old thing year in and year out.
11. We know just exactly what is going to happen.
12. We even know pretty well what presents we are going to get.
13. And Christmas Day itself is always the same.
14. We’ll get up in the morning , and our stockings will be full of things, and half of
15. Then there ’s dinner.
16. It ’s always so poky.
17. And all the uncles and aunts come to dinner – just the same old crowd, every year, and
18. Aunt Desda always says, ‘Why, Frankie, how you have grown!’
19. She knows I hate to be called Frankie.
20. And after dinner they’ll sit round and talk the rest of the day, and that’s all.
(c) Candidates: Christmas | boys | day | dinner | half | interest | rest | stockings | things |

uncles
(d) Answer: Christmas

The reading behavior can be interpreted as follows. After reading the query, our model real-
izes that the answer should be something like a nuisance. Then it starts to process the text. Once
it hits sentence 3, it may begin to consider “Christmas” as the answer, since “bore” is a synonym
of “nuisance”. Yet the model is not 100% sure, so it continues to read, very conservatively – it
does not jump for the next three sentences. After that, the model gains more confidence on the
answer “Christmas” and it makes a large jump to see if there is something that can turn over the
current hypothesis. It turns out that the last-read sentence is still talking about Christmas with a
negative voice. Therefore, the model stops to take “Christmas” as the output.

2.5 Discussion
In this chapter, we focus on learning how to skim text for fast reading. In particular, we propose
a “jumping” model that after reading every few tokens, it decides how many tokens should be
skipped by sampling from a softmax. Such jumping behavior is modeled as a discrete decision
making process, which can be trained by reinforcement learning algorithm such as REINFORCE.
In four different tasks with six datasets (one synthetic and five real), we test the efficiency of the
proposed method on various levels of text jumping, from character to word and then to sentence.
The results indicate our model is several times faster than, while the accuracy is on par with the
baseline LSTM model.

21

22

Chapter 3

Recurrency-Free Model for Fully Parallel
Computation

3.1 Introduction

There has been a surge of recent interest in the tasks of machine reading comprehension and
automated question answering. Over the past few years, significant progress has been made with
end-to-end models showing promising results on many challenging datasets. The most successful
models generally employ two key ingredients: (1) a recurrent model to process sequential inputs,
and (2) an attention component to cope with long term interactions. A successful combination
of these two ingredients is the Bidirectional Attention Flow (BiDAF) model by [164], which
achieves strong results on the SQuAD dataset [147]. A weakness of these models is that they are
often slow for both training and inference due to their recurrent nature, especially when applied
to long sequences. The expensive training not only leads to high turnaround time for experimen-
tation and limits researchers from rapid iteration, but also prevents the models from being trained
on larger datasets. Meanwhile the slow inference prevents the machine comprehension systems
from being deployed in real-time applications.

In this chapter, aiming to make the machine comprehension fast, we propose to remove the
recurrent nature of these models. We instead exclusively use convolutions and self-attentions
as the building blocks of encoders that separately encodes the query and the context. Then we
learn the interactions between the context and the question by standard attentions [11, 164, 203].
The resulting representation is encoded again with our recurrence-free encoder before finally
decoding to the probability of each position being the start or end of the answer span. We call
the proposed architecture QANet, which is depicted in Figure 3.1.

The key motivation behind the design of our model is the following: convolution captures the
local structure of the text, while the self-attention learns the global interaction between each pair
of words. The additional context-query attention is a standard module to construct the query-
aware context vector for each position in the context paragraph, which is used in the subsequent
modeling layers. The feed-forward nature of our architecture speeds up the model significantly.
In our experiments on the SQuAD dataset, our model is 3x to 13x faster in training and 4x to 9x
faster in inference. As a simple comparison, our model can achieve the same accuracy (F1 score

23

of 77.0) as BiDAF model [164] within 3 hours of training, which otherwise would take about
15 hours. The speed-up gain also allows us to train the model with more iterations to achieve
better results than competitive models. For instance, if we allow our model to train for 18 hours,
it achieves an F1 score of 82.7 on the dev set, which is much better than [164], and is on par with
best published results.

Given that our model trains fast, we can train it with much more data than other models. To
further improve the model, we propose a data augmentation technique to automatically generate
more training data. This technique paraphrases the examples by translating the original sentences
from English to another language and then back to English, which not only enhances the number
of training instances but also improves the diversity of the phrases.

On the SQuAD dataset, QANet trained with data augmentation achieves an F1 score of 84.6
on the test set, which is significantly better than the best published result of 81.8 by [71]. We also
conduct ablation test to assess the effectiveness of each component of the model. In summary,
the contributions of the paper are as follows:
• We propose an efficient reading comprehension model that is exclusively built up of con-

volutions and self-attentions. This combination results in a good accuracy, while achieving
3x to 13x speedup in training time as opposed to the RNN counterparts. The speedup gain
makes our model the most promising candidate for scaling up to larger datasets.

• We propose a novel data augmentation technique to enrich the training data via paraphras-
ing. When trained with data augmentation, our model achieves the state-of-the-art accu-
racy on question answering on SQuAD and TriviaQA datasets.

3.2 Related Work
Machine reading comprehension and automated question answering has become an important
topic in the NLP domain. Their popularity can be attributed to an increase in publicly available
annotated datasets, such as SQuAD [147], TriviaQA [79], CNN/Daily News [63], WikiRead-
ing [64], Children Book Test [65], etc. A great number of end-to-end neural network models
have been proposed to tackle these challenges, including BiDAF [164], r-net [188], DCN [203],
ReasoNet [172], Document Reader [23], Interactive AoA Reader [33] and Reinforced Mnemonic
Reader [71].

Recurrent Neural Networks (RNNs) have featured predominatnly in Natural Language Pro-
cessing in the past few years. The sequential nature of the text coincides with the design phi-
losophy of RNNs, and hence their popularity. In fact, all the reading comprehension models
mentioned above are based on RNNs. Despite being common, the sequential nature of RNN
prevent parallel computation, as tokens must be fed into the RNN in order. Another drawback
of RNNs is difficulty modeling long dependencies, although this is somewhat alleviated by the
use of Gated Recurrent Unit [27] or Long Short Term Memory architectures [69]. For simple
tasks such as text classification, with reinforcement learning techniques, models [210] have been
proposed to skip irrelevant tokens to both further address the long dependencies issue and speed
up the procedure. However, it is not clear if such methods can handle complicated tasks such
as Q&A. The reading comprehension task considered in this paper always needs to deal with
long text, as the context paragraphs may be hundreds of words long. Recently, attempts have

24

been made to replace the recurrent networks by full convolution or full attention architectures
[52, 82, 171, 183]. Those models have been shown to be not only faster than the RNN architec-
tures, but also effective in other tasks, such as text classification, machine translation or sentiment
analysis.

To the best of our knowledge, our paper is the first work to achieve both fast and accurate
reading comprehension model, by discarding the recurrent networks in favor of feed forward
architectures. Our paper is also the first to mix self-attention and convolutions, which proves
to be empirically effective and achieves a significant gain of 2.7 F1. Note that [146] recently
proposed to accelerate reading comprehension by avoiding bi-directional attention and making
computation conditional on the search beams. Nevertheless, their model is still based on the
RNNs and the accuracy is not competitive, with an EM 68.4 and F1 76.2. [193] also tried to
build a fast Q&A model by deleting the context-query attention module. However, it again
relied on RNN and is thus intrinsically slower than ours. The elimination of attention further has
sacrificed the performance (with EM 68.4 and F1 77.1).

Data augmentation has also been explored in natural language processing. For example,
[218] proposed to enhance the dataset by replacing the words with their synonyms and showed
its effectiveness in text classification. [146] suggested using type swap to augment the SQuAD
dataset, which essentially replaces the words in the original paragraph with others with the same
type. While it was shown to improve the accuracy, the augmented data has the same syntactic
structure as the original data, so they are not sufficiently diverse. [223] improved the diversity
of the SQuAD data by generating more questions. However, as reported by [188], their method
did not help improve the performance. The data augmentation technique proposed in this paper
is based on paraphrasing the sentences by translating the original text back and forth. The major
benefit is that it can bring more syntactical diversity to the enhanced data.

3.3 The Model
In this section, we first formulate the reading comprehension problem and then describe the
proposed model QANet: it is a feedforward model that consists of only convolutions and self-
attention, a combination that is empirically effective, and is also a novel contribution of our
work.

3.3.1 Problem Formulation
The reading comprehension task considered in this paper, is defined as follows. Given a con-
text paragraph with n words C = {c1, c2, ..., cn} and the query sentence with m words Q =
{q1, q2, ..., qm}, output a span S = {ci, ci+1, ..., ci+j} from the original paragraph C. In the fol-
lowing, we will use x to denote both the original word and its embedded vector, for any x ∈ C,Q.

3.3.2 Model Overview
The high level structure of our model is similar to most existing models that contain five major
components: an embedding layer, an embedding encoder layer, a context-query attention layer,

25

a model encoder layer and an output layer, as shown in Figure 3.1. These are the standard
building blocks for most, if not all, existing reading comprehension models. However, the major
differences between our approach and other methods are as follow: For both the embedding
and modeling encoders, we only use convolutional and self-attention mechanism, discarding
RNNs, which are used by most of the existing reading comprehension models. As a result, our
model is much faster, as it can process the input tokens in parallel. Note that even though self-
attention has already been used extensively in [183], the combination of convolutions and self-
attention is novel, and is significantly better than self-attention alone and gives 2.7 F1 gain in our
experiments. The use of convolutions also allows us to take advantage of common regularization
methods in ConvNets such as stochastic depth (layer dropout) [72], which gives an additional
gain of 0.2 F1 in our experiments.

In detail, our model consists of the following five layers:

1. Input Embedding Layer. We adopt the standard techniques to obtain the embedding of
each word w by concatenating its word embedding and character embedding. The word embed-
ding is fixed during training and initialized from the p1 = 300 dimensional pre-trained GloVe
[141] word vectors, which are fixed during training. All the out-of-vocabulary words are mapped
to an <UNK> token, whose embedding is trainable with random initialization. The character em-
bedding is obtained as follows: Each character is represented as a trainable vector of dimension
p2 = 200, meaning each word can be viewed as the concatenation of the embedding vectors for
each of its characters. The length of each word is either truncated or padded to 16. We take
maximum value of each row of this matrix to get a fixed-size vector representation of each word.
Finally, the output of a given word x from this layer is the concatenation [xw;xc] ∈ Rp1+p2 ,
where xw and xc are the word embedding and the convolution output of character embedding of
x respectively. Following [164], we also adopt a two-layer highway network [180] on top of this
representation. For simplicity, we also use x to denote the output of this layer.

2. Embedding Encoder Layer. The encoder layer is a stack of the following basic building
block: [convolution-layer × # + self-attention-layer + feed-forward-layer], as illustrated in the
upper right of Figure 3.1. We use depthwise separable convolutions [26] [80] rather than tradi-
tional ones, as we observe that it is memory efficient and has better generalization. The kernel
size is 7, the number of filters is d = 128 and the number of conv layers within a block is 4. For
the self-attention-layer, we adopt the multi-head attention mechanism defined in [183] which,
for each position in the input, called the query, computes a weighted sum of all positions, or keys,
in the input based on the similarity between the query and key as measured by the dot product.
The number of heads is 8 throughout all the layers. Each of these basic operations (conv/self-
attention/ffn) is placed inside a residual block, shown lower-right in Figure 3.1. For an input x
and a given operation f , the output is f(layernorm(x))+x, meaning there is a full identity path
from the input to output of each block, where layernorm indicates layer-normalization proposed
in [10]. The total number of encoder blocks is 1. Note that the input of this layer is a vector of
dimension p1 + p2 = 500 for each individual word, which is immediately mapped to d = 128 by
a one-dimensional convolution. The output of this layer is a also of dimension d = 128.

26

Figure 3.1: An overview of the QANet architecture (left) which has several Encoder Blocks. We
use the same Encoder Block (right) throughout the model, only varying the number of convolu-
tional layers for each block. We use layernorm and residual connection between every layer in
the Encoder Block. We also share weights of the context and question encoder, and of the three
output encoders. A positional encoding is added to the input at the beginning of each encoder
layer consisting of sin and cos functions at varying wavelengths, as defined in [183]. Each
sub-layer after the positional encoding (one of convolution, self-attention, or feed-forward-net)
inside the encoder structure is wrapped inside a residual block.

3. Context-Query Attention Layer. This module is standard in almost every previous reading
comprehension models such as [193] and [23]. We use C and Q to denote the encoded context
and query. The context-to-query attention is constructed as follows: We first computer the simi-
larities between each pair of context and query words, rendering a similarity matrix S ∈ Rn×m.
We then normalize each row of S by applying the softmax function, getting a matrix S. Then
the context-to-query attention is computed as A = S ·QT ∈ Rn×d. The similarity function used
here is the trilinear function [164]:

f(q, c) = W0[q, c, q � c],

where � is the element-wise multiplication and W0 is a trainable variable.
Most high performing models additionally use some form of query-to-context attention, such

as BiDaF [164] and DCN [203]. Empirically, we find that, the DCN attention can provide a
little benefit over simply applying context-to-query attention, so we adopt this strategy. More
concretely, we compute the column normalized matrix S of S by softmax function, and the

query-to-context attention is B = S · S
T
· CT .

27

4. Model Encoder Layer. Similar to [164], the input of this layer at each position is [c, a, c�
a, c� b], where a and b are respectively a row of attention matrix A and B. The layer parameters
are the same as the Embedding Encoder Layer except that convolution layer number is 2 within a
block and the total number of blocks are 10. We share weights between each of the 3 repetitions
of the model encoder. So the total Model Encoder Layer has 10× (1 + 1 + 2)× 3 = 120 layers.

5. Output layer. This layer is task-specific. Each example in SQuAD is labeled with a span
in the context containing the answer. We adopt the strategy of [164] to predict the probability
of each position in the context being the start or end of an answer span. More specifically, the
probabilities of the starting and ending position are modeled as

p1 = softmax(W1[M0;M1]), p2 = softmax(W2[M0;M2]),

where W1 and W2 are two trainable variables and M0,M1,M2 are respectively the outputs of the
three model encoders, from bottom to top. The score of a span is the product of its start position
and end position probabilities. Finally, the objective function is defined as the negative sum of
the log probabilities of the predicted distributions indexed by true start and end indices, averaged
over all the training examples:

L(θ) = − 1

N

N∑
i

[
log(p1

y1
i
) + log(p2

y2
i
)
]
,

where y1
i and y2

i are respectively the groundtruth starting and ending position of example i, and θ
contains all the trainable variables. The proposed model can be customized to other comprehen-
sion tasks, e.g. selecting from the candidate answers, by changing the output layers accordingly.

Combining all the five components, our model has over 130 layers, which is by far the deepest
neural network for NLP.

Inference. At inference time, the predicted span (s, e) is chosen such that p1
sp

2
e is maximized

and s ≤ e. Standard dynamic programming can obtain the result with linear time.

3.4 Data Augmentation by Backtranslation
Since our QAnet model trains fast, we consider training the model using additional automatically
generated data. We enrich the training dataset by using a simple data augmentation technique
described here. The key idea is to use two machine translation models, one from English to
French (or any other pivot language) and another from French back to English, to obtain para-
phrases of the text inputs. This general approach helps automatically increasing the amount of
training data for any natural language task including the reading comprehension task considered
here. With more training data, we expect to enable better regularization of the models. The data
augmentation process is illustrated in Figure 3.2 with French as the pivot language.

In this work, we make use of the attention-based neural machine translation (NMT) mod-
els [11, 107], which have demonstrated excellent translation quality [198], as the core compo-
nents of the data augmentation pipeline. Specifically, we utilize the publicly available code1

1https://github.com/tensorflow/nmt

28

https://github.com/tensorflow/nmt

provided by Luong et al. [108], which replicates the Google’s NMT (GNMT) systems [198].
We train 4-layer GNMT models on the public WMT data for both English-French2 (36M sen-
tence pairs) and English-German3 (4.5M sentence pairs). All data have been tokenized and split
into subword units as described in [108]. All models share the same hyperparameters4 and are
trained with different numbers of steps, 2M for English-French and 340K for English-German.
Our English-French systems achieve 36.7 BLEU on newstest2014 for translation to French and
35.9 BLEU for the reverse direction. Our English-German model achieves 27.6 BLEU on new-
stest2014 for translation to German and 29.9 BLEU for the reverse direction.

English to French
NMT

French to English
NMT

Autrefois, le thé avait été utilisé surtout pour les
moines bouddhistes pour rester éveillé pendant la méditation.

In the past, tea was used mostly for Buddhist
monks to stay awake during the meditation.

Previously, tea had been used primarily for
Buddhist monks to stay awake during meditation.

(input sentence) (paraphrased sentence)

(translation sentence)

k translations

k^2 paraphrases

Figure 3.2: An illustration of the data augmentation process with French as the pivot language.
Let k denote the beam width, which represents the number of translations generated by the NMT
system in each phase. In total for a given English input, we will generate k2 paraphrases.

Assuming that French is our pivot language, our paraphrase process works as follows. First,
we feed an input sequence into the beam decoder of an English-to-French model to obtain k
French translations. Each of the French translations is then passed through the beam decoder of
a reversed translation model to obtain a total of k2 paraphrases of the input sequence.

While the concept of backtranslation has been introduced before, it is often used to improve
machine translation Sennrich et al. [163] or to enable intrinsic paraphrase evaluations Mallinson
et al. [114], Wieting et al. [195]. Our approach is a novel application of backtranslation to
enrich the training data for down-stream NLP tasks, in this case, question answering (Q&A).
The independent work of [44] also uses paraphrasing techniques to improve Q&A, but, they only
paraphrase questions and did not consider the data augmentation aspects that we leverage in this
paper.

Handling SQuAD Documents and Answers. We now discuss our specific procedure for the
SQuAD dataset, which is essential for the best performance gains. Remember that each training
example of SQuAD is a triple of (d, q, a) in which document d is a multi-sentence paragraph that

2http://www.statmt.org/wmt14/
3http://www.statmt.org/wmt16/
4https://github.com/tensorflow/nmt/blob/master/nmt/standard_hparams/wmt16_

gnmt_4_layer.json

29

http://www.statmt.org/wmt14/
http://www.statmt.org/wmt16/
https://github.com/tensorflow/nmt/blob/master/nmt/standard_hparams/wmt16_gnmt_4_layer.json
https://github.com/tensorflow/nmt/blob/master/nmt/standard_hparams/wmt16_gnmt_4_layer.json

includes the answer a. When paraphrasing, we keep the question q unchanged (to avoid acciden-
tally changing its meaning) and generate new triples of (d′, q, a′) such that the new document d′

has the new answer a′ in it. The procedure happens in two steps: (i) document paraphrasing –
paraphrase d into d′ and (b) answer extraction – extract a′ from d′ that closely matches a.

For document paraphrasing, we first split the paragraphs into sentences and paraphrase in-
dividual sentences independently. We use k = 5, so each sentence has 25 paraphrases. A new
document d′ is formed by simply replacing each sentence in d with a randomly selected para-
phrase. An obvious issue with this simple approach is that the original answer a might no longer
appear in d′.

Our answer extraction process addresses the aforementioned issue. Let s be the original
sentence that contains the original answer a and s′ be its paraphrase. We identify the newly-
paraphrased answer with simple heuristics as follows. Character-level 2-gram scores are com-
puted between each word in s′ and the start / end words of a to find start and end positions of
possible answers in s′. Among all candidate paraphrased answer, the one with the highest char-
acter 2-gram score with respect to a is selected as the new answer a′. Table 3.1 shows an example
of the new answer found by this process.5

Sentence that contains an answer Answer
Original All of the departments in the College of Science

offer PhD programs, except for the Department
of Pre-Professional Studies.

Department of Pre-
Professional Studies

Paraphrase All departments in the College of Science offer
PHD programs with the exception of the Depart-
ment of Preparatory Studies.

Department of
Preparatory Stud-
ies

Table 3.1: Comparison between answers in original sentence and paraphrased sentence.

The quality and diversity of paraphrases impact the effectiveness of the data augmentation
method. We believe it is still possible to improve the quality and diversity of our method. One
can improve the quality by using better translation models. For example, we find that paraphrases
much longer than our models’ maximum sequence length during training to have coverage issues.
The diversity can be improved by sampling from translation models rather than beam search and
paraphrasing questions and answers in the dataset as well. In addition, we can combine this
method with other data augmentation methods, such as the type swap method [146], to acquire
more diversity in paraphrases.

In our experiments, we observe that the proposed data augmentation can result in a significant
accuracy improvement. We believe that this technique is applicable to other supervised natural
language processing tasks, especially when the training dataset is small or the model is big.

5We also define a minimum threshold for elimination. If there is no answer with 2-gram score higher than the
threshold, we remove the paraphrase s′ from our sampling process. If all paraphrases of a sentence are eliminated,
no sampling will be performed for that sentence.

30

3.5 Experiments

In this section, we conduct experiments to study the performance of our model and the data
augmentation technique. We will primarily benchmark our model on the SQuAD dataset [147],
considered to be one of the most competitive datasets in Q&A. We also conduct similar studies
on TriviaQA [79], another Q&A dataset, to show that the effectiveness and efficiency of our
model are general.

3.5.1 Experiments on SQuAD

Dataset and Experimental Settings

Dataset. We consider the Stanford Question Answering Dataset (SQuAD) [147] for machine
reading comprehension.6 SQuAD contains 107.7K query-answer pairs, with 87.5K for training,
10.1K for validation, and another 10.1K for testing. The typical length of the paragraphs is
around 250 while the question is of 10 tokens although there are exceptionally long cases. Only
the training and validation data are publicly available, while the test data is hidden that one has
to submit the code to a Codalab and work with the authors of [147] to retrieve the final test score.
In our experiments, we report the test set result of our best single model.7 For further analysis,
we only report the performance on the validation set, as we do not want to probe the unseen test
set by frequent submissions. According to the observations from our experiments and previous
works, such as [23, 164, 188, 203], the validation score is well correlated with the test score.

Data Preprocessing. We use the NLTK tokenizer to preprocess the data.8 The maximum con-
text length is set to 400 and any paragraph longer than that would be discarded. During training,
we batch the examples by length and dynamically pad the short sentences with special symbol
<PAD>. The maximum answer length is set to 30. We use the pretrained 300-D word vectors
GLoVe [141], and all the out-of-vocabulary words are replace with <UNK>, whose embedding
is updated during training. Each character embedding is randomly initialized as a 200-D vector,
which is updated in training as well. We generate two additional augmented datasets obtained
from Section 3.4, which contain 140K and 240K examples and are denoted as “data augmenta-
tion × 2” and “data augmentation × 3” respectively, including the original data.

Training details. We employ two types of standard regularizations. First, we use L2 weight
decay on all the trainable variables, with parameter λ = 3 × 10−7. We additionally use dropout
on word, character embeddings and between layers, where the word and character dropout rates
are 0.1 and 0.05 respectively, and the dropout rate between every two layers is 0.1. We also
adopt the stochastic depth method (layer dropout) [72] within each embedding or model encoder

6SQuAD leaderboard: https://rajpurkar.github.io/SQuAD-explorer/
7On the leaderboard of SQuAD, there are many strong candidates in the “ensemble” category with high EM/F1

scores. Although it is possible to improve the results of our model using ensembles, we focus on the “single model”
category and compare against other models with the same category.

8NLTK implementation: http://www.nltk.org/

31

https://rajpurkar.github.io/SQuAD-explorer/
http://www.nltk.org/

layer, where sublayer l has survival probability pl = 1− l
L

(1− pL) where L is the last layer and
pL = 0.9.

The hidden size and the convolution filter number are all 128, the batch size is 32, training
steps are 150K for original data, 250K for “data augmentation× 2”, and 340K for “data augmen-
tation × 3”. The numbers of convolution layers in the embedding and modeling encoder are 4
and 2, kernel sizes are 7 and 5, and the block numbers for the encoders are 1 and 7, respectively.

We use the ADAM optimizer [83] with β1 = 0.8, β2 = 0.999, ε = 10−7. We use a learning
rate warm-up scheme with an inverse exponential increase from 0.0 to 0.001 in the first 1000
steps, and then maintain a constant learning rate for the remainder of training. Exponential
moving average is applied on all trainable variables with a decay rate 0.9999.

Finally, we implement our model in Python using Tensorflow [1] and carry out our experi-
ments on an NVIDIA p100 GPU.9

Results

Accuracy. The F1 and Exact Match (EM) are two evaluation metrics of accuracy for the model
performance. F1 measures the portion of overlap tokens between the predicted answer and
groundtruth, while exact match score is 1 if the prediction is exactly the same as groundtruth
or 0 otherwise. We show the results in comparison with other methods in Table 3.2. To make
a fair and thorough comparison, we both report both the published results in their latest pa-
pers/preprints and the updated but not documented results on the leaderboard. We deem the
latter as the unpublished results. As can be seen from the table, the accuracy (EM/F1) perfor-
mance of our model is on par with the state-of-the-art models. In particular, our model trained
on the original dataset outperforms all the documented results in the literature, in terms of both
EM and F1 scores (see second column of Table 3.2). When trained with the augmented data
with proper sampling scheme, our model can get significant gain 1.5/1.1 on EM/F1. Finally, our
result on the official test set is 76.2/84.6, which significantly outperforms the best documented
result 73.2/81.8. If we build our model on top of the contextual embedding ELMo [142] and
CoVe [117], we can get an even higher accuracy 82.5/89.3. Finally, the ensemble of 14 QANet
with different initializations and numbers of layers can achieve 84.5/90.5 on EM/F1, which is
the best performance on the leaderboard from March to September 2018 until BERT model [43]
came out. Notably, QANet is among the first batch of models that exceed the human performance
on EM (82.3).

Speedup over RNNs. To measure the speedup of our model against the RNN models, we
also test the corresponding model architecture with each encoder block replaced with a stack
of bidirectional LSTMs as is used in most existing models. Specifically, each (embedding and
model) encoder block is replaced with a 1, 2, or 3 layer Bidirectional LSTMs respectively, as
such layer numbers fall into the usual range of the reading comprehension models [23]. All
of these LSTMs have hidden size 128. The results of the speedup comparison are shown in

9TensorFlow implementation: https://www.tensorflow.org/
11The scores are collected from the latest version of the documented related work on Oct 27, 2017.
12The scores are collected from the leaderboard on Oct 27, 2017.

32

https://www.tensorflow.org/

Table 3.3. We can easily see that our model is significantly faster than all the RNN based models
and the speedups range from 3 to 13 times in training and 4 to 9 times in inference.

Speedup over BiDAF model. In addition, we also use the same hardware (a NVIDIA p100
GPU) and compare the training time of getting the same performance between our model and
the BiDAF model13[164], a classic RNN-based model on SQuAD. We mostly adopt the default
settings in the original code to get its best performance, where the batch sizes for training and
inference are both 60. The only part we changed is the optimizer, where Adam with learning
0.001 is used here, as with Adadelta we got a bit worse performance. The result is shown in
Table 3.4 which shows that our model is 4.3 and 7.0 times faster than BiDAF in training and
inference speed. Besides, we only need one fifth of the training time to achieve BiDAF’s best F1
score (77.0) on dev set.

Ablation Study and Analysis

We conduct ablation studies on components of the proposed model, and investigate the effect
of augmented data. The validation scores on the development set are shown in Table 3.5. As
can be seen from the table, the use of convolutions in the encoders is crucial: both F1 and EM
drop drastically by almost 3 percent if it is removed. Self-attention in the encoders is also a
necessary component that contributes 1.4/1.3 gain of EM/F1 to the ultimate performance. We
interpret these phenomena as follows: the convolutions capture the local structure of the context
while the self-attention is able to model the global interactions between text. Hence they are
complimentary to but cannot replace each other. The use of separable convolutions in lieu of
tradition convolutions also has a prominent contribution to the performance, which can be seen by
the slightly worse accuracy caused by replacing separable convolution with normal convolution.

The Effect of Data Augmentation. We additionally perform experiments to understand the
values of augmented data as their amount increases. As the last block of rows in the table shows,
data augmentation proves to be helpful in further boosting performance. Making the training
data twice as large by adding the En-Fr-En data only (ratio 1:1 between original training data
and augmented data, as indicated by row “data augmentation × 2 (1:1:0)”) yields an increase
in the F1 by 0.5 percent. While adding more augmented data with French as a pivot does not
provide performance gain, injecting additional augmented data En-De-En of the same amount
brings another 0.2 improvement in F1, as indicated in entry “data augmentation × 3 (1:1:1)”.
We may attribute this gain to the diversity of the new data, which is produced by the translator
of the new language.

The Effect of Sampling Scheme. Although injecting more data beyond × 3 does not benefit
the model, we observe that a good sampling ratio between the original and augmented data during
training can further boost the model performance. In particular, when we increase the sampling
weight of augmented data from (1:1:1) to (1:2:1), the EM/F1 performance drops by 0.5/0.3. We
conjecture that it is due to the fact that augmented data is noisy because of the back-translation,

13The code is directly downloaded from https://github.com/allenai/bi-att-flow

33

https://github.com/allenai/bi-att-flow

so it should not be the dominant data of training. We confirm this point by increasing the ratio of
the original data from (1:2:1) to (2:2:1), where 0.6/0.5 performance gain on EM/F1 is obtained.
Then we fix the portion of the augmented data, and search the sample weight of the original data.
Empirically, the ratio (3:1:1) yields the best performance, with 1.5/1.1 gain over the base model
on EM/F1. This is also the model we submitted for test set evaluation.

Error Analysis. Although our ensemble model has achieved the so-called human performance
on the EM metric, we are still interested in investigating what kind of wrong predictions QANet
makes to further improve the model. Here we pick out a representative case in Table 3.6. In
this example, the question is “What year marked the lowest ratings for the drama Lost?”. We
train 14 QANet variants with different initializations and numbers of layers, all of which make
the same wrong prediction. We can see that QANet is able to find a number corresponding to a
year, but this number is wrong. Actually, QANet seems to first locate the term “lowest ratings”
appearing in both the question and the context, and then pick the number closest to the term in
the context as the predicted answer. That probably tells the fact that QANet is essentially doing
simple pattern matching and it might not truly “understand” the question. Therefore, it can be
easily misled.

To address those issues, we might need to either inject the hand-crafted co-reference features
or impose multi-task objectives on the pretraining such as ELMo and BERT. However, such
modifications might also introduce bias to the model, resulting in other issues. Hence, it could
be an interesting future work to examine the trade-offs.

Robustness Study

In the following, we conduct experiments on the adversarial SQuAD dataset [77] to study the
robustness of the proposed model. In this dataset, one or more sentences are appended to the
original SQuAD context of test set, to intentionally mislead the trained models to produce wrong
answers. However, the model is agnostic to those adversarial examples during training. We focus
on two types of misleading sentences, namely, AddSent and AddOneSent. AddSent generates
sentences that are similar to the question, but not contradictory to the correct answer, while Ad-
dOneSent adds a random human-approved sentence that is not necessarily related to the context.

The model in use is exactly the one trained with the original SQuAD data (the one getting
84.6 F1 on test set), but now it is submitted to the adversarial server for evaluation. The results
are shown in Table 3.7, where the F1 scores of other models are all extracted from [77].14 Again,
we only compare the performance of single models. From Table 3.7, we can see that our model
is on par with the state-of-the-art model Mnemonic, while significantly better than other models
by a large margin. The robustness of our model is probably because it is trained with augmented
data. The injected noise in the training data might not only improve the generalization of the
model but also make it robust to the adversarial sentences.

14Only F1 scores are reported in [77]

34

3.5.2 Experiments on TriviaQA
In this section, we test our model on another dataset TriviaQA [79], which consists of 650K
context-query-answer triples. There are 95K distinct question-answer pairs, which are authored
by Trivia enthusiasts, with 6 evidence documents (context) per question on average, which are
either crawled from Wikipedia or Web search. Compared to SQuAD, TriviaQA is more chal-
lenging in that: 1) its examples have much longer context (2895 tokens per context on average)
and may contain several paragraphs, 2) it is much noisier than SQuAD due to the lack of human
labeling, 3) it is possible that the context is not related to the answer at all, as it is crawled by key
words.

In this paper, we focus on testing our model on the subset consisting of answers from
Wikipedia. According to the previous work [71, 79, 136], the same model would have similar
performance on both Wikipedia and Web, but the latter is five time larger. To keep the training
time manageable, we omit the experiment on Web data.

Due to the multi-paragraph nature of the context, researchers also find that simple hierarchical
or multi-step reading tricks, such as first predicting which paragraph to read and then apply
models like BiDAF to pinpoint the answer within that paragraph [29], can significantly boost
the performance on TriviaQA. However, in this paper, we focus on comparing with the single-
paragraph reading baselines only. We believe that our model can be plugged into other multi-
paragraph reading methods to achieve the similar or better performance, but it is out of the scope
of this paper.

The Wikipedia sub-dataset contains around 92K training and 11K development examples.
The average context and question lengths are 495 and 15 respectively. In addition to the full
development set, the authors of [79] also pick a verified subset that all the contexts inside can
answer the associated questions. As the text could be long, we adopt the data processing similar
to [71, 79]. In particular, for training and validation, we randomly select a window of length 256
and 400 encapsulating the answer respectively. All the remaining setting are the same as SQuAD
experiment, except that the training steps are set to 120K.

Accuracy. The accuracy performance on the development set is shown in Table 3.8. Again, we
can see that our model outperforms the baselines in terms of F1 and EM on Full development
set, and is on par with the state-of-the-art on the Verified dev set.

Speedup over RNNs. In addition to accuracy, we also benchmark the speed of our model
against the RNN counterparts. As Table 3.9 shows, not surprisingly, our model has 3 to 11 times
speedup in training and 3 to 9 times acceleration in inference, similar to the finding in SQuAD.

3.6 Discussion
In this chapter, we propose a fast and accurate end-to-end model, QANet, for machine reading
comprehension. Our core innovation is to completely remove the recurrent networks in the en-
coder. The resulting model is fully feedforward, composed entirely of separable convolutions,
attention, linear layers, and layer normalization, which is suitable for parallel computation. The

35

resulting model is both fast and accurate: It surpasses the best published results on SQuAD
dataset while up to 13/9 times faster than a competitive recurrent models for a training/inference
iteration. Additionally, we find that we are able to achieve significant gains by utilizing data
augmentation consisting of translating context and passage pairs to and from another language
as a way of paraphrasing the questions and contexts.

36

Published10 LeaderBoard11

Single Model EM / F1 EM / F1
LR Baselinea 40.4 / 51.0 40.4 / 51.0
Dynamic Chunk Readerb 62.5 / 71.0 62.5 / 71.0
Match-LSTM with Ans-Ptrc 64.7 / 73.7 64.7 / 73.7
Multi-Perspective Matchingd 65.5 / 75.1 70.4 / 78.8
Dynamic Coattention Networkse 66.2 / 75.9 66.2 / 75.9
FastQAf 68.4 / 77.1 68.4 / 77.1
BiDAFg 68.0 / 77.3 68.0 / 77.3
SEDTh 68.1 / 77.5 68.5 / 78.0
RaSoRi 70.8 / 78.7 69.6 / 77.7
FastQAExtj 70.8 / 78.9 70.8 / 78.9
ReasoNetk 69.1 / 78.9 70.6 / 79.4
Document Readerl 70.0 / 79.0 70.7 / 79.4
Ruminating Readerm 70.6 / 79.5 70.6 / 79.5
jNetn 70.6 / 79.8 70.6 / 79.8
Conductor-net N/A 72.6 / 81.4
Interactive AoA Readero N/A 73.6 / 81.9
Reg-RaSoR N/A 75.8 / 83.3
DCN+ N/A 74.9 / 82.8
AIR-FusionNet N/A 76.0 / 83.9
R-Netp 72.3 / 80.7 76.5 /84.3
BiDAF + Self Attention + ELMo N/A 77.9/ 85.3
Reinforced Mnemonic Readerq 73.2 / 81.8 73.2 / 81.8
Dev set: QANet 73.6 / 82.7 N/A
Dev set: QANet + data augmentation ×2 74.5 / 83.2 N/A
Dev set: QANet + data augmentation ×3 75.1 / 83.8 N/A
Test set: QANet + data augmentation ×3 76.2 / 84.6 76.2 / 84.6
Test set: QANet + data augmentation ×3 + ELMo + CoVe 82.5 / 89.312 82.5 / 89.3
Test set: Ensemble of 14 QANets + ELMo + CoVe 84.5 / 90.5 84.5 / 90.5
Test set: Human Performance 82.3 / 91.2 82.3 / 91.2

Table 3.2: The performances of different models on SQuAD dataset. Models references: a.[147],
b.[213], c.[187], d.[190] , e.[203] , f.[193], g.[164], h.[105], i.[95], j.[193], k.[172], l.[23], m.[53],
n.[217], o.[33], p.[188], q.[71].

QANet RNN-1-128 Speedup RNN-2-128 Speedup RNN-3-128 Speedup
Training 3.2 1.1 2.9x 0.34 9.4x 0.24 13.3x
Inference 8.1 2.2 3.7x 1.3 6.2x 0.92 8.8x

Table 3.3: Speed comparison between our model and RNN-based models on SQuAD dataset, all
with batch size 32. RNN-x-y indicates an RNN with x layers each containing y hidden units.
Here, we use bidirectional LSTM as the RNN. The speed is measured by batches/second, so
higher is faster.

37

Train time to get 77.0 F1 on Dev set Train speed Inference speed
QANet 3 hours 102 samples/s 259 samples/s
BiDAF 15 hours 24 samples/s 37samples/s

Speedup 5.0x 4.3x 7.0x

Table 3.4: Speed comparison between our model and BiDAF [164] on SQuAD dataset.

EM / F1 Difference to Base Model
EM / F1

Base QANet 73.6 / 82.7
- convolution in encoders 70.8 / 80.0 -2.8 / -2.7
- self-attention in encoders 72.2 / 81.4 -1.4 / -1.3
replace sep convolution with normal convolution 72.9 / 82.0 - 0.7 / -0.7
+ data augmentation ×2 (1:1:0) 74.5 / 83.2 +0.9 / +0.5
+ data augmentation ×3 (1:1:1) 74.8 / 83.4 +1.2 / +0.7
+ data augmentation ×3 (1:2:1) 74.3 / 83.1 +0.7 / +0.4
+ data augmentation ×3 (2:2:1) 74.9 / 83.6 +1.3 / +0.9
+ data augmentation ×3 (2:1:1) 75.0 / 83.6 +1.4 / +0.9
+ data augmentation ×3 (3:1:1) 75.1 / 83.8 +1.5 / +1.1
+ data augmentation ×3 (4:1:1) 75.0 / 83.6 +1.4 / +0.9
+ data augmentation ×3 (5:1:1) 74.9 / 83.5 +1.3 / +0.8

Table 3.5: An ablation study of data augmentation and other aspects of our model. The reported
results are obtained on the development set. For rows containing entry “data augmentation”,
“×N” means the data is enhanced to N times as large as the original size, while the ratio in the
bracket indicates the sampling ratio among the original, English-French-English and English-
German-English data during training.

Context The network began running into some trouble in the ratings by 2010. That year, the sixth
and final season of Lost became the drama’s lowest-rated season since its debut in 2004 ...

Question What year marked the lowest ratings for the drama Lost?
Ground truth 2010

Prediction 2004

Table 3.6: Error analysis on SQuAD.

38

Single Model AddSent AddOneSent
Logistica 23.2 30.4
Matchb 27.3 39.0
SEDTc 33.9 44.8
DCRd 37.8 45.1
BiDAFe 34.3 45.7
jNetf 37.9 47.0
Ruminatingg 37.4 47.7
RaSORh 39.5 49.5
MPCMi 40.3 50.0
ReasoNetj 39.4 50.3
Mnemonick 46.6 56.0
QANet 45.2 55.7

Table 3.7: The F1 scores on the adversarial SQuAD test set. Model references: a.[147], b.[187],
c.[105], d.[213], e.[164], f.[217], g.[53], h.[95], i.[190], j.[172], k.[71].

Full Verified
Single Model EM / F1 EM / F1
Randoma 12.7 / 22.5 13.8 / 23.4
Classifierb 23.4 / 27.7 23.6 / 27.9
BiDAFc 40.3 / 45.7 46.5 /52.8
MEMENd 43.2/ 46.9 49.3 / 55.8
M-Readere 46.9/ 52.9∗ 54.5/ 59.5∗

QANet 51.1 / 56.6 53.3/ 59.2

Table 3.8: The development set performances of different single-paragraph reading models on
the Wikipedia domain of TriviaQA dataset. Note that ∗ indicates the result on test set. Model
references: a.[79], b.[79], c.[164], d.[136], e.[71].

QANet RNN-1-128 Speedup RNN-2-128 Speedup RNN-3-128 Speedup
Training 1.8 0.41 4.4x 0.20 9.0x 0.11 16.4x
Inference 3.2 0.89 3.6x 0.47 6.8x 0.26 12.3x

Table 3.9: Speed comparison between the proposed model and RNN-based models on TriviaQA
Wikipedia dataset, all with batch size 32. RNN-x-y indicates an RNN with x layers each con-
taining y hidden units. The RNNs used here are bidirectional LSTM. The processing speed is
measured by batches/second, so higher is faster.

39

40

Part II

Efficient Algorithms for Large Scale
Optimization

41

Chapter 4

Normalized Gradient Method for Training
Deep Neural Networks

4.1 Introduction

Continuous optimization is a core technique for training non-convex sophisticated machine learn-
ing models such as deep neural networks [15]. Compared to convex optimization where a global
optimal solution is expected, non-convex optimization usually aims to find a stationary point or a
local optimal solution of an objective function by iterative algorithms. Among a large volume of
optimization algorithms, first-order methods, which only iterate with the gradient information of
objective functions, are widely used due to its relatively low requirement on memory space and
computation time, compared to higher order algorithms. In many machine learning scenarios
with large amount of data, the full gradient is still expensive to obtain, and hence the unbiased
stochastic version will be adopted, as it is even more computationally efficient.

In this chapter, we are particularly interested in solving the deep neural network training
problems with stochastic first order methods. Compared to other non-convex problems, deep
neural network training additionally has the following challenge: gradient may be vanishing
and/or exploding. More specifically, due to the chain rule (a.k.a. backpropagation), the original
gradient in the low layers will become very small or very large because of the multiplicative
effect of the gradients from the upper layers, which is usually all smaller or larger than 1. As
the number of layers in the neural network increases, the phenomenon of vanishing or exploding
gradients becomes more severe such that the iterative solution will converge slowly or diverge
quickly.

We aim to alleviate this problem by block-wise stochastic gradient normalization, which
is constructed via dividing the stochastic gradient by its norm. Here, each block essentially
contains the variables of one layer in a neural network, so it can also be interpreted as layer-wise
gradient normalization. Compared to the regular gradient, normalized gradient only provides
an updating direction but does not incorporate the local steepness of the objective through its
magnitude, which helps to control the change of the solution through a well-designed step length.
Intuitively, as it constrains the magnitude of the gradient to be 1 (or a constant), it should to
some extent prevent the gradient vanishing or exploding phenomenon. In fact, as showed in

43

[59, 97], normalized gradient descent (NGD) methods are more numerically stable and have
better theoretical convergence properties than the regular gradient descent method in non-convex
optimization.

Once the updating direction is determined, step size (learning rate) is the next important
component in the design of first-order methods. While for convex problems there are some
well studied strategies to find a stepsize ensuring convergence, for non-convex optimization, the
choice of step size is more difficult and critical as it may either enlarge or reduce the impact of
the aforementioned vanishing or exploding gradients.

Among different choices of step sizes, the constant or adaptive feature-dependent step sizes
are widely adopted. On one hand, stochastic gradient descent (SGD) + momentum + constant
step size has become the standard choice for training feed-forward networks such as Convolu-
tion Neural Networks (CNN). Ad-hoc strategies like decreasing the step size when the validation
curve plateaus are well adopted to further improve the generalization quality. On the other hand,
different from the standard step-size rule which multiplies a same number to each coordinate of
gradient, the adaptive feature-dependent step-size rule multiplies different numbers to coordi-
nates of gradient so that different parameters in the learning model can be updated in different
paces. For example, the adaptive step size invented by [47] is constructed by aggregating each
coordinates of historical gradients. As discussed by [47], this method can dynamically incorpo-
rate the frequency of features in the step size so that frequently occurring coordinates will have
a small step sizes while infrequent features have long ones. The similar adaptive step size is
proposed in [83] but the historical gradients are integrated into feature-dependent step size by a
different weighting scheme.

In this chapter, we propose a generic framework using the mini-batch stochastic normalized
gradient as the updating direction (like [59, 97]) and the step size is either constant or adap-
tive to each coordinate as in [47, 83]. Our framework starts with computing regular mini-batch
stochastic gradient, which is immediately normalized layer-wisely. The normalized version is
then plugged in the constant stepsize with occasional decay, such as SGD+momentum, or the
adaptive step size methods, such as Adam [83] and AdaGrad [47]. The numerical results shows
that normalized gradient always helps to improve the performance of the original methods espe-
cially when the network structure is deep. It seems to be the first thorough empirical study on
various types of neural networks with this normalized gradient idea. Besides, although we focus
our empirical studies on deep learning where the objective is highly non-convex, we also provide
a convergence proof under this framework when the problem is convex and the stepsize is adap-
tive in the appendix. The convergence under the non-convex case will be a very interesting and
important future work.

4.2 Related Work
A pioneering work on normalized gradient descent (NGD) method was by Nesterov [127] where
it was shown that NGD can find a ε-optimal solution within O(1

ε2
) iterations when the objective

function is differentiable and quasi-convex. Kiwiel [84] and Hazan et al [59] extended NGD for
upper semi-continuous (but not necessarily differentiable) quasi-convex objective functions and
local-quasi-convex objective functions, respectively, and achieved the same iteration complexity.

44

Moreover, Hazan et al [59] showed that NGD’s iteration complexity can be reduced to O(1
ε
) if

the objective function is local-quasi-convex and locally-smooth. A stochastic NGD algorithm
is also proposed by Hazan et al [59] which, if a mini-batch is used to construct the stochas-
tic normalized gradient in each iteration, finds ε-optimal solution with a high probability for
locally-quasi-convex functions withinO(1

ε2
) iterations. Levy [97] proposed a Saddle-Normalized

Gradient Descent (Saddle-NGD) method, which adds a zero-mean Gaussian random noise to the
stochastic normalized gradient periodically. When applied to strict-saddle functions with some
additional assumption, it is shown [97] that Saddle-NGD can evade the saddle points and find a
local minimum point approximately with a high probability.

Analogous yet orthogonal to the gradient normalization ideas have been proposed for the
deep neural network training. For example, batch normalization [74] is used to address the in-
ternal covariate shift phenomenon in the during deep learning training. It benefits from making
normalization a part of the model architecture and performing the normalization for each training
mini-batch. Weight normalization [159], on the other hand, aims at a reparameterization of the
weight vectors that decouples the length of those weight vectors from their direction. Recently
[133] proposes to use path normalization, an approximate path-regularized steepest descent with
respect to a path-wise regularizer related to max-norm regularization to achieve better conver-
gence than vanilla SGD and AdaGrad. Perhaps the most related idea to ours is Gradient clipping.
It is proposed in [139] to avoid the gradient explosion, by pulling the magnitude of a large gra-
dient to a certain level. However, this method does not do anything when the magnitude of the
gradient is small.

Adaptive step size has been studied for years in the optimization community. The most
celebrated method is the line search scheme. However, while the exact line search is usually
computational infeasible, the inexact line search also involves a lot of full gradient evaluation.
Hence, they are not suitable for the deep learning setting. Recently, algorithms with adaptive
step sizes start to be applied to the non-convex neural network training, such as AdaGrad [48],
Adam [83] and RMSProp [66]. However they directly use the unnormalized gradient, which is
different from our framework. [174] recently proposes to apply layer-wise specific step sizes,
which differs from ours in that it essentially adds a term to the gradient rather than normalizing
it. Recently [197] finds the methods with adaptive step size might converge to a solution with
worse generalization. However, this is orthogonal to our focus in this paper.

4.3 Algorithm Framework
In this section, we present our algorithm framework to solve the following general problem:

min
x∈Rd

f(x) = E(F (x, ξ)), (4.3.1)

where x = (x1, x2, . . . , xB) ∈ Rd with xi ∈ Rdi and
∑B

i=1 di = d, ξ is a random variable
following some distribution P, F (·, ξ) is a loss function for each ξ and the expectation E is taken
over ξ. In the case where (4.3.1) models an empirical risk minimization problem, the distribution
P can be the empirical distribution over training samples such that the objective function in
(4.3.1) becomes a finite-sum function. Now our goal is to minimize the objective function f over

45

x, where x can be the parameters of a machine learning model when (4.3.1) corresponds to a
training problem. Here, the parameters are partitioned into B blocks. The problem of training
a neural network is an important instance of (4.3.1), where each block of parameters xi can be
viewed as the parameters associated to the ith layer in the network.

We propose the generic optimization framework in Algorithm 1. In iteration t, it firstly
computes the partial (sub)gradient F ′i (xt, ξt) of F with respect to xi for i = 1, 2, . . . , at x = xt
with a mini-batch data ξt, and then normalizes it to get a partial direction git =

F ′i (xt,ξt)

‖F ′i (xt,ξt)‖2
.

We define gt = (g1
t , g

2
t , . . . , g

B
t). The next is to find d adaptive step sizes τt ∈ Rd with each

coordinate of τt corresponding to a coordinate of x. We also partition τt in the same way as
x so that τt = (τ 1

t , τ
2
t , . . . , τ

B
t) ∈ RB with τ it ∈ Rdi . We use τt as step sizes to update xt to

xt+1 as xt+1 = xt − τt ◦ gt, where ◦ represents coordinate-wise (Hadamard) product. In fact,
our framework can be customized to most of existing first order methods with fixed or adaptive
step sizes, such as SGD, AdaGrad[47], RMSProp [66] and Adam[83], by adopting their step size
rules respectively.

Algorithm 1 Generic Block-Normalized Gradient (BNG) Descent

1: Choose x1 ∈ Rd.
2: for t = 1, 2, ..., do
3: Sample a mini-batch of data ξt and compute the partial stochastic gradient git =

F ′i (xt,ξt)

‖F ′i (xt,ξt)‖2

4: Let gt = (g1
t , g

2
t , . . . , g

B
t) and choose step sizes τt ∈ Rd.

5: xt+1 = xt − τt ◦ gt
6: end for

4.4 Convergence Analysis for A Concrete Case

As a concrete example for Algorithm 1, we present a simple modification of AdaGrad using
block-wise normalized stochastic gradient in Algorithm 2, where g1:t is a matrix created by stack-
ing g1, g2,... and gt in columns and g1:t,j ∈ Rt represents the jth row of g1:t for j = 1, 2, . . . , d.
Assuming the function F is convex over x for any ξ and following the analysis in [47], it is
straightforward to show a O(1√

T
) convergence rate of this modification. In the following, we

denote ‖x‖W :=
√
x>Wx as the the Mahalanobis norm associated to a d × d positive definite

matrix W . The convergence property of Block-Normalized AdaGrad is presented in the follow-
ing theorem.

Theorem 4.4.1 Suppose F is convex over x, ‖F ′i (xt, ξt)‖2 ≤ Mi and ‖xt − x∗‖∞ ≤ D∞ for
all t for some constants Mi and D∞ > 0 in Algorithm 2. Let Ht = δId + diag(st) and H i

t =

46

Algorithm 2 AdaGrad with Block-Normalized Gradient (AdaGradBNG)

1: Choose x1 ∈ Rd, δ > 0 and η > 0.
2: for t = 1, 2, ..., do
3: Sample a mini-batch data ξt and compute the stochastic partial gradient git =

F ′i (xt,ξt)

‖F ′i (xt,ξt)‖2
4: Let gt = (g1

t , g
2
t , . . . , g

B
t), g1:t = [g1, g2, . . . , gt] and st =

(‖g1:t,1‖2, ‖g1:t,2‖2, . . . , ‖g1:t,d‖2)
5: Partition st = (s1

t , s
2
t , . . . , s

B
t) in the same way as gt.

6: Let τt = (τ 1
t , τ

2
t , . . . , τ

B
t) with1 τ it = η‖F ′i (xt, ξt)‖2(δ1di + sit)

−1.
7: xt+1 = xt − τt ◦ gt
8: end for

δIdi + diag(sit) for t = 1, 2, . . . and x̄T := 1
T

∑T
t=1 xt. Algorithm 2 guarantees

E[f(x̄T)− f(x∗)] ≤
‖x1 − x∗‖2

H1

2ηT
+
D2
∞
√
Bd

2η
√
T

+
B∑
i=1

ηE
[
M2

i

∑d1+d2+···+di
j=d1+d2+···+di−1+1 ‖g1:T,j‖2

]
T

≤
‖x1 − x∗‖2

H1

2ηT
+
D2
∞
√
Bd

2η
√
T

+
B∑
i=1

ηM2
i

√
di√

T
.

Proof: It is easy to see that Ht is a positive definite and diagonal matrix. According to the
updating scheme of xt+1 and the definitions of Ht, τt and gt, we have

‖xt+1 − x∗‖2
Ht = (xt − τt ◦ gt − x∗)>Ht(xt − τt ◦ gt − x∗)

= ‖xt − x∗‖2
Ht − 2(xt − x∗)>Ht(τt ◦ gt) + ‖τt ◦ gt‖2

Ht

≤ ‖xt − x∗‖2
Ht − 2η(xt − x∗)>F ′(xt, ξt) + ‖τt ◦ gt‖2

Ht .

The inequality above and the convexity of F (x, ξ) in x implies

F (xt, ξt)− F (x∗, ξt) ≤
‖xt − x∗‖2

Ht

2η
−
‖xt+1 − x∗‖2

Ht

2η
+
‖τt ◦ gt‖2

Ht

2η

=
‖xt − x∗‖2

Ht

2η
−
‖xt+1 − x∗‖2

Ht

2η
+

B∑
i=1

η‖F ′i (xt, ξt)‖2
2‖git‖2

(Hi
t)
−1

2
.

Taking expectation over ξt for t = 1, 2, . . . and averaging the above inequality give

E[f(x̄T)− f(x∗)]

≤ 1

T

T∑
t=1

[
E‖xt − x∗‖2

Ht

2η
−

E‖xt+1 − x∗‖2
Ht

2η

]
+

T∑
t=1

B∑
i=1

ηE
[
‖F ′i (xt, ξt)‖2

2‖git‖2
(Hi

t)
−1

]
2T

≤ 1

T

T∑
t=1

[
E‖xt − x∗‖2

Ht

2η
−

E‖xt+1 − x∗‖2
Ht

2η

]
+

T∑
t=1

B∑
i=1

ηM2
i E
[
‖git‖2

(Hi
t)
−1

]
2T

, (4.4.1)

47

where we use the fact that ‖F ′i (xt, ξt)‖2
2 ≤M2

i in the second inequality.
According to the equation (24) in the proof of Lemma 4 in [47], we have

T∑
t=1

‖git‖2
(Hi

t)
−1 =

T∑
t=1

d1+d2+···+di∑
j=d1+d2+···+di−1+1

g2
t,j

δ + ‖g1:t,j‖2

≤
d1+d2+···+di∑

j=d1+d2+···+di−1+1

2‖g1:T,j‖2. (4.4.2)

Following the analysis in the proof of Theorem 5 in [47], we show that

‖xt+1 − x∗‖2
Ht+1
− ‖xt+1 − x∗‖2

Ht = 〈x∗ − xt+1, diag(st+1 − st)(x∗ − xt+1)〉
≤ D2

∞‖st+1 − st‖1 = D2
∞ 〈st+1 − st, 1〉 . (4.4.3)

After applying (4.4.2) and (4.4.3) to (4.4.1) and reorganizing terms, we have

E[f(x̄T)− f(x∗)]

≤
‖x1 − x∗‖2

H1

2ηT
+
D2
∞E 〈sT , 1〉

2ηT
+

B∑
i=1

ηE
[
M2

i

∑d1+d2+···+di
j=d1+d2+···+di−1+1 ‖g1:T,j‖2

]
T

≤
‖x1 − x∗‖2

H1

2ηT
+
D2
∞
√
Bd

2η
√
T

+
B∑
i=1

ηE
[
M2

i

∑d1+d2+···+di
j=d1+d2+···+di−1+1 ‖g1:T,j‖2

]
T

,

where the second inequality is because 〈sT , 1〉 =
∑d

j=1 ‖g1:T,j‖2 ≤
√
TBd which holds due to

Cauchy-Schwarz inequality and the fact that ‖git‖2 = 1. Then, we obtain the first inequality in
the conclusion of the theorem. To obtain the second inequality, we only need to observe that

d1+d2+···+di∑
j=d1+d2+···+di−1+1

‖g1:T,j‖2 ≤
√
Tdi (4.4.4)

which holds because of Cauchy-Schwarz inequality and the fact that ‖git‖2 = 1.

Remark 1 When B = 1, namely, the normalization is applied to the full gradient instead of
different blocks of the gradient, the inequality in Theorem 4.4.1 becomes

E[f(x̄T)− f(x∗)] ≤
‖x1 − x∗‖2

H1

2ηT
+
D2
∞
√
d

2η
√
T

+
ηM2
√
d√

T
,

where M is a constant such that ‖F ′(xt, ξt)‖2 ≤ M . Note that the right hand side of this
inequality can be larger than that of the inequality in Theorem 4.4.1 with B > 1. We use B = 2
as an example. Suppose F ′1 dominates in the norm of F ′, i.e., M2 �M1 ≈M and d1 � d2 ≈ d,
we can have

∑B
i=1 M

2
i

√
di = O(M2

√
d1 + M2

2

√
d) which can be much smaller than the factor

M2
√
d in the inequality above, especially when M and d are both large. Hence, the optimal

value for B is not necessarily one.

48

2 4 6 8 10 12 14 16 18 20

Epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ra

in
 L

os
s

adam
adamng
adagrad
adagradng
sgdm
sgdmng

5 10 15 20 25 30

Epoch

0

0.5

1

1.5

2

2.5

T
ra

in
 L

os
s

adam
adamng
adagrad
adagradng
sgdm
sgdmng

5 10 15 20 25 30 35 40 45 50

Epoch

0

0.5

1

1.5

2

2.5

T
ra

in
 L

os
s

adam
adamng
adagrad
adagradng
sgdm
sgdmng

2 4 6 8 10 12 14 16 18 20

Epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
es

t L
os

s

adam
adamng
adagrad
adagradng
sgdm
sgdmng

5 10 15 20 25 30

Epoch

0

0.5

1

1.5

2

2.5

T
es

t L
os

s

adam
adamng
adagrad
adagradng
sgdm
sgdmng

5 10 15 20 25 30 35 40 45 50

Epoch

0

0.5

1

1.5

2

2.5

T
es

t L
os

s

adam
adamng
adagrad
adagradng
sgdm
sgdmng

Figure 4.1: The training and testing objective curves on MNIST dataset with multi layer percep-
tron. From left to right, the layer numbers are 6, 12 and 18 respectively. The first row is the
training curve and the second is testing.

4.5 Numerical Experiments

Basic Experiment Setup In this section, we conduct comprehensive numerical experiments
on different types of neural networks. The algorithms we are testing are SGD with Momentum
(SGDM), AdaGrad [46], Adam [83] and their block-normalized gradient counterparts, which are
denoted with suffix “NG”. Specifically, we partition the parameters into block as x = (x1, x2, . . . , xB)
such that xi corresponds to the vector of parameters (including the weight matrix and the bias/intercept
coefficients) used in the ith layer in the network.

Our experiments are on four diverse tasks, ranging from image classification to natural lan-
guage processing. The neural network structures under investigation include multi layer percep-
tron, long-short term memory and convolution neural networks.

To exclude the potential effect that might be introduced by advanced techniques, in all the
experiments, we only adopt the basic version of the neural networks, unless otherwise stated.
The loss functions for classifications are cross entropy, while the one for language modeling is
log perplexity. Since the computational time is proportional to the epochs, we only show the
performance versus epochs. Those with running time are similar so we omit them for brevity.
For all the algorithms, we use their default settings. More specifically, for Adam/AdamNG, the
initial step size scale α = 0.001, first order momentum β1 = 0.9, second order momentum
β2 = 0.999, the parameter to avoid division of zero ε = 1e−8; for AdaGrad/AdaGradNG, the
initial step size scale is 0.01.

49

4.5.1 Multi Layer Perceptron for MNIST Image Classification
The first network structure we are going to test upon is the Multi Layer Perceptron (MLP).
We will adopt the handwritten digit recognition data set MNIST2[92], in which, each data is
an image of hand written digits from {1, 2, 3, 4, 5, 6, 7, 8, 9, 0}. There are 60k training and 10k
testing examples and the task is to tell the right number contained in the test image. Our approach
is applying MLP to learn an end-to-end classifier, where the input is the raw 28× 28 images and
the output is the label probability. The predicted label is the one with the largest probability.
In each middle layer of the MLP, the hidden unit number are 100, and the first and last layer
respectively contain 784 and 10 units. The activation functions between layers are all sigmoid
and the batch size is 100 for all the algorithms.

We choose different numbers of layer from {6, 12, 18}. The results are shown in Figure 4.1.
Each column of the figures corresponds to the training and testing objective curves of the MLP
with a given layer number. From left to right, the layer numbers are respectively 6, 12 and 18.
We can see that, when the network is as shallow as containing 6 layers, the normalized stochastic
gradient descent can outperform its unnormalized counterpart, while the Adam and AdaGrad are
on par with or even slightly better than their unnormalized versions. As the networks become
deeper, the acceleration brought by the gradient normalization turns more significant. For ex-
ample, starting from the second column, AdamNG outperforms Adam in terms of both training
and testing convergence. In fact, when the network depth is 18, the AdamNG can still converge
to a small objective value while Adam gets stuck from the very beginning. We can observe
the similar trend in the comparison between AdaGrad (resp. SGDM) and AdaGradNG (resp.
SGDMNG). On the other hand, the algorithms with adaptive step sizes can usually generate a
stable learning curve. For example, we can see from the last two column that SGDNG causes
significant fluctuation in both training and testing curves. Finally, under any setting, AdamNG is
always the best algorithm in terms of convergence performance.

4.5.2 Residual Network on CIFAR10 and CIFAR100
Datasets In this section, we benchmark the methods on CIFAR (both CIFAR10 and CIFAR100)
datasets with the residual networks [61], which consist mainly of convolution layers and each
layer comes with batch normalization [74]. CIFAR10 consists of 50,000 training images and
10,000 test images from 10 classes, while CIFAR100 from 100 classes. Each input image con-
sists of 32× 32 pixels. The dataset is preprocessed as described in [61] by subtracting the means
and dividing the variance for each channel. We follow the same data augmentation in [61] that 4
pixels are padded on each side, and a 32 × 32 crop is randomly sampled from the padded image
or its horizontal flip.

Algorithms We adopt two types of optimization frameworks, namely SGD and Adam3, which
respectively represent the constant step size and adaptive step size methods. We compare the
performances of their original version and the layer-normalized gradient counterpart. We also

2http://yann.lecun.com/exdb/mnist/
3We also tried AdaGrad, but it has significantly worse performance than SGD and Adam, so we do not report its

result here.

50

http://yann.lecun.com/exdb/mnist/

Algorithm ResNet-20 ResNet-32 ResNet-44 ResNet-56 ResNet-110
Adam

Adam 9.14 ± 0.07 8.33 ± 0.17 7.794 ± 0.22 7.33 ± 0.19 6.75 ± 0.30
AdamCLIP 10.18± 0.16 9.18± 0.06 8.89 ± 0.14 9.24 ± 0.19 9.96± 0.29
AdamNG 9.42 ± 0.20 8.50 ± 0.17 8.06± 0.20 7.69 ± 0.19 7.29 ± 0.08

AdamNGadap 8.52± 0.16 7.62± 0.25 7.28± 0.18 7.04± 0.27 6.71± 0.17
SGD+Momentum

SGDM∗ 8.75 7.51 7.17 6.97 6.61± 0.16
SGDM 7.93 ± 0.15 7.15 ± 0.20 7.09 ± 0.21 7.34 ± 0.52 7.07 ± 0.65

SGDMCLIP 9.03 ± 0.15 8.44 ± 0.14 8.55 ± 0.20 8.30± 0.08 8.35± 0.25
SGDMNG 7.82 ± 0.26 7.09 ± 0.13 6.60± 0.21 6.59 ± 0.23 6.28 ± 0.22

SGDMNGadap 7.71 ± 0.18 6.90± 0.11 6.43± 0.03 6.19± 0.11 5.87± 0.10

Table 4.1: Error rates of ResNets with different depths on CIFAR 10. SGDM∗ indicates the
results reported in [60] with the same experimental setups as ours, where only ResNet-110 has
multiple runs.

investigate how the performance changes if the normalization is relaxed to not be strictly 1. In
particular, we find that if the normalized gradient is scaled by its variable norm with a ratio,
which we call NGadap and defined as follows,

NGadap := NG× Norm of variable× α

= Grad× Norm of variable
Norm of grad

× α

we can get lower testing error, which has the same finding of an independent and concurrent
work [206]. The subscript “adap” is short for “adaptive”, as the resulting norm of the gradient
is adaptive to its variable norm, while α is the constant ratio. Finally, we also compare with the
gradient clipping trick that rescales the gradient norm to a certain value if it is larger than that
threshold. Those methods are with suffix “CLIP”.

Parameters In the following, whenever we need to tune the parameter, we search the space
with a holdout validation set containing 5000 examples.

For SGD+Momentum method, we follow exactly the same experimental protocol as de-
scribed in [61] and adopt the publicly available Torch implementation4 for residual network.
In particular, SGD is used with momentum of 0.9, weight decay of 0.0001 and mini-batch size of
128. The initial learning rate is 0.1 and dropped by a factor of 0.1 at 80, 120 with a total training
of 160 epochs. The weight initialization is the same as [60].

For Adam, we search the initial learning rate in range {0.0005, 0.001, 0.005, 0.01} with the
base algorithm Adam. We then use the best learning rate, i.e., 0.001, for all the related methods
AdamCLIP, AdamNG, and AdamNGadap. Other setups are the same as the SGD. In particular,

4https://github.com/facebook/fb.resnet.torch

51

https://github.com/facebook/fb.resnet.torch

Algorithm ResNet-20 ResNet-32 ResNet-44 ResNet-56 ResNet-110
Adam

Adam 34.44 ± 0.33 32.94 ± 0.16 31.53 ± 0.13 30.80 ± 0.30 28.20 ± 0.14
AdamCLIP 38.10 ± 0.48 35.78 ± 0.20 35.41± 0.19 35.62± 0.39 39.10± 0.35
AdamNG 35.06 ± 0.39 33.78 ± 0.07 32.26± 0.29 31.86 ± 0.21 29.87 ± 0.49

AdamNGadap 32.98± 0.52 31.74± 0.07 30.75± 0.60 29.92± 0.26 28.09± 0.46
SGD+Momentum

SGDM 32.28 ± 0.16 30.62 ± 0.36 29.96 ± 0.66 29.07 ± 0.41 28.79 ± 0.63
SGDMCLIP 35.06 ± 0.37 34.49± 0.49 33.36± 0.36 34.00± 0.96 33.38± 0.73
SGDMNG 32.46 ± 0.37 31.16 ± 0.37 30.05 ± 0.29 29.42 ± 0.51 27.49 ± 0.25

SGDMNGadap 31.43 ± 0.35 29.56 ± 0.25 28.92 ± 0.28 28.48 ± 0.19 26.72 ± 0.39

Table 4.2: Error rates of ResNets with different depths on CIFAR 100. Note that [60] did not run
experiment on CIFAR 100.

we also adopt the manually learning rate decay here, since, otherwise, the performance will be
much worse.

We adopt the residual network architectures with depths L = {20, 32, 44, 56, 110} on both
CIFAR-10 and CIFAR100. For the extra hyper-parameters, i.e., threshold of gradient clipping
and scale ratio of NGadap, i.e., α, we choose the best hyper-parameter from the 56-layer residual
network. In particular, for clipping, the searched values are {0.05, 0.1, 0.5, 1, 5}, and the best
value is 0.1. For the ratio α, the searched values are {0.01, 0.02, 0.05} and the best is 0.02.

Results For each network structure, we make 5 runs with random initialization. We report the
training and testing curves on CIFAR10 and CIFAR100 datasets with deepest network Res-110
in Figure 4.2. We can see that the normalized gradient methods (with suffix “NG”) converge
the fastest in training, compared to the non-normalized counterparts. While the adaptive version
NGadap is not as fast as NG in training, however, it can always converge to a solution with lower
testing error, which can be seen more clearly in Table 4.1 and 4.2.

For further quantitative analysis, we report the means and variances of the final test errors on
both datasets in Table 4.1 and 4.2, respectively. Both figures convey the following two messages.
Firstly, on both datasets with ResNet, SGD+Momentum is uniformly better than Adam in that it
always converges to a solution with lower test error. Such advantage can be immediately seen
by comparing the two row blocks within each column of both tables. It is also consistent with
the common wisdom [197]. Secondly, for both Adam and SGD+Momentum, the NGadap version
has the best generalization performance (which is mark bold in each column), while the gradient
clipping is inferior to all the remaining variants. While the normalized SGD+Momentum is
better than the vanilla version, Adam slightly outperforms its normalized counterpart. Those
observations are consistent across networks with variant depths.

52

0 50 100 150
epochs

0

10

20

30

er
ro

r
(%

)

sgdm
sgdmclip
sgdmng
sgdmng

adap

0 50 100 150
epochs

0

20

40

60

80

er
ro

r
(%

)

sgdm
sgdmclip
sgdmng
sgdmng

adap

0 50 100 150
epochs

0

10

20

30

er
ro

r
(%

)

adam
adamclip
adamng
adamng

adap

0 50 100 150
epochs

0

20

40

60

80

er
ro

r
(%

)

adam
adamclip
adamng
adamng

adap

Figure 4.2: The training and testing curves on CIFAR10 and CIFAR100 datasets with Resnet-
110. Left: CIFAR10; Right: CIFAR100; Upper: SGD+Momentum; Lower: Adam. The thick
curves are the training while the thin are testing.

4.5.3 Residual Network for ImageNet Classification

In this section, we further test our methods on ImageNet 2012 classification challenges, which
consists of more than 1.2M images from 1,000 classes. We use the given 1.28M labeled images
for training and the validation set with 50k images for testing. We employ the validation set
as the test set, and evaluate the classification performance based on top-1 and top-5 error. The
pre-activation [62] version of ResNet is adopted in our experiments to perform the classification
task. Like the previous experiment, we again compare the performance on SGD+Momentum
and Adam.

We run our experiments on one GPU and use single scale and single crop test for simplifying
discussion. We keep all the experiments settings the same as the publicly available Torch imple-
mentation 5. That is, we apply stochastic gradient descent with momentum of 0.9, weight decay
of 0.0001, and set the initial learning rate to 0.1. The exception is that we use mini-batch size
of 64 and 50 training epochs considering the GPU memory limitations and training time costs.
Regarding learning rate annealing, we use 0.001 exponential decay.

As for Adam, we search the initial learning rate in range {0.0005, 0.001, 0.005, 0.01}. Other
setups are the same as the SGD optimization framework. Due to the time-consuming nature of
training the networks (which usually takes one week) in this experiment, we only test on a 34-

5We again use the public Torch implementation: https://github.com/facebook/fb.resnet.
torch

53

https://github.com/facebook/fb.resnet.torch
https://github.com/facebook/fb.resnet.torch

layer ResNet and compare SGD and Adam with our default NG method on the testing error of
the classification. From Table 3, we can see normalized gradient has a non-trivial improvement
on the testing error over the baselines SGD and Adam. Besides, the SGD+Momentum again out-
performs Adam, which is consistent with both the common wisdom [197] and also the findings
in previous section.

method Top-1 Top-5
Adam 35.6 14.09

AdamNG 30.17 10.51
SGDM 29.05 9.95

SGDMNG 28.43 9.57

Table 4.3: Top-1 and Top 5 error rates of ResNet on ImageNet classification with different algo-
rithms.

0 5 10 15 20 25 30 35 40 45 50

Epoch

4

4.5

5

5.5

6

6.5

7

T
ra

in
 L

os
s

adam
adamng
adagrad
adagradng
sgdm
sgdmng

0 5 10 15 20 25 30 35 40 45 50

Epoch

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

T
ra

in
 L

os
s

adam
adamng
adagrad
adagradng
sgdm
sgdmng

0 5 10 15 20 25 30 35 40 45 50

Epoch

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

T
ra

in
 L

os
s

adam
adamng
adagrad
adagradng
sgdm
sgdmng

0 5 10 15 20 25 30 35 40 45 50

Epoch

4.5

5

5.5

6

6.5

7

T
es

t L
os

s

adam
adamng
adagrad
adagradng
sgdm
sgdmng

0 5 10 15 20 25 30 35 40 45 50

Epoch

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

T
es

t L
os

s

adam
adamng
adagrad
adagradng
sgdm
sgdmng

0 5 10 15 20 25 30 35 40 45 50

Epoch

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

T
es

t L
os

s

adam
adamng
adagrad
adagradng
sgdm
sgdmng

Figure 4.3: The training and testing objective curves on Penn Tree Bank dataset with LSTM
recurrent neural networks. The first row is the training objective while the second is the test-
ing. From left to right, the training sequence (BPTT) length are respectively 40, 400 and 1000.
Dropout with 0.5 is imposed.

4.5.4 Language Modeling with Recurrent Neural Network
Now we move on to test the algorithms on Recurrent Neural Networks (RNN). In this section, we
test the performance of the proposed algorithm on the word-level language modeling task with a

54

Algorithm AdamNG Adam AdaGradNG AdaGrad SGDMNG SGDM
Validation Accuracy 77.11% 74.02% 71.95% 69.89% 71.95% 64.35%

Table 4.4: The Best validation accuracy achieved by the different algorithms.

popular type of RNN, i.e. single directional Long-Short Term Memory (LSTM) networks [69].
The data set under use is Penn Tree Bank (PTB) [115] data, which, after preprocessed, contains
929k training words, 73k validation and 82k test words. The vocabulary size is about 10k. The
LSTM has 2 layers, each containing 200 hidden units. The word embedding has 200 dimen-
sions which is trained from scratch. The batch size is 100. We vary the length of the backprop
through time (BPTT) within the range {40, 400, 1000}. To prevent overfitting, we add a dropout
regularization with rate 0.5 under all the settings.

The results are shown in Figure 4.3. The conclusions drawn from those figures are again sim-
ilar to those in the last two experiments. However, the slightly different yet cheering observations
is that the AdamNG is uniformly better than all the other competitors with any training sequence
length. The superiority in terms of convergence speedup exists in both training and testing.

4.5.5 Sentiment Analysis with Convolution Neural Network

The task in this section is the sentiment analysis with convolution neural network. The dataset
under use is Rotten Tomatoes6 [137], a movie review dataset containing 10,662 documents, with
half positive and half negative. We randomly select around 90% for training and 10% for valida-
tion. The model is a single layer convolution neural network that follows the setup of [82]. The
word embedding under use is randomly initialized and of 128-dimension.

For each algorithm, we run 150 epochs on the training data, and report the best validation
accuracy in Table 4.4. The messages conveyed by the table is three-fold. Firstly, the algorithms
using normalized gradient achieve much better validation accuracy than their unnormalized ver-
sions. Secondly, those with adaptive stepsize always obtain better accuracy than those without.
This is easily seen by the comparison between Adam and SGDM. The last point is the direct
conclusion from the previous two that the algorithm using normalized gradient with adaptive
step sizes, namely AdamNG, outperforms all the remaining competitors.

4.6 Discussion

In this chapter, we propose a generic algorithm framework for first order optimization. Our
goal is to provide a simple alternative to train deep neural networks. It is particularly effective
for addressing the vanishing and exploding gradient challenge in training with non-convex loss
functions, such as in the context of convolutional and recurrent neural networks. Our method is
based on normalizing the gradient to establish the descending direction regardless of its magni-
tude, and then separately estimating the ideal step size adaptively or constantly. This method is

6http://www.cs.cornell.edu/people/pabo/movie-review-data/

55

http://www.cs.cornell.edu/people/pabo/movie-review-data/

quite general and may be applied to different types of networks and various architectures. Al-
though the primary application of the algorithm is deep neural network training, we provide a
convergence for the new method under the convex setting.

Empirically, the proposed method exhibits very promising performance in training differ-
ent types of networks (convolutional, recurrent) across multiple well-known data sets (image
classification, natural language processing, sentiment analysis, etc.). In general, the positive
performance differential compared to the baselines is most striking for very deep networks, as
shown in our comprehensive experimental study.

56

Chapter 5

DSPDC: Doubly Stochastic Primal-Dual
Coordinate Method for Bilinear
Saddle-Point Problem

5.1 Introduction
In this chapter, we consider regularized empirical risk minimization (ERM) problems of the
following form:

min
x∈Rp

{
P (x) ≡ 1

n

n∑
i=1

φi(a
T
i x) + g(x)

}
, (5.1.1)

where a1, . . . , an ∈ Rp are n data points with p features, φi : R→ R is a convex loss function of
the linear predictor aTi x, for i = 1, . . . , n, and g : Rp → R is a convex regularization function for
the coefficient vector x ∈ Rp in the linear predictor. We assume g has a decomposable structure,
namely,

g(x) =

p∑
j=1

gj(xj), (5.1.2)

where gj : R→ R is only a function of xj , the j-th coordinate of x. For simplicity, we consider
a univariate gj at this moment. In Section 5.5, the proposed method will be generalized for the
problems having a block-wise decomposable structure with multivariate gj . We further make the
following assumptions:
Assumption 1 For any α, β ∈ R,
• gj is λ-strongly convex for j = 1, 2, . . . , p, i.e., gj(α) ≥ gj(β)+g′j(β)(α−β)+ λ

2
(α−β)2;

• φi is (1/γ)-smooth for i = 1, 2, . . . , n, i.e., φi(α) ≤ φi(β) +∇φi(β)(α−β) + 1
2γ

(α−β)2.
The problem (5.1.1) captures many applications in business analytics, statistics, machine

learning and data mining, and has triggered many studies in the optimization community. Typi-
cally, for each data point ai, there is an associated response value bi ∈ R, which can be continuous

57

(in regression problems) or discrete (in classification problems). The examples of loss function
φi(·) associated to (ai, bi) include:
• Square Loss, where ai ∈ Rp, bi ∈ R and φi(z) = 1

2
(z − bi)2, which corresponds to linear

regression problem;
• Sigmoid Loss, where ai ∈ Rp, bi ∈ {1,−1} and φi(z) = log(1 + exp(−biz)), which

corresponds to logistic regression problem;
• Smooth Hinge Loss, where ai ∈ Rp, bi ∈ {1,−1} and

φi(z) =


0 if biz ≥ 1
1
2
− biz if biz ≤ 0

1
2
(1− biz)2 otherwise.

(5.1.3)

which corresponds to the smooth support vector machine problem.
In fact, if appropriate reformulation is conducted, many other problems can also be reduced to
(5.1.1), for example, the multi-task large margin nearest neighbor metric learning (MT-LMNN)
problem (See Section 5.5.3).

The commonly used regularization terms include the `2-regularization gj(x) = λx2

2
with

λ > 0 and `2 + `1-regularization gj(x) = λ2x2

2
+ λ1|x| with λ1, λ2 > 0.

We often call (5.1.1) the primal problem and its conjugate dual problem is

max
y∈Rn

{
D(y) ≡ −g∗

(
−A

Ty

n

)
− 1

n

n∑
i=1

φ∗i (yi)

}
, (5.1.4)

where A = [a1, a2, . . . , an]T ∈ Rn×p and φ∗i and g∗ are the convex conjugates of φi and g,
respectively, meaning that g∗(v) = maxu∈Rp〈u, v〉 − g(u) and φ∗i (α) = maxβ∈R αβ − φi(β). It
is well-known in convex analysis that, under Assumption 1, g∗ is 1

λ
-smooth and φ∗i is γ-strongly

convex. In this chapter, instead of considering purely (5.1.1) or (5.1.4), we are interested in their
associated saddle-point problem:

min
x∈Rp

max
y∈Rn

{
g(x) +

1

n
yTAx− 1

n

n∑
i=1

φ∗i (yi)

}
. (5.1.5)

Let x? and y? be the optimal solutions of (5.1.1) and (5.1.4), respectively. It is known that the
pair (x?, y?) is a saddle point of (5.1.5) in the sense that

x? = argmin
x∈Rp

{
g(x) +

1

n
(y?)TAx− 1

n

n∑
i=1

φ∗i (y
?
i)

}
, (5.1.6)

y? = argmax
y∈Rn

{
g(x?) +

1

n
yTAx? − 1

n

n∑
i=1

φ∗i (yi)

}
. (5.1.7)

The contributions of this chapter can be highlighted as follow:
• We propose a doubly stochastic primal-dual coordinate (DSPDC) method for solving

problem (5.1.5) that randomly samples q out of p primal and m out of n dual coordinates
to update in each iteration.

58

• We show that DSPDC method generates a sequence of primal-dual iterates that linearly
converges to (x?, y?) and the primal-dual objective gap along this sequence also linearly
converges to zero.

• We generalize this approach to bilinear saddle-point problems with a block-wise decom-
posable structure, and show a similar iteration complexity for finding an ε-optimal solution.

• We show that the proposed method has a lower overall complexity than existing coordinate
methods when either the data matrix has a factorized structure or the proximal mapping on
each block is computationally expensive, e.g., involving an eigenvalue decomposition.

• Our experiments confirm the efficiency of DSPDC on both synthetic and real datasets in
various scenarios. A notable application is the multi-task large margin nearest neighbor
(MT-LMNN) metric learning problem.

Notation Before presenting our approach, we first introduce the notations that will be used
throughout the chapter. Let [d] represent the set {1, 2, ..., d}. For v ∈ Rd, let vi be its i-th
coordinate for i ∈ [d] and vI be a sub-vector of v that consists of the coordinates of v indexed
by a set I ⊂ [d]. Given an n × p matrix W , we denote its i-th row and j-th column by Wi and
W j , respectively. For I ⊂ [n] and J ⊂ [p], the matrices WI and W J represent sub-matrices of
W that consist of the rows indexed by I and columns indexed by J , respectively. We denote the
entry of W in i-th row and j-th column by W j

i and let W J
I be sub-matrix of W where the rows

indexed by I intersect with the columns indexed by J .
Let 〈·, ·〉 be the inner product in a Euclidean space, ‖ · ‖ be the `2-norm of a vector and ‖ · ‖2

and ‖ · ‖F be the spectral norm and the Frobenius norm of a matrix, respectively. For integers
q ∈ [p] and m ∈ [n], we define Λq,m as a scale constant of the data as follows

Λq,m ≡ max
I⊂[n],J⊂[p],|I|=m,|J |=q

‖AJI ‖2
2. (5.1.8)

The maximum `2 norm of data points is therefore
√

Λp,1. The condition number of prob-
lems (5.1.1),(5.1.4), and (5.1.5) is usually defined as

κ ≡ Λp,1

λγ
, (5.1.9)

which affects the iteration complexity of many first-order methods.

5.2 Related Work
To find an ε-optimal solution of problem (5.1.1), (5.1.4) or (5.1.5), the overall complexity of
an iterative method is defined as the per-iteration computational cost multiplied by the total
number of required iterations (called iteration complexity). Deterministic first-order methods
such as Chambolle and Pock [18], Nemirovski [126], Nesterov [128, 130], Yu et al. [207] have
to compute a full gradient in each iteration by going through all p features of all n instances
at a per-iteration cost of O(np), which can be inefficient for big data. Therefore, stochastic
optimization methods that sample one instance or one feature in each iteration become more

59

popular. There are two major categories of stochastic optimization algorithms that are studied
actively in recent years: stochastic gradient methods and stochastic coordinate methods. The
DSPDC method we propose belongs to the second category.

Recently, there have been increasing interests in stochastic variance reduced gradient (SVRG)
methods [3, 78, 85, 134, 200]. SVRG runs in multiple stages. At each stage, it computes a
full gradient and then performs O(κ) iterative updates with stochastic gradients constructed by
sampled instances. Since the full gradient is computed only once in each stage, SVRG has
a per-iteration cost of O(p), which is lower than deterministic gradient methods, and it needs
O((n+ κ) log(1/ε)) iterations to find an ε-optimal solution for problem (5.1.1), so that the over-
all complexity of SVRG is O((np + κp) log(1/ε)). Recently, an accelerated SVRG method,
named Katyusha [3], further reduces the iteration complexity of SVRG toO((n+

√
nκ) log(1/ε))

while maintains the O(p) per-iteration cost so that it achieves an overall complexity of O((np+√
nκp) log(1/ε)). The aforementioned overall complexities are obtained when a uniform sam-

pling scheme is applied in the construction of stochastic gradient. One can further reduce the
κ term in these complexities by using a non-uniform sampling scheme as pointed out, for ex-
ample, by Xiao and Zhang [200]. However, in this paper, the complexity of each algorithm we
present and compare is based on a uniform sampling scheme unless stated otherwise. After the
earlier version of our draft [209] was posted online1, Balamurugan and Bach [12] developed
an accelerated SVRG method (ASVRG-SP) for solving the saddle-point formulation (5.1.5),

which has a complexity2 of Õ((np + np
√

max{Λp,1,Λ1,n}
λγ

) log(1/ε)) by uniform sampling and

Õ((np +
√
np
√

max{n,p}‖A‖2F
λγ

) log(1/ε)) by non-uniform sampling. Here and in the rest of the

paper, Õ contains some logarithmic factors.
Stochastic incremental gradient methods [12, 39, 40, 89, 91, 113, 161] is also widely studied

in recent literature. Different from SVRG, stochastic incremental gradient method computes
a full gradient only once at the beginning, but maintains and updates the average of historical
stochastic gradients using one sampled instance per iteration. Standard stochastic incremental
gradient methods [39, 40, 91, 113, 161] have a per-iteration cost of O(p) just as SVRG and need
O((n + κ) log(1/ε)) iterations to find an ε-optimal solution so that their overall complexity is
the same as SVRG. Moreover, an accelerated stochastic incremental gradients method, named
RPDG [89], achieves an iteration complexity of only O((n+

√
nκ) log(1/ε)) and a per-iteration

cost of O(p) so that its overall complexity is the same as Katyusha. The iteration complexity of
RPDF and Katyusha is proved to be optimal by Lan and Zhou [89].

In contrast to stochastic gradient methods, stochastic coordinate method works by updating
randomly sampled coordinates of decision variables [5, 36, 41, 50, 103, 106, 129, 132, 144, 145,
152, 154, 167]. Shalev-Shwartz and Zhang [166, 166, 168] proposed a stochastic dual coordinate
ascent (SDCA) method to solve the dual formulation (5.1.4). SDCA has an iteration complex-
ity of O((n + κ) log(1/ε)) and has been further improved to the accelerated SDCA (ASDCA)
method [168] that achieves an iteration complexity of Õ((n +

√
nκ) log(1/ε)). The optimal it-

eration complexity O((n +
√
nκ) log(1/ε)) is obtained by the accelerated proximal coordinate

gradient (APCG) method [103] when it is applied to the dual problem (5.1.4). Extending the

1https://arxiv.org/abs/1508.03390
2This complexity is achieved by the individual-split version of ASVRG-SP.

60

https://arxiv.org/abs/1508.03390

deterministic algorithm by Chambolle and Pock [18] for saddle-point problems, Zhang and Xiao
[220] recently proposed a stochastic primal-dual coordinate (SPDC) method for (5.1.5), which
alternates between maximizing over a randomly chosen dual variable and minimizing over all
primal variables and also achieves the optimal O((n+

√
nκ) log(1/ε)) iteration complexity. The

per-iteration cost is O(p) in all of these coordinate methods. Note that, when applied to the
primal problem (5.1.1), APCG samples a feature of data in each iterative update and find an ε-

optimal solution with a per-iteration cost of O(n) in O((p+ p
√

Λ1,n

nλγ
) log(1/ε)) iterations, which

is also optimal according to [89].
Some recent works [35, 37, 41, 86, 116, 222] made attempts in combining stochastic gra-

dient and stochastic coordinate. Dang and Lan [37], Matsushima et al. [116], Zhao et al. [222]
proposed randomized block coordinate methods, which utilize stochastic partial gradient of the
selected block based on randomly sampled instances and features in each iteration. However,
these methods face a constant variance of stochastic partial gradient so that they need O(1/ε) it-
erations. These techniques are further improved in Konecný et al. [86], Zhao et al. [222] with the
stochastic variance reduced partial gradient but only obtain the sub-optimal O((n+ κ) log(1/ε))
iteration complexity.

5.3 Summary of Results
Although the aforementioned stochastic coordinate methods have achieved great performances
on ERM problem (5.1.5), they either only sample over primal coordinates or only sample over
dual coordinates to update in each iteration. Therefore, it is natural to ask the following questions.
• What is the iteration complexity of a coordinate method for problem (5.1.5) that samples

both primal and dual coordinates to update in each iteration?
• When is this type of algorithm has a lower overall complexity than purely primal and

purely dual coordinate methods?

To contribute to the answers to these questions, we propose the DSPDC method in Section 5.4
that samples over both features and instances of dataset by randomly choosing the associated
primal and dual coordinates to update in each iteration.

To answer the first question, we show in Theorem 5.4.1 and 5.4.2 that, if q primal and m
dual coordinates are uniformly sampled and updated in each iteration, the number of iterations

DSPDC needs to find an ε-optimal solution for (5.1.5) is O((
√

Λq,m
λγn

np
mq

+ max{ n
m
, p
q
}) log(1/ε)).

This iteration complexity is interesting since it matches the optimal O((n +
√
nκ) log(1/ε))

iteration complexity of dual coordinate methods [103, 168, 220] when (q,m) = (p, 1), and

also matches the optimal O((p + p
√

Λ1,n

nλγ
) log(1/ε)) iteration complexity of primal coordinate

methods [103, 106] when (q,m) = (1, n). In Section 5.5, we further generalize DSPDC and its
complexity to a bilinear saddle-point problem with a block-wise decomposable structure.

To study the second question, we compare different coordinate algorithms based on the over-
all complexity for finding an ε-optimal solution. For most ERM problems, the per-iteration cost
of SPDC is O(p) and its the overall complexity is O(np + p

√
nκ log(1/ε)). When (q,m) =

(1, 1) and without any assumptions on the sparsity of data, the per-iteration cost of DSPDC is

61

O(min{n, p}) due to a full-dimensional inner product in the algorithm. If n ≥ p, which is true for

most ERM problems, the overall complexity of DSPDC becomes O((np+
√

nΛ1,1

λγ
p2) log(1/ε)),

which is not lower than that of SPDC in general3. Nevertheless, we identify two important cases
where DSPDC has a lower overall complexity than SPDC and other existing coordinate methods.

The first case is when data A has a factorized structure, namely, A = UV with U ∈ Rn×d,
V ∈ Rd×p and d < min{n, p}. The ERM problem with factorized data arises when (random)
dimension/instance reduction or matrix sketching/factorization techniques are applied to A in
order to reduce the storage and computational cost. More examples are provided in Section 5.4.2.
In this case, choosing (q,m) = (1, 1) and using an efficient implementation, our DSPDC has an

overall complexity ofO((nd+
√

nΛ1,1

λγ
pd) log(1/ε)), better than theO((npd+

√
κnpd) log(1/ε))

complexity of SPDC with the same efficient implementation. See Table 5.1 for comparisons with
more existing techniques for this class of problems.

The second case is when solving a block-wise decomposable bilinear saddle-point problem
where the proximal mapping on each block is computationally expensive. The applications with
this property include trace regression [175] and distance metric learning [138, 191, 192], where
each block of variables needs to be a d × d positive semi-definite matrix so that the proximal
mapping involves an eigenvalue decomposition with a complexity of O(d3). When (q,m) =
(1, 1) and n ≥ p, DSPDC requires solving eigenvalue decomposition only for one block of

variables so that its overall complexity is O((d3 + pd2)(n +
√

nΛ1,1

λγ
p) log(1/ε)) as shown in

Section 5.5, which is lower than the O((npd3 +
√
nκpd3) log(1/ε)) overall complexity of SPDC

when
√

Λ1,1p ≤
√

Λp,1d. See Table 5.2 for comparisons with more existing techniques for this
class of problems.

Although it is not our main focus, we note that applying a non-uniform sampling on the
primal and dual coordinates can further reduce the overall complexity of our DSPDC just as
other coordinate methods [5, 31, 32, 144, 145, 154, 220] .

5.4 Doubly Stochastic Primal-Dual Coordinate Method

5.4.1 Algorithm and Convergence Properties

In this section, we propose the doubly stochastic primal-dual coordinate (DSPDC) method in
Algorithm 3 for problem (5.1.5). In Algorithm 3, the primal and dual solutions (x(t+1), y(t+1))
are updated as (5.4.3) and (5.4.1) in the randomly selected q and m coordinates indexed by
J and I , respectively4. These updates utilize the first-order information provided by the vectors
Ax̄(t) andAT ȳ(t+1) where (x̄(t), ȳ(t+1)) are updated using the momentum steps (5.4.4) and (5.4.2)
which are commonly used to accelerate gradient (AG) methods [128, 130]. Algorithm 3 requires
three control parameters θ, τ and σ and its convergence is ensured after a proper choice of these
parameters as shown in Theorem 5.4.1. The proofs of all theorems are deferred to the Appendix.

3Note that Λp,1 ≥ Λ1,1 ≥ Λp,1

p and κ ≥ Λ1,1

λγ ≥
κ
p .

4Here, we hide the dependency of I and J on t to simplify the notation.

62

Algorithm 3 Doubly Stochastic Primal-Dual Coordinate (DSPDC) Method

Input: x(−1) = x(0) = x̄(0) ∈ Rp, y(−1) = y(0) = ȳ(0) ∈ Rn, and parameters (θ, τ, σ).
Output: x(T) and y(T)

1: for t = 0, 1, 2, . . . , T − 1 do
2: Uniformly and randomly choose I ⊂ [n] and J ⊂ [p] of sizes m and q, respectively.
3: Update the primal and dual coordinates

y
(t+1)
i =

{
argmaxβ∈R

{
1
n
〈Ai, x̄(t)〉β − φ∗i (β)

n
− 1

2σ
(β − y(t)

i)2
}

if i ∈ I,
y

(t)
i if i /∈ I,

(5.4.1)

ȳ(t+1) = y(t) +
n

m
(y(t+1) − y(t)), (5.4.2)

x
(t+1)
j =

{
argminα∈R

{
1
n
〈Aj, ȳ(t+1)〉α + gj(α) + 1

2τ
(α− x(t)

j)2
}

if j ∈ J,
x

(t)
j if j /∈ J,

(5.4.3)

x̄(t+1) = x(t) + (θ + 1)(x(t+1) − x(t)). (5.4.4)

4: end for

Theorem 5.4.1 Suppose θ, τ and σ in Algorithm 3 are chosen so that

θ =
p

q
− p/q√

Λ
λγn

np
mq

+ max{ n
m
, p
q
}
, τσ =

nmq

4pΛ
,

p

2qλτ
+
p

q
=

n2

2mγσ
+
n

m
(5.4.5)

where Λ is any constant such that Λ ≥ Λq,m. For each t ≥ 0, Algorithm 3 guarantees(
p

2qτ
+
pλ

q

)
E‖x? − x(t)‖2 +

(n

4mσ
+
γ

m

)
E‖y? − y(t)‖2

≤

1− 1

max
{
p
q ,

n
m

}
+
√

Λ
λγn

np
mq

t [(
p

2qτ
+
pλ

q

)
‖x? − x(0)‖2 +

(n

2mσ
+
γ

m

)
‖y? − y(0)‖2

]
.

Remark 1 For a given Λ, the values of τ and σ can be solved from the last two equations of
(5.4.5) in closed forms:

τ =
p

qλ

(n
m
− p

q

)
+

√(
n

m
− p

q

)2

+
4(np)2Λ

(mq)2nλγ

−1

, (5.4.6)

σ =
n2

mγ

(p
q
− n

m

)
+

√(
n

m
− p

q

)2

+
4(np)2Λ

(mq)2nλγ

−1

, (5.4.7)

which are referred to as the primal and dual step size, respectively. If both primal and dual
coordinates are sampled at the same ratio, i.e., q

p
= m

n
, then we have the following simplified

63

version:

τ =
m

2

√
γ

Λnλ
, σ =

m

2

√
nλ

Λγ
. (5.4.8)

According to the convergence rate above, the best choice of Λ is Λq,m. Although the exact com-
putation of Λq,m by definition (5.1.8) may be costly, for instance, when q ≈ p

2
or m ≈ n

2
, it is

tractable when q and m are close to 1 or close to p and n. In practice, we suggest choosing
Λ = mqR2Λp,1

p
as an approximation of Λq,m, which provides reasonably good empirical perfor-

mance (see Section 5.6).
Besides the distance to the saddle-point (x?, y?), a useful quality measure for the solution

(x(t), y(t)) is its primal-dual objective gap, P (x(t)) − D(y(t)), because it can be evaluated in
each iteration and used as a stopping criterion in practice. The next theorem establishes the
convergence rate of the primal-dual objective gap ensured by DSPDC.

Theorem 5.4.2 Suppose τ and σ are chosen as (5.4.5) while θ is replaced by

θ =
p

q
− p/q

2
√

Λ
λγn

np
mq

+ 2 max{ n
m
, p
q
}

(5.4.9)

in Algorithm 3. For each t ≥ 0, Algorithm 3 guarantees

E
[
P (x(t))−D(y(t))

]
≤

1− 1

2
√

Λ
λγn

np
mq + 2 max{ nm ,

p
q}

t

×

 1

min
{
p
q ,

n
m

} +
max

{
‖A‖2
nγ , ‖A‖

2

λn2

}
min

{
λp
q ,

γ
m

}
×[(

p

2qτ
+
pλ

2q

)
‖x(0) − x?‖2 +

(n

2mσ
+

γ

2m

)
‖y(0) − y?‖2 + max

{
p

q
,
n

m

}(
P (x(0))−D(y(0))

)]
.

According to Theorem 5.4.1 and 5.4.2, in order to obtain a pair of primal and dual solutions
with an expected ε distance to (x?, y?), i.e., E[‖x(t) − x?‖2] ≤ ε and E[‖y(t) − y?‖2] ≤ ε, or with
an expected ε objective gap, Algorithm 3 needs

t = O

((
max

{
p

q
,
n

m

}
+

√
Λq,m

nλγ

pn

qm

)
log
(1

ε

))

iterations when Λ = Λq,m. This iteration complexity is interesting since it matches the optimal
O((n+

√
nκ) log

(
1
ε

)
) iteration complexity of dual coordinate methods such as SPDC [220] and

others [103, 168] when (q,m) = (p, 1), and also matches the optimal O((p + p
√

Λ1,n

nλγ
) log

(
1
ε

)
)

iteration complexity of primal coordinate methods [103, 106] when (q,m) = (1, n).
To efficiently implement Algorithm 3, we just need to maintain and efficiently update either

Ax̄(t) or AT ȳ(t), depending on whether n
m

or p
q

is larger. If n
m
≥ p

q
, we should maintain AT ȳ(t)

during the algorithm, which is used in (5.4.3) and can be updated in O(mp) time. We will
then directly compute 〈Ai, x̄(t)〉 for i ∈ I in (5.4.1) in O(mp) time. In fact, this is how SPDC

64

is implemented in [220] where q = p. On the other hand, if n
m
≤ p

q
, it is more efficient to

maintain Ax̄(t) and update it in O(qn) time and compute 〈Aj, ȳ(t+1)〉 for j ∈ J in (5.4.3) in
O(qn) time. Hence, the overall complexity for DSPDC to find an ε-optimal solution is O((np+√

nΛq,m
λγ

p2

q
) log

(
1
ε

)
) when n

m
≥ p

q
and O((np +

√
nΛq,m
λγ

np
m

) log
(

1
ε

)
) when n

m
≤ p

q
. Since the

overall complexity of SPDC is O
(
(np+

√
κnmp) log

(
1
ε

))
when n

m
≥ p

q
, DSPDC method is not

more efficient for general data matrix. However, in the next section, we show that DSPDC has
an efficient implementation for factorized data matrix which leads to a lower overall complexity
than SPDC with the same implementation.

5.4.2 Efficient Implementation for Factorized Data Matrix
In this section, we assume that the data matrix A in (5.1.5) has a factorized structure A = UV
where U ∈ Rn×d and V ∈ Rd×p with d < min{n, p}. Such a matrix A is often obtained as
a low-rank or denoised approximation of raw data matrix. Recently, there emerges a surge of
interests of using factorized data to alleviate the computational cost for big data. For example,
Pham and Ghaoui [143] proposed to use a low-rank approximationX ≈ UV = A for data matrix
X to solve multiple instances of lasso problems. For solving big data kernel learning problems,
the Nyström methods, that approximates a n × n kernel matrix K by US†U> with U ∈ Rn×d,
S ∈ Rd×d and d < n, has become a popular method [205]. Moreover, recent advances on fast
randomized algorithms [57] for finding a low-rank approximation of a matrix render the proposed
coordinate optimization algorithm more attractive for tackling factorized big data problems.

The factorized A also appears often in the problem of sparse recovery from the randomized
feature reduction or randomized instance reduction of (5.1.1). The sparse recovery problem from
randomized feature reduction can be also formulated into (5.1.5) as

min
x∈Rp

max
y∈Rn

{
λ2

2
‖x‖2

2 + λ1‖x‖1 +
1

n
yTXGTGx− 1

n

n∑
i=1

φ∗i (yi)

}
(5.4.10)

where X is the original n × p raw data matrix, G is a d × p random measurement matrix with
d < p, and the actual data matrix for (5.1.5) is A = XGTG with U = XGT and V = G.
This approximation approach has been employed to reduce the computational cost of solving
underconstrained least-squares problem [112, 186]. Similarly, the randomized instance reduc-
tion [45, 186] can be applied by replacing XGTG in (5.4.10) with GTGX , where G is a d × n
random measurement matrix with d < n, and the data matrix A = GTGX with U = GT and
V = GX .

To solve (5.1.5) with A = UV , we implement DSPDC by maintaining the vectors ū(t) =
UT ȳ(t) and v̄(t) = V x̄(t) and updating them in O(dm) and O(dq) time, respectively, in each
iteration. Then, we can obtain

〈
Ai, x̄

(t)
〉

in (5.4.1) in O(dm) time by evaluating
〈
Ui, v̄

(t)
〉

for
each i ∈ I , where Ui is the ith row of U . Similarly, we can obtain

〈
Aj, ȳ

(t+1)
〉

in (5.4.3) in
O(dq) time by taking

〈
V j, v̄(t)

〉
for each j ∈ J , where V j is the jth column of V . This leads to

an efficient implementation of DSPDC described as in Algorithm 4 whose per-iteration cost is
O(dm+ dq), lower than the O(mp) or O(qn) cost when A is not factorized.

To make a clear comparison between DSPDC and other methods when applied to factorized
data, in Table 5.1, we summarize their numbers of iterations and per-iteration costs (when A =

65

Algorithm 4 Efficient Implementation of Algorithm 3 for Factorized Data
Input: x(−1) = x(0) = x̄(0) ∈ Rp, y(−1) = y(0) = ȳ(0) ∈ Rn, and parameters (θ, τ, σ)

Initialize: u(0) = UTy(0), v(0) = V x(0),ū(0) = UT ȳ(0), v̄(0) = V x̄(0)

Iterate:
For t = 0, 1, 2, . . . , T − 1

Uniformly and randomly choose I ⊂ [n] and J ⊂ [p] of sizes m and q, respectively.

y
(t+1)
i =

{
argmaxβ∈R

{
1
n
〈Ui, v̄(t)〉β − φ∗i (β)

n
− 1

2σ
(β − y(t)

i)2
}

if i ∈ I,
y

(t)
i if i /∈ I,

(5.4.11)

u(t+1) = u(t) + UT (y(t+1) − y(t)), (5.4.12)

ū(t+1) = u(t) +
n

m
UT (y(t+1) − y(t)), (5.4.13)

x
(t+1)
j =

{
argminα∈R

{
1
n
〈V j, ū(t+1)〉α + gj(α) + 1

2τ
(α− x(t)

j)2
}

if j ∈ J,
x

(t)
j if j /∈ J,

(5.4.14)

v(t+1) = v(t) + V (x(t+1) − x(t)), (5.4.15)
v̄(t+1) = v(t) + (θ + 1)V (x(t+1) − x(t)). (5.4.16)

Output: x(T) and y(T)

UV)5. For all methods in comparison, we assume A is too large so that only U and V are
stored in memory, which is the typical situation when applying random reduction. Moreover, the
aforementioned efficient implementation in DSPDC (if applicable) has been also applied to other
methods to reduce their per-iteration cost. In Table 5.1, we assume n ≥ p and (q,m) = (1, 1)
and omit all the big-O notations for simplicity. For ASVRG-SP, we present the complexity of its
individual-split version with uniform sampling. According to the last column of Table 5.1, our
DSPDC with efficient implementation has the lowest overall complexity among these methods.

5.5 Extension with Block Coordinate Updates

With block-wise sampling and updates, DSPDC can be easily generalized and applied to the
bilinear saddle-point problem (5.1.5) with a block-decomposable structure and a similar lin-
ear convergence rate can be obtained. Although this is a straightforward extension, it is worth
showing that, when the proximal mapping on each block is computationally expensive, DSPDC
can achieve a lower complexity than other coordinate methods. In this section, we first extend
DSPDC to its block coordinate update version, and then identify the scenarios where such an
extension has a lower overall complexity than other methods.

5For SVRG and ASVRG-SP, we present their numbers of outer and inner iterations and per-iteration costs sepa-
rately.

66

Algorithm Num. of Iter. (× log(1
ε
)) Per-Iter. Cost Overall Compl. (× log(1

ε
))

DSPDC n+ p
√

Λ1,1n

λγ
d nd+ pd

√
Λ1,1n

λγ

SPDC

n+
√

Λp,1n

λγ
pd npd+ pd

√
Λp,1n

λγ

ASDCA
APCG
RPDG
SDCA

n+ Λp,1
λγ

pd npd+ pdΛp,1
λγSAGA

SVRG
Outer: 1 nd

nd+ pdΛp,1
λγInner: Λp,1

λγ
pd

ASVRG-SP
Outer:

√
pmax{Λp,1,Λ1,n}

λγ
+ 1 nd

nd+ nd
√

pmax{Λp,1,Λ1,n}
λγ

Inner: n
√

pmax{Λp,1,Λ1,n}
λγ

d

Table 5.1: The overall complexity of finding an ε-optimal solution when A = UV , n ≥ p and U
and V (but not A) are stored in memory. We choose (q,m) = (1, 1) in DSPDC.

5.5.1 Algorithm and Convergence Properties
We partition the space Rp̄ into p subspaces as Rp̄ = Rq1×Rq2×· · ·×Rqp such that

∑p
j=1 qj = p̄

and partition the space Rn̄ into n subspaces as Rn̄ = Rm1×Rm2×· · ·×Rmn such that
∑n

i=1mi =
n̄. With a little abuse of notation, we represent the corresponding partitions of x ∈ Rp̄ and
y ∈ Rn̄ as x = (x1,x2, . . . ,xp) with xj ∈ Rqj for j = 1, . . . , p and y = (y1,y2, . . . ,yn) with
yi ∈ Rmi for i = 1, . . . , n, respectively.

We consider the following bilinear saddle-point problem

min
x∈Rp̄

max
y∈Rn̄

{
p∑
j=1

gj(xj) +
1

n
yTAx− 1

n

n∑
i=1

φ∗i (yi)

}
, (5.5.1)

where gj : Rqj → R and φ∗i : Rmi → R are functions of xj and yi, respectively. Moreover, we
assume gj and φ∗i are strongly convex with strong convexity parameters of λ > 0 and γ > 0,
respectively. Due to the partitions on x ∈ Rp̄ and y ∈ Rn̄, we partition the matrix A into blocks
accordingly so that

yTAx =

p∑
j=1

n∑
i=1

yTi Aj
ixj,

where Aj
i ∈ Rmi×qj is the block of A corresponding to xj and yi.

It is easy to see that the problem (5.1.5) is a special case of (5.5.1) when qj = mi = 1 for
j = 1, . . . , p and i = 1, . . . , n, p̄ = p and n̄ = n. The scale constant defined in (5.1.8) can be
similarly generalized as

Λq,m ≡ max
I⊂[n],J⊂[p],|I|=m,|J |=q

‖AJ
I ‖2

2, (5.5.2)

where AJ
I is sub-matrix of A consisting of each block Aj

i with i ∈ I and j ∈ J .

67

Let Ai = (A1
i , · · · ,A

p
i) and Aj = ((Aj

1)T , · · · , (Aj
n)T)T . Given these correspondings

between (5.1.5) and (5.5.1), DSPDC can be easily extended for solving (5.5.1) by replacing
(5.4.1) and (5.4.3) with

y
(t+1)
i =

{
argmaxβ∈Rmi

{
1
n
βTAix̄

(t) − φ∗i (β)

n
− 1

2σ
‖β − y

(t)
i ‖2

}
if i ∈ I,

y
(t)
i if i /∈ I,

(5.5.3)

x
(t+1)
j =

{
argminα∈Rqj

{
1
n
αT (Aj)T ȳ(t+1) + gj(α) + 1

2τ
‖α− x

(t)
i ‖2

}
if j ∈ J,

x
(t)
j if j /∈ J,

(5.5.4)

respectively, and ȳ(t) and x̄(t) are updated in the same way as (5.4.2) and (5.4.4).
For this extension, the convergence results similar to Theorem 5.4.1 and Theorem 5.4.2 can

be easily derived with almost the same proof. We skip the proofs but directly state the results.
To find a pair of primal-dual solutions for (5.5.1) which either has an ε-distance to the optimal
solution or has an ε-primal-dual objective gap, the number of iterations Algorithm 3 (with by
(5.4.1) and (5.4.3) replaced by (5.5.3) and (5.5.4)) needs is

t = O

((
max

{ n
m
,
p

q

}
+

√
Λq,m

λγn

np

mq

)
log
(1

ε

))
.

5.5.2 Application 1: Matrix Risk Minimization
In this section, we study the theoretical performance of DSPDC method when the block updating
step (5.5.3) or (5.5.4) has a high computational cost due to eigenvalue decomposition. Let Sd+ be
the set of d × d positive semi-definite matrices. The problem we consider is a general multiple-
matrix risk minimization which is formulated as

min
Xj∈Sd+,j=1,...,p

{
1

n

n∑
i=1

φi

(
p∑
j=1

〈Dj
i , Xj〉

)
+
λ

2

p∑
j=1

‖Xj‖2
F

}
, (5.5.5)

where Dj
i is a d × d data matrix, φi is (1/γ)-smooth convex loss function applied to the lin-

ear prediction
∑p

j=1〈D
j
i , Xj〉 and λ is a regularization parameter. The associated saddle-point

formulation of (5.5.5) is

min
Xj∈Sd+,j=1,...,p

max
y∈Rn

{
λ

2

p∑
j=1

‖Xj‖2
F +

1

n

n∑
i=1

p∑
j=1

yi〈Dj
i , Xj〉 −

1

n

n∑
i=1

φ∗i (yi)

}
, (5.5.6)

which is a special case of (5.5.1) where qj = d2 and mi = 1, xj ∈ Rd2 and Aj
i ∈ R1×d2 are the

vectorization of the matrices Xj and Dj
i respectively, and gj(Xj) = λ

2
‖Xj‖2

F if Xj ∈ Sd+ and
gj(Xj) = +∞ if Xj /∈ Sd+. The applications of this model include matrix trace regression [175]
and distance metric learning [138, 191, 192].

In Table 5.2, we compare DSPDC with various methods on the numbers of iterations and
per-iteration costs when applied to problem (5.5.6). We assume n ≥ max{p, d} and (q,m) =

68

Algorithm Num. of Iter. (× log(1
ε
)) Per-Iter. Cost Overall Compl. (× log(1

ε
))

DSPDC n+ p
√

Λ1,1n

λγ
pd2 + d3 (d2p+ d3)(n+ p

√
Λ1,1n

λγ
)

SPDC

n+
√

Λp,1n

λγ
pd3 npd3 + pd3

√
Λp,1n

λγ

ASDCA
APCG
RPDG
SDCA

n+ Λp,1

λγ
pd3 npd3 + pd3 Λp,1

λγSAGA

SVRG
Outer: 1 pnd2

npd2 + pd3 Λp,1

λγInner: Λp,1

λγ
pd3

ASVRG-SP
Outer:

√
dmax{Λp,1,Λ1,n}

λγ
+ 1 pnd2

npd2 + pnd2
√

dmax{Λp,1,Λ1,n}
λγ

Inner: np
√

max{Λp,1,Λ1,n}
dλγ

d3

Table 5.2: The overall complexity of finding an ε-optimal solution for (5.5.6) when n ≥ p.

(1, 1) and omit all the big-O notations for simplicity. For ASVRG-SP, we present the com-
plexity of its individual-split version with uniform sampling. When applied to (5.5.6) with
(q,m) = (1, 1), DSPDC requires solving (5.5.4) in each iteration which involves the eigen-
value decomposition of one d × d matrix with complexity of O(d3). To efficiently implement
DSPDC, we need to maintain and efficiently update either Ax̄(t) or AT ȳ(t) with complexity
of O(d2 min{n, p}). When p ≤ n, the per-iteration cost of DSPDC in this case is therefore
O(d3 + pd2) so that the overall complexity for DSPDC to find an ε-optimal solution of (5.5.6)

is O((d3 + pd2)(n +
√

nΛ1,1

λγ
p) log(1/ε)). On the contrary, SPDC, ASDCA, APCG and RPDG

need to solve p eigenvalue decompositions per iteration so that its the overall complexity is

O(pd3(n +
√

nΛp,1

λγ
) log(1/ε)) which is higher than that of DSPDC when

√
Λ1,1p ≤

√
Λp,1d.

Without this condition, according to the last column of Table 5.2, DSPDC still has a lower overall
complexity than SDCA, SAGA, SVRG and ASVRG-SP.

5.5.3 Application 2: Multi-task Large Margin Nearest Neighbor Problem
In this section, we show that DSPDC can be applied to the Multi-task Large Margin Nearest
Neighbor (MT-LMNN) problem [138]. The key is to appropriately reduce the original form to
the matrix risk minimization (5.5.6).

Problem Reformulation To make this chapter self-contained, we include the introduction of
MT-LMNN here. Interested readers can find more background in [138]. Suppose there are
p > 1 tasks, each being a multi-class classification problem. For example, in our empirical study
(Section 5.6.3), we have p = 100 tasks, each being a 10-class image classification problem.
MT-LMNN aims to learn one Mahalanobis distance metric (defined as a positive semi-definite
matrix) for each task, so there are totally p metric matrices to be learned. With those metrics,
the label of a testing point in task j is determined by the majority vote of its `-nearest neighbors
defined by the j-th metric. We further assume that the tasks are correlated that all the metrics

69

share a common component, in addition to their own matrix. The original formulation of MT-
LMNN is the following:

min
Xj∈Sd+,j=0,1,...,p,ξ∈Rn

λ0

2
‖X0 − I‖2F +

p∑
j=1

λj
2
‖Xj‖2F +

1

n

p∑
j=1

∑
(u,v)∈Nj

d2
j (zu, zv) +

1

n

p∑
j=1

∑
(u,v,w)∈Sj

ξuvw

s.t. d2
j (zu, zw)− d2

j (zu, zv) ≥ 1− ξuvw, ∀j ∈ [p], ∀(u, v, w) ∈ Sj (5.5.7)

ξuvw ≥ 0, ∀(u, v, w) ∈ Sj .

Now we interpret the notations above. We let z denote a training data point indexed by subscript
u, v, w etc, Xj ∈ Sd+ be the metric matrix for task j = 1, 2, ..., p and X0 the common component
shared by all the tasks to reflect the correlations among them. Let Nj be the set of every ordered
pair (u, v) for task j such that zv is among the ` closest points of zu that has the same label
as zu, and Sj be the set consisting of the triples (u, v, w) such that (u, v) ∈ Nj and zw is the
closest point to zu that has a different label. The aforementioned closeness can be measured
in Euclidean distance or other appropriate methods in the original feature space. We use n :=∑p

j=1 |Nj| =
∑p

j=1 |Sj| to denote the total number of constraints in (5.5.7) excluding the non-
negativity constraints. Let Zj,uv := (zu − zv)(zu − zv)

> for all (u, v) ∈ Nj and Zj,uvw :=
Zj,uw − Zj,uv for all (u, v, w) ∈ Sj so that the distance dj(zu, zv) in task j is defined as

dj(zu, zv) =
√

(zu − zv)>(Xj +X0)(zu − zv) =
√
〈Zj,uv, Xj +X0〉,

Note that the metric matrix for task j is Xj + X0, the sum of the individual matrix Xj and
the shared component X0 among all the tasks. We can see that in each task, the goal of for-
mulation (5.5.7) is essentially to minimize the distances of points with the same label (the ob-
jective) while enforcing the points with different labels to stay away from each other (the con-
straints). The slack variables ξuvw allow for soft constraints in the problem. The regularization
term λj‖Xj‖2

F ,∀j ∈ [p] controls the magnitude of Xj and λ0‖X0 − I‖2
F tunes how close X0 to

the identity I .
Following the same convention of support vector machine, we can transform the problem (5.5.7)

to an unconstrained form:

min
X0,...,Xp∈Sd+

λ0

2
‖X0 − I‖2

F +

p∑
j=1

λj
2
‖Xj‖2

F +
1

n

p∑
j=1

∑
(u,v)∈Nj

〈Zj,uv, Xj +X0〉 (5.5.8)

+
1

n

p∑
j=1

∑
(u,v,w)∈Sj

φ(〈Zj,uvw, Xj +X0〉).

where φ(·) is the hinge loss and we adopt its smoothed version (5.1.3) with b = 1.
By introducing the dual variable y we can obtain the following equivalent saddle-point for-

mulation of (5.5.8):

min
X0,...,Xp∈Sd+

max
y∈Rn

λ0

2
‖X0 − I‖2

F +

p∑
j=1

λj
2
‖Xj‖2

F +
1

n

p∑
j=1

∑
(u,v)∈Nj

〈Zj,uv, Xj +X0〉 (5.5.9)

+
1

n

p∑
j=1

∑
(u,v,w)∈Sj

yj,uvw〈Zj,uvw, Xj +X0〉 −
1

n

p∑
j=1

∑
(u,v,w)∈Sj

φ∗(yj,uvw).

70

Algorithm 5 DSPDC Customized for MT-LMNN
Input: X(−1) = X0 = X̄0 ∈ Rd×d, y(−1) = y0 = ȳ0 ∈ Rn, step sizes τ, σ, parameter θ, total
iteration S, sample sizes 1 ≤ m ≤ n and 1 ≤ q ≤ p+ 1.
Output: XS and yS;

W0
j =

∑
i:i∈[n],T (i)=j ȳ

0
iZi for j = 1, 2, ..., p and W0

0 =
p∑
j=1

W0
j =

∑n
i=1 ȳ

0
iZi.

B0
j = 0d×d for j = 1, 2, ..., p.

For t = 0, 1, 2, . . . , S − 1:
Randomly choose It ⊂ {1, 2, ..., n} and Jt ⊂ {0, 1, ..., p} with |It| = m and |Jt| = q.
Perform the following updates:

yt+1
i =

 argmax
β∈R

{
β
n

〈
Zi, X̄

t
T (i) + X̄ t

0

〉
− 1

n
φ∗(β)− 1

2σ
(β − yti)2

}
if i ∈ It,

yti if i /∈ It
(5.5.11)

Bt+1
j =

∑
i:i∈It,T (i)=j

(yt+1
i − yti)Zi, j = 1, 2, ..., p (5.5.12)

Wt+1
j =

{
Wt

j + n
m

Bt+1
j + m−n

m
Bt
j if j 6= 0,∑T

l=1 Wt+1
l if j = 0.

(5.5.13)

X t+1
j =

 argmin
Q∈Sd+

{
1
n
〈Wt+1

j , Q〉+ gj(Q) + 1
2τ
‖Q−X t

j‖2
F

}
if j ∈ Jt,

X t
j if j /∈ Jt

(5.5.14)

X̄ t+1
j = X t

j + (θ + 1)(X t+1
j −X t

j), ∀j = 0, 1, ..., p. (5.5.15)

Here, each dual variable yj,uvw corresponds to the matrix Zj,uvw and the constraint d2
j(zu, zw) −

d2
j(zu, zv) ≥ 1 − ξuvw in (5.5.7) for all j ∈ [p] and (u, v, w) ∈ Sj . We stack all the dual

variables yj,uvw into a single column vector y ∈ Rn and ys represents the sth coordinate of y. Let
T (s) and Zs represent the task and the outer product ys corresponds to, namely, T (s) = j and
Zs := Zj,uw −Zj,uv if the new index s corresponds to the original index (j, uvw). Then we have
the following more compact formulation:

min
X0,...,Xp∈Sd+

max
y∈Rn

p∑
j=0

gj(Xj) +
1

n

n∑
i=1

yi〈Zi, XT (i) +X0〉 −
1

n

n∑
i=1

φ∗(yi), (5.5.10)

where gj(Xj) :=
λj
2
‖Xj‖2

F + 1
n
〈Cj, Xj〉, with Cj =

∑
(u,v)∈Nj Zj,uv for j ∈ [p], and g0(X0) :=

λ0

2
‖X0−I‖2

F + 1
n
〈C0, X0〉with C0 =

∑p
j=1 Cj . Now, we have reduced the MT-LMNN problem

to the form of (5.5.6) and the customized method is shown in Algorithm 5. The convergence
properties similar to Theorem 5.4.1 and 5.4.2 immediately follow.

71

5.6 Numerical Experiments

In this section, we conduct numerical experiments to compare the DSPDC method with two other
popular stochastic coordinate methods, SPDC [220] and SDCA [166] on three scenarios. The
first two are empirical risk minimizations, with one applied on factorized data (see Section 5.4.2)
and the other using matrices as decision variables (see Section 5.5.2), respectively. Those ex-
periments are run on somewhat synthetic data and serve as the first step of sanity check for the
convergence speed. The third is a multi-task large margin nearest neighbor metric learning prob-
lem (see Section 5.5.3) on a real dataset. In a nutshell, we show that DSPDC outperforms the
competitors in terms of running time in all the experiments.

5.6.1 Learning with factorized data

We first consider the binary classification problem with smoothed hinge loss under the sparse
recovery setting. Besides, we work on a low-dimensional feature space where random feature
reduction is applied. That being said, we are solving the problem (5.4.10) with φi(z) given by
(5.1.3).

For the experiments over synthetic data, we first generate a random matrix X ∈ Rn×p with
Xij following i.i.d. standard normal distribution. We sample a random vector β ∈ Rp with
βj = 1 for j = 1, 2, . . . , 50 and βj = 0 for j = 51, 52, . . . , p and use β to randomly generate bi
with the distribution Pr(bi = 1|β) = 1/(1 + e−X

T
i β) and Pr(bi = −1|β) = 1/(1 + eX

T
i β). To

construct factorized data, we generate a random matrix G ∈ Rd×p with d < p and Gij following
i.i.d. normal distributionN (0, 1/d). Then, the factorized data A = UV for (5.1.1) is constructed
with U = XGT and V = G.

To demonstrate the effectiveness of these three methods under different settings, we choose
different values for (n,m, p, q, d) and the regularization parameters (λ1, λ2) in (5.4.10). The
numerical results are presented in Figure 5.1 with the choices of parameters stated at its bottom.
Here, the horizontal axis represents the running time of an algorithm while the vertical axis
represents the primal gap in logarithmic scale. According to Figure 5.1, DSPDC is significantly
faster than both SPDC and SCDA, under these settings.

We then conduct the comparison of these methods over three real datasets6: Covtype (n =
581012, p = 54), RCV1 (n = 20242, p = 47236), and Real-sim (n = 72309, p = 20958). We
still consider the sparse recovery problem from feature reduction which is formulated as (5.4.10)
with φi defined as (5.1.3). In all experiments, we choose d = 20 to generate the random matrix
G and set λ1 = 10−4, λ2 = 10−2 in (5.4.10). We choose m and q so that n and p can be either
dividable by them or has a small division remainder. The numerical performances of the three
methods are shown in Figure 5.2. In these three examples, SPDC and DSPDC both outperform
SDCA significantly. Compared to SPDC, DSPDC is even better on the first two datasets and has
the same efficiency on the third.

6http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html

72

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

Time(s)
0 50 100 150 200

P
(x

)
-

P
(x

*)

10-20

10-15

10-10

10-5

100

DSPDC
SPDC
SDCA

Time(s)
0 100 200 300 400

P
(x

)
-

P
(x

*)

10-15

10-10

10-5

100

DSPDC
SPDC
SDCA

Time(s)
0 200 400 600

P
(x

)
-

P
(x

*)

10-15

10-10

10-5

100

DSPDC
SPDC
SDCA

Time(s)
0 500 1000 1500 2000

P
(x

)
-

P
(x

*)

10-6

10-4

10-2

100

DSPDC
SPDC
SDCA

Time(s)
0 2000 4000

P
(x

)
-

P
(x

*)

10-6

10-4

10-2

100

DSPDC
SPDC
SDCA

Time(s)
0 2000 4000 6000

P
(x

)
-

P
(x

*)

10-10

10-5

100

DSPDC
SPDC
SDCA

Figure 5.1: For all cases, m = 1. First row: λ1 = 10−3, λ2 = 10−2; Second row: λ1 =
10−6, λ2 = 10−5. First column: (n, p, q, d) = (5000, 100, 50, 20); Second column: (n, p, q, d) =
(10000, 100, 50, 50); Third column: (n, p, q, d) = (10000, 500, 50, 50).

5.6.2 Matrix Risk Minimization
Next we study the performance of DSPDC for solving the multiple-matrix risk minimization
problem (5.5.5). We choose φi in (5.5.5) to be (5.1.3) and generate Dj

i as a d × d matrix with
entry sampled from a standard Gaussian distribution for i = 1, 2, ..., n and j = 1, 2, ..., p. Then
we generate the true parameter matrix X̄j as a d× d identity matrix for j = 1, 2, ..., p. Then we
use X̄j and Dj

i to generate bi such that bi = 1 if 1

(1+exp{−〈Dj
i ,X̄j〉})

> 0.5 or bi = −1 otherwise. In
this experiment, we set d = 100 or 200, p = 100, n = 100, λ = 0.01.

We compare the performance of DSPDC, SPDC [220] and SDCA [166] with various sam-
pling settings, and the results are shown in Fig 5.3. It can be easily seen that DSPDC converges
much faster than both SPDC and SDCA, in terms of running time. The behaviors of these algo-
rithms are due to the fact that, in each iteration, both SPDC and SDCA need to take p eigenvalue
decompositions of d × d matrix while DSPDC only needs q such operations. Since the cost of
each eigenvalue decomposition is as expensive as O(d3), the total computation cost saved by
DSPDC is thus significant.

5.6.3 Multi-task Large Margin Nearest Neighbor Problem
Finally, we compare the performance of different algorithms on the MT-LMNN problem (5.5.10).
The dataset we are using is Amsterdam library of objects ALOI7, a collection of 108,000 images

7https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multiclass.html#
aloi

73

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#aloi
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#aloi

Time(s)
0 50 100 150

P
(x

)
-

P
(x

*)

10-15

10-10

10-5

100

DSPDC
SPDC
SDCA

Time(s)
0 500 1000

P
(x

)
-

P
(x

*)

10-15

10-10

10-5

100

DSPDC
SPDC
SDCA

Time(s)
0 50 100 150 200

P
(x

)
-

P
(x

*)

10-15

10-10

10-5

100

DSPDC
SPDC
SDCA

Figure 5.2: Performance on real datasets. Left: Covtype. Middle: RCV1. Right: Real-sim.

0 50 100 150 200 250
Time(s)

10-6

10-5

10-4

10-3

10-2

10-1

100

P
(x

)
-

P
(x

*)

DSPDC
SPDC
SDCA

0 5 10 15
Time(s)

10-20

10-15

10-10

10-5

100

P
(x

)
-

P
(x

*)

DSPDC

SPDC

SDCA

0 20 40 60 80 100 120
Time(s)

10-6

10-5

10-4

10-3

10-2

10-1

100

P
(x

)
-

P
(x

*)

DSPDC

SPDC

SDCA

0 100 200 300 400 500 600 700
Time(s)

10-4

10-3

10-2

10-1

100

P
(x

)
-

P
(x

*)

DSPDC

SPDC

SDCA

0 10 20 30 40 50 60
Time(s)

10-20

10-15

10-10

10-5

100

P
(x

)
-

P
(x

*)

DSPDC
SPDC
SDCA

0 50 100 150 200 250 300 350
Time(s)

10-20

10-15

10-10

10-5

100

P
(x

)
-

P
(x

*)

DSPDC
SPDC
SDCA

Figure 5.3: Performance on matrix risk minimization. First row: d = 100. Second row: d = 200.
Left: (m, q) = (5, 50). Middle: (m, q) = (50, 5). Right: (m, q) = (20, 20).

for small objects with 1,000 class labels. Each image contains one small object which can be
expressed as an extended color histogram of d = 128 dimensions. We adopt the approach
similar to [138] to generate classification tasks. More specifically, we divide the class labels
into 100 pieces, each having 10 labels. In other words, we have 100 metric matrices to learn
during training, as well as the one shared by all the tasks. The neighborhood size is ` = 3. For
each task, we randomly select 60% of the data for training, resulting in a training set of 63936
instances. Under this setting, the total number of triplet constraints is n = 1142658, which is
also the number of dual variables. We set λ0 = 0.01, λ1 = · · · = λp = 0.1.

The comparison is again between DSPDC, SPDC and SDCA under different sampling schemes,
which is shown in Figure 5.4. We can observe the similar trends as Figure 5.3. In particular,
DSPDC converges much faster to the optimal solution in terms of running time than both SPDC
and SDCA, under all the sampling settings. The superiority of DSPDC in terms of running time
is again due to the much less eigenvalue decomposition it does per iteration, which is the benefit
brought by primal sampling. Indeed, as both SPDC and SDCA need to do full primal coordinate

74

update, they have to carry out p
q

times more eigenvalue decompositions than DSPDC. While all
those methods have similar linear convergence rates, the computational cost per iteration domi-
nates the performance.

0 1 2 3 4
Time(s) 104

10-5

100

P
(X

)-
P

(X
*)

DSPDC
SPDC
SDCA

0 1 2 3 4
Time(s) 104

10-5

100

P
(X

)-
P

(X
*)

DSPDC
SPDC
SDCA

0 1 2 3 4
Time(s) 104

10-6

10-4

10-2

100

P
(X

)-
P

(X
*)

DSPDC
SPDC
SDCA

Figure 5.4: The result of different methods on large margin multi-task metric learning problem
with ALOI data. There are p = 100 tasks and thus p + 1 = 101 metric matrices to be learned,
each being 128×128. The dual variable (triplet constraint) size is n = 1142658. For left to right,
the primal and dual sampling sizes of DSPDC are respectively (q,m) = (20, 2000), (q,m) =
(20, 4000) and (q,m) = (40, 8000). For SPDC and SDCA, the dual sampling sizes are the same
as DSPDC while they conduct full primal coordinate update (q = 101).

5.7 Discussion
In this chapter, we propose a doubly stochastic primal dual coordinate (DSPDC) method for
bilinear saddle point problem, which captures an important class of regularized empirical risk
minimization (ERM) problems in statistical learning. We establish the iteration complexity of
DSPDC for finding a pair of primal and dual solutions with ε-distance to the optimal solution or
with ε-objective gap. When applied to ERM with factorized data or matrix variables with costly
prox-mapping, such as the multi-task large margin nearest neighbor metric learning problem, our
method achieves a lower overall complexity than existing coordinate methods.

75

76

Chapter 6

DSCOVR: Randomized Primal-Dual Block
Coordinate Algorithms for Asynchronous
Distributed Optimization

6.1 Introduction
In the previous chapter, we have shown that empirical risk minimization can be reformulated as
a bilinear saddle point problem. In this chapter, we consider how to leverage this reformulation
to conduct distributed computation. In particular, we consider distributed optimization problems
of the form

minimize
w∈Rd

1

m

m∑
i=1

fi(Xiw) + g(w), (6.1.1)

where Xi ∈ RNi×d is the local data stored at the ith machine, fi : RNi → R is a convex cost
function associated with the linear mapping Xiw, and g(w) is a convex regularization function.
In addition, we assume that g is separable, i.e., for some integer n > 0, we can write

g(w) =
n∑
k=1

gk(wk) , (6.1.2)

where gk : Rdk → R, and wk ∈ Rdk for k = 1, . . . , n are non-overlapping subvectors of
w ∈ Rd with

∑n
k=1 dk = d (they form a partition of w). Many popular regularization functions

in machine learning are separable, for example, g(w) = (λ/2)‖w‖2
2 or g(w) = λ‖w‖1 for some

λ > 0.
An important special case of (6.1.1) is distributed empirical risk minimization (ERM) of

linear predictors. Let (x1, y1), . . . , (xN , yN) be N training examples, where each xj ∈ Rd is a
feature vector and yj ∈ R is its label. The ERM problem is formulated as

minimize
w∈Rd

1

N

N∑
j=1

φj
(
xTj w

)
+ g(w), (6.1.3)

77

where each φj : R→ R is a loss function measuring the mismatch between the linear prediction
xTj w and the label yj . Popular loss functions in machine learning include, e.g., for regression,
the squared loss φj(t) = (1/2)(t− yj)2, and for classification, the logistic loss φj(t) = log(1 +
exp(−yjt)) where yj ∈ {±1}. In the distributed optimization setting, theN examples are divided
into m subsets, each stored on a different machine. For i = 1, . . . ,m, let Ii denote the subset of{

1, . . . , N
}

stored at machine i and let Ni = |Ii| (they satisfy
∑m

i=1Ni = N). Then the ERM
problem (6.1.3) can be written in the form of (6.1.1) by letting Xi consist of xTj with j ∈ Ii as
its rows and defining fi : RNi → R as

fi(uIi) =
m

N

∑
j∈Ii

φj(uj), (6.1.4)

where uIi ∈ RNi is a subvector of u ∈ RN , consisting of uj with j ∈ Ii.
The nature of distributed algorithms and their convergence properties largely depend on the

model of the communication network that connects the m computing machines. A popular set-
ting in the literature is to model the communication network as a graph, and each node can only
communicate (in one step) with their neighbors connected by an edge, either synchronously or
asynchronously [e.g., 16, 124]. The convergence rates of distributed algorithms in this setting
often depend on characteristics of the graph, such as its diameter and the eigenvalues of the graph
Laplacian [e.g. 48, 125, 160, 199]. This is often called the decentralized setting.

Another model for the communication network is centralized, where all the machines par-
ticipate synchronous, collective communication, e.g., broadcasting a vector to all m machines,
or computing the sum of m vectors, each from a different machine (AllReduce). These collec-
tive communication protocols hide the underlying implementation details, which often involve
operations on graphs. They are adopted by many popular distributed computing standards and
packages, such as MPI [122], MapReduce [38] and Aparche Spark [215], and are widely used
in machine learning practice [e.g., 100, 119]. In particular, collective communications are very
useful for addressing data parallelism, i.e., by allowing different machines to work in parallel to
improve the same model w ∈ Rd using their local dataset. A disadvantage of collective commu-
nications is their synchronization cost: faster machines or machines with less computing tasks
have to become idle while waiting for other machines to finish their tasks in order to participate
a collective communication.

One effective approach for reducing synchronization cost is to exploit model parallelism
(here “model” refers to w ∈ Rd, including all optimization variables). The idea is to allow
different machines work in parallel with different versions of the full model or different parts
of a common model, with little or no synchronization. The model partitioning approach can be
very effective for solving problems with large models (large dimension d). Dedicated parameter
servers can be set up to store and maintain different subsets of the model parameters, such as the
wk’s in (6.1.2), and be responsible for coordinating their updates at different workers [98, 202].
This requires flexible point-to-point communication.

In this paper, we develop a family of randomized algorithms that exploit simultaneous data
and model parallelism. Correspondingly, we adopt a centralized communication model that sup-
port both synchronous collective communication and asynchronous point-to-point communica-
tion. In particular, it allows any pair of machines to send/receive a message in a single step, and

78

...

...

...

...

.

w1 wk wn

α1

αi

αm

Xik Xi:

X:k

Figure 6.1: Partition of primal variable w, dual variable α, and the data matrix X .

multiple point-to-point communications may happen in parallel in an event-driven, asynchronous
manner. Such a communication model is well supported by the MPI standard. To evaluate the
performance of distributed algorithms in this setting, we consider the following three measures.
• Computation complexity: total amount of computation, measured by the number of passes

over all datasets Xi for i = 1, . . . ,m, which can happen in parallel on different machines.
• Communication complexity: the total amount of communication required, measured by the

equivalent number of vectors in Rd sent or received across all machines.
• Synchronous communication: measured by the total number of vectors in Rd that requires

synchronous collective communication involving all m machines. We single it out from
the overall communication complexity as a (partial) measure of the synchronization cost.

In Section 6.2, we introduce the framework of our randomized algorithms, Doubly Stochastic
Coordinate Optimization with Variance Reduction (DSCOVR), and summarize our theoretical
results on the three measures achieved by DSCOVR. Compared with other first-order methods
for distributed optimization, we show that DSCOVR may require less amount of overall compu-
tation and communication, and less or no synchronization. Then we present the details of several
DSCOVR variants and their convergence analysis in Sections 6.3-6.6. We discuss the imple-
mentation of different DSCOVR algorithms in Section 6.7, and present results of our numerical
experiments in Section 6.8.

6.2 The DSCOVR Framework and Main Results

First, we derive a saddle-point formulation of the convex optimization problem (6.1.1). Let f ∗i
be the convex conjugate of fi, i.e., f ∗i (αi) = supui∈RNi

{
αTi ui − fi(ui)

}
, and define

L(w, α) ≡ 1

m

m∑
i=1

αTi Xiw −
1

m

m∑
i=1

f ∗i (αi) + g(w) , (6.2.1)

79

where α = [α1; . . . ;αm] ∈ RN . Since both the fi’s and g are convex, L(w, α) is convex in w
and concave in α. We also define a pair of primal and dual functions:

P (w) = max
α∈RN

L(w, α) =
1

m

m∑
i=1

fi(Xiw) + g(w) , (6.2.2)

D(α) = min
w∈Rd

L(w, α) = − 1

m

m∑
i=1

f ∗i (αi)− g∗
(
− 1

m

m∑
i=1

(Xi)
Tαi

)
, (6.2.3)

where P (w) is exactly the objective function in (6.1.1)1 and g∗ is the convex conjugate of g. We
assume that L has a saddle point (w?, α?), that is,

L(w?, α) ≤ L(w?, α?) ≤ L(w, α?) , ∀(w, α) ∈ Rd ×RN .

In this case, we have w? = argmin P (w) and α? = argmin D(α), and P (w?) = D(α?).
The DSCOVR framework is based on solving the convex-concave saddle-point problem

min
w∈Rd

max
α∈RN

L(w, α). (6.2.4)

Since we assume that g has a separable structure as in (6.1.2), we rewrite the saddle-point prob-
lem as

min
w∈Rd

max
α∈RN

{
1

m

m∑
i=1

n∑
k=1

αTi Xikwk −
1

m

m∑
i=1

f ∗i (αi) +
n∑
k=1

gk(wk)

}
, (6.2.5)

where Xik ∈ RNi×dk for k = 1, . . . , n are column partitions of Xi. For convenience, we define
the following notations. First, let X = [X1; . . . ;Xm] ∈ RN×d be the overall data matrix, by
stacking the Xi’s vertically. Conforming to the separation of g, we also partition X into block
columns X:k ∈ RN×dk for k = 1, . . . , n, where each X:k = [X1k; . . . ;Xmk] (stacked vertically).
For consistency, we also use Xi: to denote Xi from now on. See Figure 6.1 for an illustration.

We exploit the doubly separable structure in (6.2.5) by a doubly stochastic coordinate update
algorithm outlined in Algorithm 6. Let p = {p1, . . . , pm} and q = {q1, . . . , qn} be two prob-
ability distributions. During each iteration t, we randomly pick an index j ∈ {1, . . . ,m} with
probability pj , and independently pick an index l ∈ {1, . . . , n} with probability ql. Then we
compute two vectors u(t+1)

j ∈ RNj and v(t+1)
l ∈ Rdl (details to be discussed later), and use them

to update the block coordinates αj and wl while leaving other block coordinates unchanged. The
update formulas in (6.2.6) and (6.2.7) use the proximal mappings of the (scaled) functions f ∗j and
gl respectively. We recall that the proximal mapping for any convex function φ : Rd → R∪{∞}
is defined as

proxφ(v)
4
= argmin

u∈Rd

{
φ(u) +

1

2
‖u− v‖2

}
.

1 More technically, we need to assume that each fi is convex and lower semi-continuous so that f∗∗i = fi [see,
e.g., 155, Section 12]. It automatically holds if fi is convex and differentiable, which we will assume later.

80

Algorithm 6 DSCOVR framework

Input: initial points w(0), α(0), and step sizes σi for i = 1, . . . ,m and τk for k = 1, . . . , n.
1: for t = 0, 1, 2, . . . , do
2: pick j ∈ {1, . . . ,m} and l ∈ {1, . . . , n} randomly with distributions p and q respectively.
3: compute variance-reduced stochastic gradients u(t+1)

j and v(t+1)
l .

4: update primal and dual block coordinates:

α
(t+1)
i =

{
proxσjf∗j

(
α

(t)
j + σju

(t+1)
j

)
if i = j,

α
(t)
i , if i 6= j,

(6.2.6)

w
(t+1)
k =

{
proxτlgl

(
w

(t)
l − τlv

(t+1)
l

)
if k = l,

w
(t)
k , if k 6= l.

(6.2.7)

5: end for

There are several different ways to compute the vectors u(t+1)
j and v(t+1)

l in Step 3 of Algo-
rithm 6. They should be the partial gradients or stochastic gradients of the bilinear coupling term
in L(w, α) with respect to αj and wl respectively. Let

K(w, α) = αTXw =
m∑
i=1

n∑
k=1

αTi Xikwk,

which is the bilinear term in L(w, α) without the factor 1/m. We can use the following partial
gradients in Step 3:

ū
(t+1)
j =

∂K(w(t), α(t))

∂αj
=

n∑
k=1

Xjkw
(t)
k ,

v̄
(t+1)
l =

1

m

∂K(w(t), α(t))

∂wl
=

1

m

m∑
i=1

(Xil)
Tα

(t)
i .

(6.2.8)

We note that the factor 1/m does not appear in the first equation because it multiplies both
K(w, α) and f ∗j (αj) in (6.2.5) and hence does not appear in updating αj . Another choice is to
use

u
(t+1)
j =

1

ql
Xjlw

(t)
l ,

v
(t+1)
l =

1

pj

1

m
(Xjl)

Tα
(t)
j ,

(6.2.9)

which are unbiased stochastic partial gradients, because

El

[
u

(t+1)
j

]
=

n∑
k=1

qk
1

qk
Xjkw

(t)
k =

n∑
k=1

Xjkw
(t)
k = ū

(t+1)
j ,

Ej

[
v

(t+1)
l

]
=

m∑
i=1

pi
1

pi

1

m
(Xil)

Tα
(t)
i =

1

m

m∑
i=1

(Xil)
Tα

(t)
i = v̄

(t+1)
l ,

81

Figure 6.2: Simultaneous data and model parallelism. At any given time, each machine is busy
updating one parameter block and its own dual variable. Whenever some machine is done, it is
assigned to work on a random block that is not being updated.

where Ej and El are expectations with respect to the random indices j and l respectively.
It can be shown that, Algorithm 6 converges to a saddle point ofL(w, α) with either choice (6.2.8)

or (6.2.9) in Step 3, and with suitable step sizes σi and τk. It is expected that using the stochas-
tic gradients in (6.2.9) leads to a slower convergence rate than applying (6.2.8). However, us-
ing (6.2.9) has the advantage of much less computation during each iteration. Specifically, it
employs only one block matrix-vector multiplication for both updates, instead of n and m block
multiplications done in (6.2.8).

More importantly, the choice in (6.2.9) is suitable for parallel and distributed computing.
To see this, let (j(t), l(t)) denote the pair of random indices drawn at iteration t (we omit the
superscript (t) to simplify notation whenever there is no confusion from the context). Suppose for
a sequence of consecutive iterations t, . . . , t+s, there is no common index among j(t), . . . , j(t+s),
nor among l(t), . . . , l(t+s), then these s + 1 iterations can be done in parallel and they produce
the same updates as being done sequentially. Suppose there are s + 1 processors or machines,
then each can carry out one iteration, which includes the updates in (6.2.9) as well as (6.2.6)
and (6.2.7). These s + 1 iterations are independent of each other, and in fact can be done in any
order, because each only involve one primal block wl(t) and one dual block αj(t) , for both input
and output (variables on the right and left sides of the assignments respectively). In contrast, the
input for the updates in (6.2.8) depend on all primal and dual blocks at the previous iteration,
thus cannot be done in parallel.

In practice, suppose we have m machines for solving problem (6.2.5), and each holds the
data matrix Xi: in memory and maintains the dual block αi, for i = 1, . . . ,m. We assume
that the number of model partitions n is larger than m, and the n model blocks {w1, . . . , wn}
are stored at one or more parameter servers. In the beginning, we can randomly pick m model
blocks (sampling without replacement) from {w1, . . . , wn}, and assign each machine to update
one of them. If machine i is assigned to update block k, then both αi and wk are updated, using
only the matrix Xik; moreover, it needs to communicate only the block wk with the parameter
server that are responsible to maintain it. Whenever one machine finishes its update, a scheduler
can randomly pick another parameter block that is not currently updated by other machines, and
assign it to the free machine. Therefore all machines can work in parallel, in an asynchronous,

82

event-driven manner. Here an event is the completion of a block update at any machine, as
illustrated in Figure 6.2. We will discuss the implementation details in Section 6.7.

The idea of using doubly stochastic updates for distributed optimization in not new. It has
been studied by Yun et al. [214] for solving the matrix completion problem, and by Matsushima
et al. [116] for solving the saddle-point formulation of the ERM problem. Despite their nice fea-
tures for parallelization, these algorithms inherit the O(1/

√
t) (or O(1/t) with strong convexity)

sublinear convergence rate of the classical stochastic gradient method. They translate into high
communication and computation cost for distributed optimization. In this paper, we propose
new variants of doubly stochastic update algorithms by using variance-reduced stochastic gra-
dients (Step 3 of Algorithm 6). More specifically, we borrow the variance-reduction techniques
from SVRG [78] and SAGA [39] to develop the DSCOVR algorithms, which enjoy fast linear
rates of convergence. In the rest of this section, we summarize our theoretical results charac-
terizing the three measures for DSCOVR: computation complexity, communication complexity,
and synchronization cost. We compare them with distributed implementation of batch first-order
algorithms.

6.2.1 Summary of Main Results
Throughout this paper, we use ‖ · ‖ to denote the standard Euclidean norm for vectors. For
matrices, ‖ · ‖ denotes the operator (spectral) norm and ‖ · ‖F denotes the Frobenius norm. We
make the following assumption regarding the optimization problem (6.1.1).
Assumption 2 Each fi is convex and differentiable, and its gradient is (1/γi)-Lipschitz contin-
uous, i.e.,

‖∇fi(u)−∇fi(v)‖ ≤ 1

γi
‖u− v‖, ∀u, v ∈ RNi , i = 1, . . . ,m. (6.2.10)

In addition, the regularization function g is λ-strongly convex, i.e.,

g(w′) ≥ g(w) + ξT (w′ − w) +
λ

2
‖w′ − w‖2, ∀ ξ ∈ ∂g(w), w′, w ∈ Rd.

Under Assumption 2, each f ∗i is γi-strongly convex [see, e.g., 68, Theorem 4.2.2], andL(w, α) de-
fined in (6.2.1) has a unique saddle point (w?, α?).

The condition (6.2.10) is often referred to as fi being 1/γi-smooth. To simplify discussion,
here we assume γi = γ for i = 1, . . . ,m. Under these assumptions, each composite function
fi(Xiw) has a smoothness parameter ‖Xi‖2/γ (upper bound on the largest eigenvalue of its Hes-
sian). Their average (1/m)

∑m
i=1 fi(Xiw) has a smooth parameter ‖X‖2/(mγ), which no larger

than the average of the individual smooth parameters (1/m)
∑m

i=1 ‖Xi‖2/γ. We define a con-
dition number for problem (6.1.1) as the ratio between this smooth parameter and the convexity
parameter λ of g:

κbat =
‖X‖2

mλγ
≤ 1

m

m∑
i=1

‖Xi:‖2

λγ
≤ ‖X‖

2
max

λγ
, (6.2.11)

where ‖X‖max = maxi{‖Xi:‖}. This condition number is a key factor to characterize the itera-
tion complexity of batch first-order methods for solving problem (6.1.1), i.e., minimizing P (w).

83

Algorithms Computation complexity Communication complexity
(number of passes over data) (number of vectors in Rd)

batch first-order methods (1 + κbat) log(1/ε) m(1 + κbat) log(1/ε)

DSCOVR (1 + κrand/m) log(1/ε) (m+ κrand) log(1/ε)

accelerated batch first-order methods
(
1 +
√
κbat

)
log(1/ε) m

(
1 +
√
κbat

)
log(1/ε)

accelerated DSCOVR
(
1 +

√
κrand/m

)
log(1/ε)

(
m+

√
m·κrand

)
log(1/ε)

Table 6.1: Computation and communication complexities of batch first-order methods and
DSCOVR (for both SVRG and SAGA variants). We omit the O(·) notation in all entries and
an extra log(1 + κrand/m) factor for accelerated DSCOVR algorithms.

Specifically, to find a w such that P (w) − P (w?) ≤ ε, the proximal gradient method requires
O ((1 + κbat) log(1/ε)) iterations, and their accelerated variants requireO

((
1 +
√
κbat

)
log(1/ε)

)
iterations [e.g., 14, 128, 131]. Primal-dual first order methods for solving the saddle-point prob-
lem (6.2.4) share the same complexity [19, 20].

A fundamental baseline for evaluating any distributed optimization algorithms is the dis-
tributed implementation of batch first-order methods. Let’s consider solving problem (6.1.1)
using the proximal gradient method. During every iteration t, each machine receives a copy
of w(t) ∈ Rd from a master machine (through Broadcast), and computes the local gradient
z

(t)
i = XT

i ∇fi(Xiw
(t)) ∈ Rd. Then a collective communication is invoked to compute the

batch gradient z(t) = (1/m)
∑m

i=1 z
(t)
i at the master (Reduce). The master then takes a proxi-

mal gradient step, using z(t) and the proximal mapping of g, to compute the next iterate w(t+1)

and broadcast it to every machine for the next iteration. We can also use the AllReduce oper-
ation in MPI to obtain z(t) at each machine without a master. In either case, the total number
of passes over the data is twice the number of iterations (due to matrix-vector multiplications
using both Xi and XT

i), and the number of vectors in Rd sent/received across all machines is 2m
times the number of iterations (see Table 6.1). Moreover, all communications are collective and
synchronous.

Since DSCOVR is a family of randomized algorithms for solving the saddle-point prob-
lem (6.2.4), we would like to find (w, α) such that ‖w(t) − w?‖2 + (1/m)‖α(t) − α?‖2 ≤ ε
holds in expectation and with high probability. We list the communication and computation
complexities of DSCOVR in Table 6.1, comparing them with batch first-order methods. Similar
guarantees also hold for reducing the duality gap P (w(t))−D(α(t)), where P and D are defined
in (6.2.2) and (6.2.3) respectively.

The key quantity characterizing the complexities of DSCOVR is the condition number κrand,
which can be defined in several different ways. If we pick the data block i and model block k
with uniform distribution, i.e., pi = 1/m for i = 1, . . . ,m and qk = 1/n for k = 1, . . . , n, then

κrand =
n‖X‖2

m×n

λγ
, where ‖X‖m×n = max

i,k
‖Xik‖. (6.2.12)

84

Algorithms Synchronous Communication Asynchronous Communication
(number of vectors in Rd) (equiv. number of vectors in Rd)

DSCOVR-SVRG m log(1/ε) κrand log(1/ε)

DSCOVR-SAGA m (m+ κrand) log(1/ε)

accelerated DSCOVR-SVRG m log(1/ε)
(
1 +
√
m·κrand

)
log(1/ε)

accelerated DSCOVR-SAGA m
(
1 +
√
m·κrand

)
log(1/ε)

Table 6.2: Breakdown of communication complexities into synchronous and asynchronous com-
munications for two different types of DSCOVR algorithms. We omit the O(·) notation and an
extra log(1 + κrand/m) factor for accelerated DSCOVR algorithms.

Comparing the definition of κbat in (6.2.11), we have κbat ≤ κrand because

1

m
‖X‖2 ≤ 1

m

m∑
i=1

‖Xi‖2 ≤ 1

m

m∑
i=1

n∑
k=1

‖Xik‖2 ≤ n‖X‖2
m×n.

With Xi: = [Xi1 · · ·Xim] ∈ RNi×d and X:k = [X1k; . . . ;Xmk] ∈ RN×dk , we can also define

κ′rand =
‖X‖2

max,F

λγ
, where ‖X‖max,F = max

i,k

{
‖Xi:‖F , ‖X:k‖F

}
. (6.2.13)

In this case, we also have κbat ≤ κ′rand because ‖X‖max ≤ ‖X‖max,F . Finally, if we pick the pair
(i, k) with non-uniform distribution pi = ‖Xi:‖2

F/‖X‖2
F and qk = ‖X:k‖2

F/‖X‖2
F , then we can

define

κ′′rand =
‖X‖2

F

mλγ
. (6.2.14)

Again we have κbat ≤ κ′′rand because ‖X‖ ≤ ‖X‖F . We may replace κrand in Tables 6.1 and 6.2
by either κ′rand or κ′′rand, depending on the probability distributions p and q and different proof
techniques.

From Table 6.1, we observe similar type of speed-ups in computation complexity, as obtained
by variance reduction techniques over the batch first-order algorithms for convex optimization
[e.g., 4, 39, 78, 89, 91, 200], as well as for convex-concave saddle-point problems [12, 220].
Basically, DSCOVR algorithms have potential improvement over batch first-order methods by
a factor of m (for non-accelerated algorithms) or

√
m (for accelerated algorithms), but with a

worse condition number. In the worst case, the ratio between κrand and κbat may be of order m
or larger, thus canceling the potential improvements.

More interestingly, DSCOVR also has similar improvements in terms of communication
complexity over batch first-order methods. In Table 6.2, we decompose the communication
complexity of DSCOVR into synchronous and asynchronous communication. The decomposi-
tion turns out to be different depending on the variance reduction techniques employed: SVRG
[78] versus SAGA [39]. We note that DSCOVR-SAGA essentially requires only asynchronous
communication, because the synchronous communication of m vectors are only necessary for
initialization with non-zero starting point.

85

The comparisons in Table 6.1 and 6.2 give us good understanding of the complexities of dif-
ferent algorithms. However, these complexities are not accurate measures of their performance
in practice. For example, collective communication of m vectors in Rd can often be done in par-
allel over a spanning tree of the underlying communication network, thus only cost log(m) times
(insted of m times) compared with sending only one vector. Also, for point-to-point communi-
cation, sending one vector in Rd altogether can be much faster than sending n smaller vectors of
total length d separately. A fair comparison in term of wall-clock time on a real-world distributed
computing system requires customized, efficient implementation of different algorithms. We will
shed some light on timing comparisons with numerical experiments in Section 6.8.

6.2.2 Related Work
There is an extensive literature on distributed optimization. Many algorithms developed for
machine learning adopt the centralized communication setting, due to the wide availability of
supporting standards and platforms such as MPI, MapReduce and Spark (as discussed in the
introduction). They include parallel implementations of the batch first-order and second-order
methods [e.g., 24, 93, 100], ADMM [17], and distributed dual coordinate ascent [75, 109, 204].

For minimizing the average function (1/m)
∑m

i=1 fi(w), in the centralized setting and with
only first-order oracles (i.e., gradients of fi’s or their conjugates), it has been shown that dis-
tributed implementation of accelerated gradient methods achieves the optimal convergence rate
and communication complexity [7, 160]. The problem (6.1.1) we consider has the extra structure
of composition with a linear transformation by the local data, which allows us to exploit simul-
taneous data and model parallelism using randomized algorithms and obtain improved commu-
nication and computation complexity.

Most work on asynchronous distributed algorithms exploit model parallelism in order to re-
duce the synchronization cost, especially in the setting with parameter servers [e.g., 8, 98, 202].
Besides, delay caused by the asynchrony can be incorporated to the step size to gain practical
improvement on convergence [e.g., 2, 118, 179], though the theoretical sublinear rates remain.
There are also many recent work on asynchronous parallel stochastic gradient and coordinate-
descent algorithms for convex optimization [e.g., 104, 140, 149, 150, 153, 173]. When the
workloads or computing power of different machines or processors are nonuniform, they may
significantly increase iteration efficiency (number of iterations done in unit time), but often at
the cost of requiring more iterations than their synchronous counterparts (due to delays and stale
updates). So there is a subtle balance between iteration efficiency and iteration complexity [e.g.,
58]. Our discussions in Section 6.2.1 show that DSCOVR is capable of improving both aspects.

For solving bilinear saddle-point problems with a finite-sum structure, [220] proposed a ran-
domized algorithm that works with dual coordinate update but full primal update. Yu et al. [209]
proposed a doubly stochastic algorithm that works with both primal and dual coordinate updates
based on equation (6.2.8). Both of them achieved accelerated linear convergence rates, but nei-
ther can be readily applied to distributed computing. In addition, Balamurugan and Bach [12]
proposed stochastic variance-reduction methods (also based on SVRG and SAGA) for solving
more general convex-concave saddle point problems. For the special case with bilinear coupling,
they obtained similar computation complexity as DSCOVR. However, their methods require full
model updates at each iteration (even though working with only one sub-block of data), thus are

86

not suitable for distributed computing.
With additional assumptions and structure, such as similarity between the local cost func-

tions at different machines or using second-order information, it is possible to obtain better com-
munication complexity for distributed optimization; see, e.g., Reddi et al. [151], Shamir et al.
[169], Zhang and Xiao [219]. However, these algorithms rely on much more computation at
each machine for solving a local sub-problem at each iteration. With additional memory and
preprocessing at each machine, Lee et al. [94] showed that SVRG can be adapted for distributed
optimization to obtain low communication complexity.

6.3 The DSCOVR-SVRG Algorithm
From this section to Section 6.6, we present several realizations of DSCOVR using different
variance reduction techniques and acceleration schemes, and analyze their convergence proper-
ties. These algorithms are presented and analyzed as sequential randomized algorithms. We will
discuss how to implement them for asynchronous distributed computing in Section 6.7.

Algorithm 7 is a DSCOVR algorithm that uses the technique of SVRG [78] for variance
reduction. The iterations are divided into stages and each stage has a inner loop. Each stage is
initialized by a pair of vectors w̄(s) ∈ Rd and ᾱ(s) ∈ RN , which come from either initialization
(if s = 0) or the last iterate of the previous stage (if s > 0). At the beginning of each stage, we
compute the batch gradients

ū(s) =
∂

∂ᾱ(s)

(
(ᾱ(s))TXw̄(s)

)
= Xw̄(s), v̄(s) =

∂

∂w̄(s)

(
1

m
(ᾱ(s))TXw̄(s)

)
=

1

m
XT ᾱ(s).

The vectors ū(s) and v̄(s) share the same partitions as α(t) and w(t), respectively. Inside each
stage s, the variance-reduced stochastic gradients are computed in (6.3.1) and (6.3.2). It is easy
to check that they are unbiased. More specifically, taking expectation of u(t+1)

j with respect to
the random index l gives

El

[
u

(t+1)
j

]
= ū

(s)
j +

n∑
k=1

qk
1

qk
Xjk

(
w

(t)
k − w̄

(s)
k

)
= ū

(s)
j +Xj:w

(t) −Xj:w̄
(s) = Xj:w

(t),

and taking expectation of v(t+1)
l with respect to the random index j gives

Ej

[
v

(t+1)
l

]
= v̄

(s)
l +

m∑
i=1

pi
1

pi

1

m
(Xil)

T
(
α

(t)
i −ᾱ

(s)
i

)
= v̄

(s)
l +

1

m
(X:l)

T
(
α(t) − ᾱ(s)

)
=

1

m
(X:l)

Tα(t).

In order to measure the distance of any pair of primal and dual variables to the saddle point,
we define a weighted squared Euclidean norm on Rd+N . Specifically, for any pair (w, α) where
w ∈ Rd and α = [α1, . . . , αm] ∈ RN with αi ∈ RNi , we define

Ω(w, α) = λ‖w‖2 +
1

m

m∑
i=1

γi‖αi‖2. (6.3.3)

If γi = γ for all i = 1, . . . ,m, then Ω(w, α) = λ‖w‖2 + γ
m
‖α‖2. We have the following theorem

concerning the convergence rate of Algorithm 7.

87

Algorithm 7 DSCOVR-SVRG

Input: initial points w̄(0), ᾱ(0), number of stages S and number of iterations per stage M .
1: for s = 0, 1, 2, . . . , S − 1 do
2: ū(s) = Xw̄(s) and v̄(s) = 1

m
XT ᾱ(s)

3: w(0) = w̄(s) and α(0) = ᾱ(s)

4: for t = 0, 1, 2, . . . ,M − 1 do
5: pick j ∈ {1, . . . ,m} and l ∈ {1, . . . , n} randomly with distributions p and q respec-

tively.

6: compute variance-reduced stochastic gradients:

u
(t+1)
j = ū

(s)
j +

1

ql
Xjl

(
w

(t)
l − w̄

(s)
l

)
, (6.3.1)

v
(t+1)
l = v̄

(s)
l +

1

pj

1

m
(Xjl)

T
(
α

(t)
j − ᾱ

(s)
j

)
. (6.3.2)

7: update primal and dual block coordinates:

α
(t+1)
i =

{
proxσjf∗j

(
α

(t)
j + σju

(t+1)
j

)
if i = j,

α
(t)
i , if i 6= j,

w
(t+1)
k =

{
proxτlgl

(
w

(t)
l − τlv

(t+1)
l

)
if k = l,

w
(t)
k , if k 6= l.

8: end for

9: w̄(s+1) = w(M) and ᾱ(s+1) = α(M).
10: end for

Output: w̄(S) and ᾱ(S).

Theorem 6.3.1 Suppose Assumption 2 holds, and let (w?, α?) be the unique saddle point of
L(w, α). Let Γ be a constant that satisfies

Γ ≥ max
i,k

{
1

pi

(
1 +

9‖Xik‖2

2qkλγi

)
,

1

qk

(
1 +

9n‖Xik‖2

2mpiλγi

)}
. (6.3.4)

In Algorithm 7, if we choose the step sizes as

σi =
1

2γi(piΓ− 1)
, i = 1, . . . ,m, (6.3.5)

τk =
1

2λ(qkΓ− 1)
, k = 1, . . . , n, (6.3.6)

and the number of iterations during each stage satisfies M ≥ log(3)Γ, then for any s > 0,

E
[
Ω
(
w̄(s) − w?, ᾱ(s) − α?

)]
≤
(

2

3

)s
Ω
(
w̄(0) − w?, ᾱ(0) − α?

)
. (6.3.7)

88

The proof of Theorem 6.3.1 is given in Appendix B.1. Here we discuss how to choose the
parameter Γ to satisfy (6.3.4). For simplicity, we assume γi = γ for all i = 1, . . . ,m.
• If we let ‖X‖m×n = maxi,k{‖Xik‖} and sample with the uniform distribution across both

rows and columns, i.e., pi = 1/m for i = 1, . . . ,m and qk = 1/n for k = 1, . . . , n, then
we can set

Γ = max{m,n}
(

1 +
9n‖X‖2

m×n

2λγ

)
= max{m,n}

(
1 +

9

2
κrand

)
,

where κrand = n‖X‖2
m×n

/
(λγ) as defined in (6.2.12).

• An alternative condition for Γ to satisfy is (shown in Section B.1.1 in the Appendix)

Γ ≥ max
i,k

{
1

pi

(
1 +

9‖X:k‖2
F

2qkmλγi

)
,

1

qk

(
1 +

9‖Xi:‖2
F

2pimλγi

)}
. (6.3.8)

Again using uniform sampling, we can set

Γ = max{m,n}
(

1 +
9‖X‖2

max,F

2λγ

)
= max{m,n}

(
1 +

9

2
κ′rand

)
,

where ‖X‖max,F = maxi,k{‖Xi:‖F , ‖X:k‖F} and κ′rand = ‖X‖2
max,F

/
(λγ) as defined

in (6.2.13).
• Using the condition (6.3.8), if we choose the probabilities to be proportional to the squared

Frobenius norms of the data partitions, i.e.,

pi =
‖Xi:‖2

F

‖X‖2
F

, qk =
‖X:k‖2

F

‖X‖2
F

, (6.3.9)

then we can choose

Γ =
1

mini,k{pi, qk}

(
1 +

9‖X‖2
F

2mλγ

)
=

1

mini,k{pi, qk}

(
1 +

9

2
κ′′rand

)
,

where κ′′rand = ‖X‖2
F

/
(mλγ). Moreover, we can set the step sizes as (see Appendix B.1.1)

σi =
mλ

9‖X‖2
F

, τk =
mγi

9‖X‖2
F

.

• For the ERM problem (6.1.3), we assume that each loss function φj , for j = 1, . . . , N , is
1/ν-smooth. According to (6.1.4), the smooth parameter for each fi is γi = γ = (N/m)ν.
Let R be the largest Euclidean norm among all rows of X (or we can normalize each row
to have the same norm R), then we have ‖X‖2

F ≤ NR2 and

κ′′rand =
‖X‖2

F

mλγ
≤ NR2

mλγ
=
R2

λν
. (6.3.10)

The upper boundR2/(λν) is a condition number used for characterizing the iteration com-
plexity of many randomized algorithms for ERM [e.g., 39, 78, 91, 166, 220]. In this case,
using the non-uniform sampling in (6.3.9), we can set the step sizes to be

σi =
λ

9R2

m

N
, τk =

γ

9R2

m

N
=

ν

9R2
. (6.3.11)

89

Next we estimate the overall computation complexity of DSCOVR-SVRG in order to achieve
E
[
Ω(w̄(s)−w?, ᾱ(s)−α?)

]
≤ ε. From (6.3.7), the number of stages required is log

(
Ω(0)/ε

)/
log(3/2),

where Ω(0) = Ω(w̄(0) − w?, ᾱ(0) − α?). The number of inner iterations within each stage is
M = log(3)Γ. At the beginning of of each stage, computing the batch gradients ū(s) and v̄(s)

requires going through the whole data set X , whose computational cost is equivalent to m × n
inner iterations. Therefore, the overall complexity of Algorithm 7, measured by total number of
inner iterations, is

O

((
mn+ Γ

)
log

(
Ω(0)

ε

))
.

To simplify discussion, we further assume m ≤ n, which is always the case for distributed
implementation (see Figure 6.2 and Section 6.7). In this case, we can let Γ = n(1 + (9/2)κrand).
Thus the above iteration complexity becomes

O
(
n(1 +m+ κrand) log(1/ε)

)
. (6.3.12)

Since the iteration complexity in (6.3.12) counts the number of blocks Xik being processed, the
number of passes over the whole dataset X can be obtained by dividing it by mn, i.e.,

O
((

1 +
κrand

m

)
log(1/ε)

)
. (6.3.13)

This is the computation complexity of DSCOVR listed in Table 6.1. We can replace κrand by
κ′rand or κ′′rand depending on different proof techniques and sampling probabilities as discussed
above. We will address the communication complexity for DSCOVR-SVRG, including its de-
composition into synchronous and asynchronous ones, after describing its implementation details
in Section 6.7.

In addition to convergence to the saddle point, our next result shows that the primal-dual
optimality gap also enjoys the same convergence rate, under slightly different conditions.
Theorem 6.3.2 Suppose Assumption 2 holds, and let P (w) and D(α) be the primal and dual
functions defined in (6.2.2) and (6.2.3), respectively. Let Λ and Γ be two constants that satisfy

Λ ≥ ‖Xik‖2
F , i = 1, . . . ,m, k = 1, . . . , n,

and

Γ ≥ max
i,k

{
1

pi

(
1 +

18Λ

qkλγi

)
,

1

qk

(
1 +

18nΛ

pimλγi

)}
.

In Algorithm 7, if we choose the step sizes as

σi =
1

γi(piΓ− 1)
, i = 1, . . . ,m, (6.3.14)

τk =
1

λ(qkΓ− 1)
, k = 1, . . . , n, (6.3.15)

and the number of iterations during each stage satisfies M ≥ log(3)Γ, then

E
[
P (w̄(s))−D(ᾱ(s))

]
≤
(

2

3

)s
2Γ
(
P (w̄(0))−D(ᾱ(0))

)
. (6.3.16)

The proof of Theorem 6.3.2 is given in Appendix B.2. In terms of iteration complexity or
total number of passes to reach E

[
P (w̄(s)) − D(ᾱ(s))

]
≤ ε, we need to add an extra factor of

log(1 + κrand) to (6.3.12) or (6.3.13), due to the factor Γ on the right-hand side of (6.3.16).

90

Algorithm 8 DSCOVR-SAGA

Input: initial points w(0), α(0), and number of iterations M .

1: ū(0) = Xw(0) and v̄(0) = 1
m
XTα(0)

2: U
(0)
ik = Xikw

(0)
k , V (0)

ik = 1
m

(α
(0)
i)TXik, for all i = 1, . . . ,m and k = 1, . . . , K.

3: for t = 0, 1, 2, . . . ,M − 1 do
4: pick j ∈ {1, . . . ,m} and l ∈ {1, . . . , n} randomly with distributions p and q respectively.

5: compute variance-reduced stochastic gradients:

u
(t+1)
j = ū

(t)
j −

1

ql
U

(t)
jl +

1

ql
Xjlw

(t)
l , (6.4.1)

v
(t+1)
l = v̄

(t)
l −

1

pj
(V

(t)
jl)T +

1

pj

1

m
(Xjl)

Tα
(t)
j . (6.4.2)

6: update primal and dual block coordinates:

α
(t+1)
i =

{
proxσjΦ∗j

(
α

(t)
j + σju

(t+1)
j

)
if i = j.

α
(t)
i , if i 6= j,

w
(t+1)
k =

{
proxτlgl

(
w

(t)
l − τlv

(t+1)
l

)
if k = l,

w
(t)
k , if i 6= j.

7: update averaged stochastic gradients:

ū
(t+1)
i =

{
ū

(t)
j − U

(t)
jl +Xjlw

(t)
l if i = j,

ū
(t)
i if i 6= j,

v̄
(t+1)
k =

{
v̄

(t)
l − (V

(t)
jl)T + 1

m
(Xjl)

Tα
(t)
j if k = l,

v̄
(t)
k if k 6= l,

8: update the table of historical stochastic gradients:

U
(t+1)
ik =

{
Xjlw

(t)
l if i = j and k = l,

U
(t)
ik otherwise.

V
(t+1)
ik =

{
1
m

(
(Xjl)

Tα
(t)
j

)T if i = j and k = l,

V
(t)
ik otherwise.

9: end for

Output: w(M) and α(M).

6.4 The DSCOVR-SAGA Algorithm

Algorithm 8 is a DSCOVR algorithm that uses the techniques of SAGA [39] for variance re-
duction. This is a single stage algorithm with iterations indexed by t. In order to compute the

91

variance-reduced stochastic gradients u(t+1)
j and v(t+1)

l at each iteration, we also need to main-
tain and update two vectors ū(t) ∈ RN and v̄(t) ∈ Rd, and two matrices U (t) ∈ RN×n and
V (t) ∈ Rm×d. The vector ū(t) shares the same partition as α(t) into m blocks, and v̄(t) share the
same partitions as w(t) into n blocks. The matrix U (t) is partitioned into m×n blocks, with each
block U (t)

ik ∈ RNi×1. The matrix V (t) is also partitioned into m × n blocks, with each block
V

(t)
ik ∈ R1×dk . According to the updates in Steps 7 and 8 of Algorithm 8, we have

ū
(t)
i =

n∑
k=1

U
(t)
ik , i = 1, . . . ,m, (6.4.3)

v̄
(t)
k =

m∑
i=1

(
V

(t)
ik

)T
, k = 1, . . . , n. (6.4.4)

Based on the above constructions, we can show that u(t+1)
j is an unbiased stochastic gradient

of (α(t))TXw(t) with respect to αj , and v(t+1)
l is an unbiased stochastic gradient of (1/m)

(
(α(t))TXw(t)

)
with respect to wl. More specifically, according to (6.4.1), we have

El

[
u

(t+1)
j

]
= ū

(t)
j −

n∑
k=1

qk

(
1

qk
U

(t)
jk

)
+

n∑
k=1

qk

(
1

qk
Xjkw

(t)
k

)
= ū

(t)
j −

n∑
k=1

U
(t)
jk +

n∑
k=1

Xjkw
(t)
k

= ū
(t)
j − ū

(t)
j +Xj:w

(t)

= Xj:w
(t) =

∂

∂αj

((
α(t)
)T
Xw(t)

)
, (6.4.5)

where the third equality is due to (6.4.3). Similarly, according to (6.4.2), we have

Ej

[
v

(t+1)
l

]
= v̄

(t)
l −

m∑
i=1

pi

(
1

pi
(V

(t)
il)T

)
+

m∑
i=1

pi

(
1

pim
(Xil)

Tα
(t)
i

)
= v̄

(t)
l −

m∑
i=1

V
(t)
il +

1

m

m∑
i=1

(Xil)
Tα

(t)
i

= v̄
(t)
l − v̄

(t)
l +

1

m
(X:l)

Tα(t)

=
1

m
(X:l)

Tα(t) =
∂

∂wl

(
1

m

(
α(t)
)T
Xw(t)

)
, (6.4.6)

where the third equality is due to (6.4.4).
Regarding the convergence of DSCOVR-SAGA, we have the following theorem, which is

proved in Appendix B.3.
Theorem 6.4.1 Suppose Assumption 2 holds, and let (w?, α?) be the unique saddle point of
L(w, α). Let Γ be a constant that satisfies

Γ ≥ max
i,k

{
1

pi

(
1 +

9‖Xik‖2

2qkλγi

)
,

1

qk

(
1 +

9n‖Xik‖2

2pimλγi

)
,

1

piqk

}
. (6.4.7)

92

If we choose the step sizes as

σi =
1

2γi(piΓ− 1)
, i = 1, . . . ,m, (6.4.8)

τk =
1

2λ(qkΓ− 1)
, k = 1, . . . , n, (6.4.9)

Then the iterations of Algorithm 8 satisfy, for t = 1, 2, . . .,

E
[
Ω
(
w(t) − w?, α(t) − α?

)]
≤
(

1− 1

3Γ

)t
4

3
Ω
(
w(0) − w?, α(0) − α?

)
. (6.4.10)

The condition on Γ in (6.4.7) is very similar to the one in (6.3.4), except that here we have an
additional term 1/(piqk) when taking the maximum over i and k. This results in an extramn term
in estimating Γ under uniform sampling. Assumingm ≤ n (true for distributed implementation),
we can let

Γ = n

(
1 +

9

2
κrand

)
+mn.

According to (6.4.10), in order to achieve E
[
Ω(w(t) − w?, α(t) − α?)

]
≤ ε, DSCOVR-SAGA

needs O (Γ log(1/ε)) iterations. Using the above expression for Γ, the iteration complexity is

O
(
n(1 +m+ κrand) log(1/ε)

)
, (6.4.11)

which is the same as (6.3.12) for DSCOVR-SVRG. This also leads to the same computational
complexity measured by the number of passes over the whole dataset, which is given in (6.3.13).
Again we can replace κrand by κ′rand or κ′′rand as discussed in Section 6.3. We will discuss the
communication complexity of DSCOVR-SAGA in Section 6.7, after describing its implementa-
tion details.

6.5 Accelerated DSCOVR Algorithms
In this section, we develop an accelerated DSCOVR algorithm by following the “catalyst” frame-
work [51, 101]. More specifically, we adopt the same procedure by Balamurugan and Bach [12]
for solving convex-concave saddle-point problems.

Algorithm 9 proceeds in rounds indexed by r = 0, 1, 2, Given the initial points w̃(0) ∈ Rd

and α̃(0) ∈ RN , each round r computes two new vectors w̃(r+1) and α̃(r+1) using either the
DSCOVR-SVRG or DSCOVR-SAGA algorithm for solving a regulated saddle-point problem,
similar to the classical proximal point algorithm [156].

Let δ > 0 be a parameter which we will determine later. Consider the following perturbed
saddle-point function for round r:

L
(r)
δ (w, a) = L(w, α) +

δλ

2
‖w − w̃(r)‖2 − δ

2m

m∑
i=1

γi‖αi − α̃(r)
i ‖2. (6.5.1)

93

Algorithm 9 Accelerated DSCOVR

Input: initial points w̃(0), α̃(0), and parameter δ > 0.
1: for r = 0, 1, 2, . . . , do
2: find an approximate saddle point of (6.5.1) using one of the following two options:

• option 1: run Algorithm 7 with S = 2 log(2(1+δ))
log(3/2)

and M = log(3)Γδ to obtain

(w̃(r+1), α̃(r+1)) = DSCOVR-SVRG(w̃(r), α̃(r), S,M).

• option 2: run Algorithm 8 with M = 6 log
(

8(1+δ)
3

)
Γδ to obtain

(w̃(r+1), α̃(r+1)) = DSCOVR-SAGA(w̃(r), α̃(r),M).

3: end for

Under Assumption 2, the function L(r)
δ (w, a) is (1 + δ)λ-strongly convex in w and (1 + δ)γi/m-

strongly concave in αi. Let Γδ be a constant that satisfies

Γδ ≥ max
i,k

{
1

pi

(
1 +

9‖Xik‖2

2qkλγi(1 + δ)2

)
,

1

qk

(
1 +

9n‖Xik‖2

2pimλγi(1 + δ)2

)
,

1

piqk

}
,

where the right-hand side is obtained from (6.4.7) by replacing λ and γi with (1 + δ)λ and
(1 + δ)γi respectively. The constant Γδ is used in Algorithm 9 to determine the number of inner
iterations to run with each round, as well as for setting the step sizes. The following theorem is
proved in Appendix B.4.

Theorem 6.5.1 Suppose Assumption 2 holds, and let (w?, α?) be the saddle-point of L(w, α).
With either options in Algorithm 9, if we choose the step sizes (inside Algorithm 7 or Algorithm 8)
as

σi =
1

2(1 + δ)γi(piΓδ − 1)
, i = 1, . . . ,m, (6.5.2)

τk =
1

2(1 + δ)λ(qkΓδ − 1)
, k = 1, . . . , n. (6.5.3)

Then for all r ≥ 1,

E
[
Ω
(
w̃(r) − w?, α̃(r) − α?

)]
≤
(

1− 1

2(1 + δ)

)2r

Ω
(
w̃(0) − w?, α̃(0) − α?

)
.

According to Theorem 6.5.1, in order to have E
[
Ω
(
w̃(r) − w?, α̃(r) − α?

)]
≤ ε, we need the

number of rounds r to satisfy

r ≥ (1 + δ) log

(
Ω
(
w̃(0) − w?, α̃(0) − α?

)
ε

)
.

94

Following the discussions in Sections 6.3 and 6.4, when using uniform sampling and assuming
m ≤ n, we can have

Γδ = n

(
1 +

9κrand

2(1 + δ)2

)
+mn. (6.5.4)

Then the total number of block coordinate updates in Algorithm 9 is

O
(
(1 + δ)Γδ log(1 + δ) log(1/ε)

)
,

where the log(1+δ) factor comes from the number of stages S in option 1 and number of stepsM
in option 2. We hide the log(1+δ) factor with the Õ notation and plug (6.5.4) into the expression
above to obtain

Õ

(
n

(
(1 + δ)(1 +m) +

κrand

(1 + δ)

)
log

(
1

ε

))
.

Now we can choose δ depending on the relative size of κrand and m:
• If κrand > 1 + m, we can minimizing the above expression by choosing δ =

√
κrand

1+m
− 1,

so that the overall iteration complexity becomes Õ
(
n
√
mκrand log(1/ε)

)
.

• If κrand ≤ m + 1, then no acceleration is necessary and we can choose δ = 0 to proceed
with a single round. In this case, the iteration complexity is O(mn) as seen from (6.5.4).

Therefore, in either case, the total number of block iterations by Algorithm 9 can be written as

Õ (mn+ n
√
mκrand log(1/ε)) . (6.5.5)

As discussed before, the total number of passes over the whole dataset is obtained by dividing
by mn:

Õ
(

1 +
√
κrand/m log(1/ε)

)
.

This is the computational complexity of accelerated DSCOVR listed in Table 6.1.

6.5.1 Proximal Mapping for Accelerated DSCOVR
When applying Algorithm 7 or 8 to approximate the saddle-point of (6.5.1), we need to replace
the proximal mappings of gk(·) and f ∗i (·) by those of gk(·) + (δλ/2)‖ · −w̃(r)

k ‖2 and f ∗i (·) +

(δγi/2)‖ · −α̃(r)
i ‖2, respectively. More precisely, we replace w(t+1)

k = proxτkgk
(
w

(t)
k − τkv

(t+1)
k

)
by

w
(t+1)
k = argmin

wk∈Rdk

{
gk(wk) +

δλ

2

∥∥wk − w̃(r)
k

∥∥2
+

1

2τk

∥∥∥wk − (w(t)
k − τkv

(t+1)
k

)∥∥∥2
}

= prox τk
1+τkδλ

gk

(
1

1 + τkδλ

(
w

(t)
k − τkv

(t+1)
k

)
+

τkδλ

1 + τkδλ
w̃

(r)
k

)
, (6.5.6)

and replace α(t+1)
i = proxσif∗i

(
α

(t)
i + σiu

(t+1)
i

)
by

α
(t+1)
i = argmin

αi∈RNi

{
f ∗i (αi) +

δγi
2

∥∥αi − α̃(r)
i

∥∥2
+

1

2σi

∥∥∥αi − (α(t)
i + σiu

(t+1)
i

)∥∥∥2
}

= prox σi
1+σiδγi

f∗i

(
1

1 + σiδγi

(
α

(t)
i + σiu

(t+1)
i

)
+

σiδγi
1 + σiδγi

α̃
(r)
i

)
. (6.5.7)

95

We also examine the number of inner iterations determined by Γδ and how to set the step
sizes. If we choose δ =

√
κrand

1+m
− 1, then Γδ in (6.5.4) becomes

Γδ = n

(
1 +

9κrand

2(1 + δ)2

)
+mn = n

(
1 +

9κrand

2κrand/(m+ 1)

)
+mn = 5.5(m+ 1)n.

Therefore a small constant number of passes is sufficient within each round. Using the uniform
sampling, the step sizes can be estimated as follows:

σi =
1

2(1 + δ)γi(piΓδ − 1)
≈ 1

2
√
κrand/mγi(5.5n− 1)

≈ 1

11γin
√
κrand/m

, (6.5.8)

τk =
1

2(1 + δ)λ(qkΓδ − 1)
≈ 1

2
√
κrand/mλ(5.5m− 1)

≈ 1

11λ
√
m · κrand

. (6.5.9)

As shown by our numerical experiments in Section 6.8, the step sizes can be set much larger in
practice.

6.6 Conjugate-Free DSCOVR Algorithms
A major disadvantage of primal-dual algorithms for solving problem (6.1.1) is the requirement
of computing the proximal mapping of the conjugate function f ∗i , which may not admit closed-
formed solution or efficient computation. This is especially the case for logistic regression, one
of the most popular loss functions used in classification.

Lan and Zhou [89] developed “conjugate-free” variants of primal-dual algorithms that avoid
computing the proximal mapping of the conjugate functions. The main idea is to replace the
Euclidean distance in the dual proximal mapping with a Bregman divergence defined over the
conjugate function itself. This technique has been used by Wang and Xiao [185] to solve struc-
tured ERM problems with primal-dual first order methods. Here we use this approach to derive
conjugate-free DSCOVR algorithms. In particular, we replace the proximal mapping for the dual
update

α
(t+1)
i = proxσif∗i

(
α

(t)
i + σiu

(t+1)
i

)
= argmin

αi∈Rni

{
f ∗i (αi)−

〈
αi, u

(t+1)
i

〉
+

1

2σi

∥∥αi − α(t)
i

∥∥2
}
,

by

α
(t+1)
i = argmin

αi∈Rni

{
f ∗i (αi)−

〈
αi, u

(t+1)
i

〉
+

1

σi
Bi
(
αi, α

(t)
i

)}
, (6.6.1)

where Bi(αi, α(t)
i) = f ∗i (αi)−

〈
∇f ∗i (α

(t)
i), αi − α(t)

i

〉
. The solution to (6.6.1) is given by

α
(t+1)
i = ∇fi

(
β

(t+1)
i

)
,

where β(t+1)
i can be computed recursively by

β
(t+1)
i =

β
(t)
i + σiu

(t+1)
i

1 + σi
, t ≥ 0,

96

with initial condition β(0)
i = ∇f ∗i (α

(0)
i) [see 89, Lemma 1]. Therefore, in order to update the

dual variables αi, we do not need to compute the proximal mapping for the conjugate function
f ∗i ; instead, taking the gradient of fi at some easy-to-compute points is sufficient. This conjugate-
free update can be applied in Algorithms 6, 7 and 8.

For the accelerated DSCOVR algorithms, we repalce (6.5.7) by

α
(t+1)
i = argmin

αi∈Rni

{
f ∗i (αi)−

〈
αi, u

(t+1)
i

〉
+

1

σi
Bi
(
αi, α

(t)
i

)
+ δγBi

(
αi, α̃

(t+1)
i

)}
.

The solution to the above minimization problem can also be written as

α
(t+1)
i = ∇fi

(
β

(t+1)
i

)
,

where β(t+1)
i can be computed recursively as

β
(t+1)
i =

β
(t)
t + σiu

(t+1)
i + σiδγβ̃i

1 + σi + σiδγ
, t ≥ 0,

with the initialization β(0)
i = ∇f ∗i

(
α

(0)
i

)
and β̃i = ∇f ∗i

(
α̃

(r)
i

)
.

The convergence rates and computational complexities of the conjugate-free DSCOVR algo-
rithms are very similar to the ones given in Sections 6.3–6.5. We omit details here, but refer the
readers to Lan and Zhou [89] and Wang and Xiao [185] for related results.

6.7 Asynchronous Distributed Implementation
In this section, we show how to implement the DSCOVR algorithms presented in Sections 6.3–
6.6 in a distributed computing system. We assume that the system provide both synchronous
collective communication and asynchronous point-to-point communication, which are all sup-
ported by the MPI standard [122]. Throughout this section, we assume m < n (see Figure 6.2).

6.7.1 Implementation of DSCOVR-SVRG
In order to implement Algorithm 7, the distributed system need to have the following components
(see Figure 6.3):
• m workers. Each worker i, for i = 1, . . . ,m, stores the following local data and variables :

data matrix Xi: ∈ RNi×d.

vectors in RNi: ū(s)
i , α(t)

i , ᾱ(s)
i .

vectors in Rd: w̄(s), v̄(s).

extra buffers for computation and communication: u(t+1)
j , v(t+1)

l , w(t)
l and w(t+1)

l .

• h parameter servers. Each server j stores a subset of the blocks
{
w

(t)
k ∈ Rdk : k ∈ Sj

}
,

where S1, . . . ,Sh form a partition of the set {1, . . . , n}.
• one scheduler. It maintains a set of block indices Sfree ⊆ {1, . . . , n}. At any given time,
Sfree contains indices of parameter blocks that are not currently updated by any worker.

97

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
��
��
��
��

���������� ������������

scheduler

server 1 server j server h

worker 1 worker i worker m

1

1

2

2

33

w̄
(s)

• resets Sfree = {1, . . . , n}

• sends “sync” message to

all servers and workers at

beginning of each stage

w
(t)

k
, k ∈S1 w

(t)

k
, k ∈Sj w

(t)

k
, k ∈Sh

X1:, ū
(s)

1

ᾱ
(s)

1
, α

(t)

1

w̄
(s), v̄(s)

Xi:, ū
(s)

i

ᾱ
(s)

i
, α

(t)

i

w̄
(s), v̄(s)

Xm:, ū
(s)
m

ᾱ
(s)
m , α

(t)
m

w̄
(s), v̄(s)

Figure 6.3: A distributed system for implementing DSCOVR consists ofmworkers, h parameter
servers, and one scheduler. The arrows labeled with the numbers 1, 2 and 3 represent three
collective communications at the beginning of each stage in DSCOVR-SVRG.

The reason for having h > 1 servers is not about insufficient storage for parameters, but rather
to avoid the communication overload between only one server and all m workers (m can be in
hundreds).

At the beginning of each stage s, the following three collective communications take place
across the system (illustrated in Figure 6.3 by arrows with circled labels 1, 2 and 3):

(1) The scheduler sends a “sync” message to all servers and workers, and resets Sfree =
{1, . . . , n}.

(2) Upon receiving the “sync” message, the servers aggregate their blocks of parameters to-
gether to form w̄(s) and send it to all workers (e.g., through the AllReduce operation in
MPI).

(3) Upon receiving w̄(s), each worker compute ū(s)
i = Xi:w̄

(s) and (Xi:)
T ᾱ

(s)
i , then invoke a

collective communication (AllReduce) to compute v̄(s) = (1/m)
∑m

i=1(Xi:)
T ᾱ

(s)
i .

The number of vectors in Rd sent and received during the above process is 2m, counting the
communications to form w̄(s) and v̄(s) at m workers (ignoring the short “sync” messages).

After the collective communications at the beginning of each stage, all workers start working
on the inner iterations of Algorithm 7 in parallel in an asynchronous, event-driven manner. Each
worker interacts with the scheduler and the servers in a four-step loop shown in Figure 6.4. There

98

are always m iterations taking place concurrently (see also Figure 6.2), each may at a different
phase of the four-step loop:

(1) Whenever worker i finishes updating a block k′, it sends the pair (i, k′) to the scheduler to
request for another block to update. At the beginning of each stage, k′ is not needed.

(2) When the scheduler receives the pair (i, k′), it randomly choose a block k from the list of
free blocks Sfree (which are not currently updated by any worker), looks up for the server j
which stores the parameter blockw(t)

k (i.e., Sj 3 k), and then send the pair (i, k) to server j.
In addition, the scheduler updates the list Sfree by adding k′ and deleting k.

(3) When server j receives the pair (i, k), it sends the vector w(t)
k to worker i, and waits for

receiving the updated version w(t+1)
k from worker i.

(4) After worker i receives w(t)
k , it computes the updates α(t)

i and w(t)
k following steps 6-7 in

Algorithm 7, and then send w(t+1)
k back to server j. At last, it assigns the value of k to k′

and send the pair (i, k′) to the scheduler, requesting the next block to work on.
The amount of point-to-point communication required during the above process is 2dk float num-
bers, for sending and receiving w(t)

k and w(t+1)
k (we ignore the small messages for sending and re-

ceiving (i, k′) and (i, k)). Since the blocks are picked randomly, the average amount of communi-
cation per iteration is 2d/n, or equivalent to 2/n vectors in Rd. According to Theorem 6.3.1, each
stage of Algorithm 7 requires log(3)Γ inner iterations; In addition, the discussions above (6.3.12)
show that we can take Γ = n(1 + (9/2)κrand). Therefore, the average amount of point-to-point
communication within each stage is O(κrand) vectors in Rd.

Now we are ready to quantify the communication complexity of DSCOVR-SVRG to find an
ε-optimal solution. Our discussions above show that each stage requires collective communica-
tion of 2m vectors in Rd and asynchronous point-to-point communication of equivalently κrand

such vectors. Since there are total O(log(1/ε)) stages, the total communication complexity is

O ((m+ κrand) log(1/ε)) .

This gives the communication complexity shown in Table 6.1, as well as its decomposition in
Table 6.2.

6.7.2 Implementation of DSCOVR-SAGA
We can implement Algorithm 8 using the same distributed system shown in Figure 6.3, but with
some modifications described below. First, the storage at different components are different:
• m workers. Each worker i, for i = 1, . . . ,m, stores the following data and variables:

data matrix Xi: ∈ RNi×d

vectors in RNi: α(t)
i , u(t)

i , ū(t)
i , and U (t)

ik for k = 1, . . . , n.

vector in Rd: V (t)
i: =

[
V

(t)
i1 · · ·V

(t)
in

]T (which is the ith row of V (t), with V
(t)
ik ∈

R1×dk).
buffers for communication and update of w(t)

k and v̄(t)
k (both stored at some server).

• h servers. Each server j stores a subset of blocks
{
w

(t)
k , v̄

(t)
k ∈ Rdk : k ∈ Sj

}
, for

j = 1, . . . , n.

99

...

...
scheduler

server j

worker i

worker 1 worker m

S1 Sh

(i, k ′)

(i, k)

w
(t)

k
(, v̄
(t)

k
) w

(t+1)

k
(, v̄
(t+1)

k
)

1

2

3 4

• randomly pick k ∈ Sfree

• find server j storing block k

• send pair (i, k) to server j

• Sfree ←
(

Sfree ∪ {k
′}
)

\ {k}

• receive w
(t)

k
(and v̄

(t)

k
)

• compute α
(t+1)

i
,w
(t+1)

k
(, v̄
(t+1)

k
)

as in Algorithm 2 (or 3)

• send w
(t+1)

k
(, v
(t+1)

k
) to server j

• send k ′← k to scheduler

• receive pair (i, k)

• send w
(t)

k
(and v̄

(t)

k
)

to worker i

• wait to receive

w
(t+1)

k
(and v̄

(t+1)

k
)

Figure 6.4: Communication and computation processes for one inner iteration of DSCOVR-
SVRG (Algorithm 7). The blue texts in the parentheses are the additional vectors required by
DSCOVR-SAGA (Algorithm 8). There are always m iterations taking place in parallel asyn-
chronously, each evolving around one worker. A server may support multiple (or zero) iterations
if more than one (or none) of its stored parameter blocks are being updated.

• one scheduler. It maintains the set of indices Sfree ⊆ {1, . . . , n}, same as in DSCOVR-
SVRG.

Unlike DSCOVR-SVRG, there is no stage-wise “sync” messages. All workers and servers work
in parallel asynchronously all the time, following the four-step loops illustrated in Figure 6.4
(including blue colored texts in the parentheses). Within each iteration, the main difference from
DSCOVR-SVRG is that, the server and worker need to exchange two vectors of length dk: w(t)

k

and v(t)
k and their updates. This doubles the amount of point-to-point communication, and the

average amount of communication per iteration is 4/n vectors of length d. Using the iteration
complexity in (6.4.11), the total amount of communication required (measured by number of
vectors of length d) is

O ((m+ κrand) log(1/ε)) ,

which is the same as for DSCOVR-SVRG. However, its decomposition into synchronous and
asynchronous communication is different, as shown in Table 6.2. If the initial vectors w(0) 6= 0
or α(0) 6= 0, then one round of collective communication is required to propagate the initial
conditions to all servers and workers, which reflect the O(m) synchronous communication in

100

CPU #cores RAM network operating system
dual Intel R© Xeon R© processors 16 128 GB 10 Gbps Windows R© Server

E5-2650 (v2), 2.6 GHz 1.8 GHz Ethernet adapter (version 2012)

Table 6.3: Configuration of each machine in the distributed computing system.

Table 6.2.

6.7.3 Implementation of Accelerated DSCOVR

Implementation of the accelerated DSCOVR algorithm is very similar to the non-accelerated
ones. The main differences lie in the two proximal mappings presented in Section 6.5.1. In
particular, the primal update in (6.5.6) needs the extra variable w̃(r)

k , which should be stored at
a parameter server together with w(t)

k . We modify the four-step loops shown in Figures 6.4 as
follows:
• Each parameter server j stores the extra block parameters

{
w̃

(r)
k , k ∈ Sj

}
. During step (3),

w̃
(r)
k is send together with w(t)

k (for SVRG) or (w
(t)
k , v

(t)
k) (for SAGA) to a worker.

• In step (4), no update of w̃(r)
k is sent back to the server. Instead, whenever switching rounds,

the scheduler will inform each server to update their w̃(r)
k to the most recent w(t)

k .
For the dual proximal mapping in (6.5.7), each worker i needs to store an extra vector α̃(r)

i , and
reset it to the most recent α(t)

i when moving to the next round. There is no need for additional
synchronization or collective communication when switching rounds in Algorithm 9. The com-
munication complexity (measured by the number of vectors of length d sent or received) can be
obtained by dividing the iteration complexity in (6.5.5) by n, i.e., O

(
(m+

√
mκrand) log(1/ε)

)
,

as shown in Table 6.1.
Finally, in order to implement the conjugate-free DSCOVR algorithms described in Sec-

tion 6.6, each worker i simply need to maintain and update an extra vector β(t)
i locally.

6.8 Experiments
In this section, we present numerical experiments on an industrial distributed computing system.
This system has hundreds of computers connected by high speed Ethernet in a data center. The
hardware and software configurations for each machine are listed in Table 6.3. We implemented
all DSCOVR algorithms presented in this paper, including the SVRG and SAGA versions, their
accelerated variants, as well as the conjugate-free algorithms. All implementations are written in
C++, using MPI for both collective and point-to-point communications (see Figures 6.3 and 6.4
respectively). On each worker machine, we also use OpenMP [135] to exploit the multi-core ar-
chitecture for parallel computing, including sparse matrix-vector multiplications and vectorized
function evaluations.

Implementing the DSCOVR algorithms requires m + h + 1 machines, among them m are
workers with local datasets, h are parameter servers, and one is a scheduler (see Figure 6.3). We

101

Dataset #instances (N) #features (d) #nonzeros
rcv1-train 677,399 47,236 49,556,258
webspam 350,000 16,609,143 1,304,697,446
splice-site 50,000,000 11,725,480 166,167,381,622

Table 6.4: Statistics of three datasets. Each feature vector is normalized to have unit norm.

focus on solving the ERM problem (6.1.3), where the total of N training examples are evenly
partitioned and stored at m workers. We partition the d-dimensional parameters into n subsets
of roughly the same size (differ at most by one), where each subset consists of randomly chosen
coordinates (without replacement). Then we store the n subsets of parameters on h servers, each
getting either bn/hc or dn/he subsets. As described in Section 6.7, we make the configurations
to satisfy n > m > h ≥ 1.

For DSCOVR-SVRG and DSCOVR-SAGA, the step sizes in (6.3.11) are very conservative.
In the experiments, we replace the coefficient 1/9 by two tuning parameter ηd and ηp for the dual
and primal step sizes respectively, i.e.,

σi = ηd
λ

R2
· m
N
, τk = ηp

ν

R2
. (6.8.1)

For the accelerated DSCOVR algorithms, we use κrand = R2/(λν) as shown in (6.3.10) for
ERM. Then the step sizes in (6.5.8) and (6.5.9), with γi = (m/N)ν and a generic constant
coefficient η, become

σi =
ηd

nR

√
mλ

ν
· m
N
, τk =

ηp

R

√
ν

mλ
. (6.8.2)

For comparison, we also implemented the following first-order methods for solving problem 6.1.1:
• PGD: parallel implementation of the Proximal Gradient Descent method (using synchronous

collective communication over m machines). We use the adaptive line search procedure
proposed in Nesterov [131], and the exact form used is Algorithm 2 in Lin and Xiao [102].

• APG: parallel implementation of the Accelerated Proximal Gradient method [128, 131].
We use a similar adaptive line search scheme to the one for PGD, and the exact form used
(with strong convexity) is Algorithm 4 in Lin and Xiao [102].

• ADMM: the Alternating Direction Method of Multipliers. We use the regularized consen-
sus version in Boyd et al. [17, Section 7.1.1]. For solving the local optimization problems
at each node, we use the SDCA method [166].

• CoCoA+: the adding version of CoCoA in Ma et al. [109]. Following the suggestion in Ma
et al. [110], we use a randomized coordinate descent algorithm [129, 152] for solving the
local optimization problems.

These four algorithms all requiremworkers only. Specifically, we use the AllReduce call in MPI
for the collective communications so that a separate master machine is not necessary.

We conducted experiments on three binary classification datasets obtained from the collection
maintained by Fan and Lin [49]. Table 6.4 lists their sizes and dimensions. In our experiments,
we used two configurations: one with m = 20 and h = 10 for two relatively small datasets,

102

rcv1-train and webspam, and the other with m = 100 and h = 20 for the large dataset
splice-site.

For rcv1-train, we solve the ERM problem (6.1.3) with a smoothed hinge loss defined
as

φj(t) =


0 if yjt ≥ 1,
1
2
− yjt if yjt ≤ 0,

1
2
(1− yjt)2 otherwise,

and φ∗j(β) =

{
yjβ + 1

2
β2 if − 1 ≤ yjβ ≤ 0,

+∞ otherwise.

for j = 1, . . . , N . This loss function is 1-smooth, therefore ν = 1; see discussion above (6.3.10).
We use the `2 regularization g(w) = (λ/2)‖w‖2. Figures 6.5 and 6.6 show the reduction of
the primal objective gap P (w(t))−P (w?) by different algorithms, with regularization parameter
λ = 10−4 and λ = 10−6 respectively. All started from the zero initial point. Here the N
examples are randomly shuffled and then divided into m subsets. The labels SVRG and SAGA
mean DSCOVR-SVRG and DSCOVR-SAGA, respectively, and A-SVRG and A-SAGA are their
accelerated versions.

Since PGD and APG both use adaptive line search, there is no parameter to tune. For ADMM,
we manually tuned the penalty parameter ρ [see 17, Section 7.1.1] to obtain good performance:
ρ = 10−5 in Figure 6.5 and ρ = 10−6 in Figure 6.6. For CoCoA+, two passes over the local
datasets using a randomized coordinate descent method are sufficient for solving the local op-
timization problem (more passes do not give meaningful improvement). For DSCOVR-SVRG
and SAGA, we used ηp = ηd = 20 to set the step sizes in (6.8.1). For DSCOVR-SVRG,
each stage goes through the whole dataset 10 times, i.e., the number of inner iterations in Al-
gorithm 7 is M = 10mn. For the accelerated DSCOVR algorithms, better performance are
obtained with small periods to update the proximal points and we set it to be every 0.2 passes
over the dataset, i.e., 0.2mn inner iterations. For accelerated DSCOVR-SVRG, we set the stage
period (for variance reduction) to be M = mn, which is actually longer than the period for
updating the proximal points.

From Figures 6.5 and 6.6, we observe that the two distributed algorithms based on model
averaging, ADMM and CoCoA+, converges relatively fast in the beginning but becomes very
slow in the later stage. Other algorithms demonstrate more consistent linear convergence rates.
For λ = 10−4, the DSCOVR algorithms are very competitive compared with other algorithms.
For λ = 10−6, the non-accelerated DSCOVR algorithms become very slow, even after tuning
the step sizes. But the accelerated DSCOVR algorithms are superior in terms of both number of
passes over data and wall-clock time (with adjusted step size coefficient ηp = 10 and ηd = 40).

For ADMM and CoCoA+, each marker represents the finishing of one iteration. It can be
seen that they are mostly evenly spaced in terms of number of passes over data, but have large
variations in terms of wall-clock time. The variations in time per iteration are due to resource
sharing with other jobs running simultaneously on the distributed computing cluster. Even if we
have exclusive use of each machine, sharing communications with other jobs over the Ethernet
is unavoidable. This reflects the more realistic environment in cloud computing.

For the webspam dataset, we solve the ERM problem with logistic loss φj(t) = log(1 +
exp(−yjt)) where yj ∈ {±1}. The logistic loss is 1/4-smooth, so we have ν = 4. Since
the proximal mapping of its conjugate φ∗j does not have a closed-form solution, we used the

103

0 20 40 60 80 100 120 140
number of passes over data

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

0 1 2 3 4 5
time (seconds)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

Figure 6.5: rcv1-train: smoothed-hinge loss, λ= 10−4, randomly shuffled, m= 20, n= 37,
h=10.

0 50 100 150 200 250 300
number of passes over data

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

0 2 4 6 8 10
time (seconds)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

Figure 6.6: rcv1-train: smoothed-hinge loss, λ= 10−6, randomly shuffled, m= 20, n= 37,
h=10.

conjugate-free DSCOVR algorithms described in Section 6.6. Figures 6.7 and 6.8 shows the re-
duction of primal objective gap by different algorithms, for λ = 10−4 and λ = 10−6 respectively.
Here the starting point is no longer the all-zero vectors. Instead, each machine i first computes a
local solution by minimizing fi(Xiw) + g(w), and then compute their average using an AllRe-
duce operation. Each algorithm starts from this average point. This averaging scheme has been
proven to be very effective to warm start distributed algorithms for ERM [221]. In addition, it
can be shown that when starting from the zero initial point, the first step of CoCoA+ computes
exactly such an averaged point.

From Figures 6.7 and 6.8, we again observe that CoCoA+ has very fast convergence in the
beginning but converges very slowly towards higher precision. The DSCOVR algorithms, es-
pecially the accelerated variants, are very competitive in terms of both number of iterations and
wall-clock time.

104

0 50 100 150 200
number of passes over data

10-10

10-9

10-8

10-7

10-6

10-5

10-4

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

0 50 100 150 200
time (seconds)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

Figure 6.7: webspam: logistic regression, λ = 10−4, randomly shuffled, m = 20, n = 50,
h = 10.

0 100 200 300 400 500 600 700 800
number of passes over data

10-8

10-7

10-6

10-5

10-4

10-3

10-2

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

0 200 400 600 800 1000 1200 1400
time (seconds)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

Figure 6.8: webspam: logistic regression, λ = 10−6, randomly shuffled, m = 20, n = 50,
h = 10.

In order to investigate the fast initial convergence of CoCoA+ and ADMM, we repeated
the experiments on webspam without random shuffling. More specifically, we sorted the N
examples by their labels, and then partitioned them into m subsets sequentially. That is, most
of the machines have data with only +1 or −1 labels, and only one machine has mixed ±1
examples. The results are shown in Figures 6.9 and 6.10. Now the fast initial convergence of
CoCoA+ and ADMM disappeared. In particular, CoCoA+ converges with very slow linear rate.
This shows that statistical properties of random shuffling of the dataset is the main reason for the
fast initial convergence of model-averaging based algorithms such as CoCoA+ and ADMM [see,
e.g., 221].

On the other hand, this should not have any impact on PGD and APG, because their iterations
are computed over the whole dataset, which is the same regardless of random shuffling or sorting.
The differences between the plots for PGD and APG in Figures 6.7 and 6.9 (also for Figures 6.8
and 6.10) are due to different initial points computed through averaging local solutions, which
does depends on the distribution of data at different machines.

105

0 50 100 150 200 250 300 350 400
number of passes over data

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

0 100 200 300 400 500 600 700 800
time (seconds)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

Figure 6.9: webspam: logistic regression, λ = 10−4, sorted labels, m = 20, n = 50, h = 10.

0 100 200 300 400 500 600 700 800
number of passes over data

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

0 200 400 600 800 1000 1200 1400
time (seconds)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

Figure 6.10: webspam: logistic regression, λ = 10−6, sorted labels, m = 20, n = 50, h = 10.

Different ways for splitting the data over the m workers also affect the DSCOVR algorithms.
In particular, the non-accelerated DSCOVR algorithms become very slow, as shown in Fig-
ures 6.9 and 6.10. However, the accelerated DSCOVR algorithms are still very competitive
against the adaptive APG. The accelerated DSCOVR-SAGA algorithm performs best. In fact,
the time spent by accelerated DSCOVR-SAGA should be even less than shown in Figures 6.9
and 6.10. Recall that other than the initialization with non-zero starting point, DSCOVR-SAGA
is completely asynchronous and does not need any collective communication (see Section 6.7.2).
However, in order to record the objective function for the purpose of plotting its progress, we
added collective communication and computation to evaluate the objective value for every 10
passes over the data. For example, in Figure 6.10, such extra collective communications take
about 160 seconds (about 15% of total time) for accelerated DSCOVR-SAGA, which can be
further deducted from the horizontal time axis.

Finally, we conducted experiments on the splice-site dataset with 100 workers and 20
parameter servers. The results are shown in Figure 6.11. Here the dataset is again randomly
shuffled and evenly distributed to the workers. The relative performance of different algorithms
are similar to those for the other datasets.

106

0 50 100 150 200 250 300 350 400
number of passes over data

10-10

10-9

10-8

10-7

10-6

10-5

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

Figure 6.11: splice-site: logistic loss, λ = 10−6. randomly shuffled, m = 100, n = 150,
h = 20.

6.9 Discussion

We proposed a class of DSCOVR algorithms for asynchronous distributed optimization of large
linear models with convex loss functions. They avoid dealing with delays and stale updates in an
asynchronous, event-driven environment by exploiting simultaneous data and model parallelism.
Compared with other first-order distributed algorithms, DSCOVR may require less amount of
overall communication and computation, and especially much less or no synchronization. These
conclusions are well supported by our computational experiments on a distributed computing
cluster.

We note that there is still some gap between theory and practice. In our theoretical analysis,
we assume that the primal and dual block indices in different iterations of DSCOVR are i.i.d.
random variables, sampled sequentially with replacement. But the parallel implementations de-
scribed in Section 6.7 impose some constraints on how they are generated. In particular, the
parameter block to be updated next is randomly chosen from the set of blocks that are not being
updated by any worker simultaneously, and the next worker available is event-driven, depend-
ing on the loads and processing power of different workers as well as random communication
latency. These constraints violate the i.i.d. assumption, but our experiments show that they still
lead to very competitive performance. Intuitively some of them can be potentially beneficial,
reminiscent of the practical advantage of sampling without replacement over sampling with re-
placement in randomized coordinate descent methods [e.g., 166]. This is an interesting topic
worth future study.

In our experiments, the parallel implementation of Nesterov’s accelerated gradient method
(APG) is very competitive on all the datasets we tried and for different regularization parameters
used. In addition to the theoretical justifications in Arjevani and Shamir [7] and Scaman et al.
[160], the adaptive line-search scheme turns out to be critical for its good performance in practice.
The accelerated DSCOVR algorithms demonstrated comparable or better performance than APG
in the experiments, but need careful tuning of the constants in their step size formula. On one
hand, it supports our theoretical results that DSCOVR is capable of outperforming other first-

107

order algorithms including APG, in terms of both communication and computation complexity
(see Section 6.2.1). On the other hand, there are more to be done in order to realize the full
potential of DSCOVR in practice. In particular, we plan to follow the ideas in [185] to develop
adaptive schemes that can automatically tune the step size parameters, as well as exploit strong
convexity from data.

108

Chapter 7

Concluding Remarks

7.1 Conclusions

The goal of this thesis is to improve the efficiency and effectiveness of large scale machine
learning. We break down the task into the following questions: 1) How to efficiently train a
machine learning model? 2) How to speed up inference after the model is trained? 3) How to
make the model generalize better? We approach them in a principled way from two perspectives
– models and algorithms. The contributions of the thesis are restated below.
• Proposed Models:

Recurrent model with selective reading: Based on the assumption that texts are
usually redundant and inspired by the skimming reading behavior of humans, in
Chapter 2, we propose a model LSTM-Jump, which can read text while skipping
irrelevant information if needed. Our model is the first of this kind to mimic the
skimming, and thus can be up to 6 times faster than a sequential model when applied
to real reading comprehension tasks.

Recurrence-free model for parallel computation: Noting that recurrent neural net-
works are often slow for both training and inference due to their sequential nature,
in Chapter 3, we propose a new text encoding architecture QANet, which consists
exclusively of convolution and self-attention, where convolution captures local in-
teractions and self-attention models global interactions. On the SQuAD question
answering dataset, our model is up to 13x and 9x faster in training and inference
respectively, compared with recurrent models. We also propose a generic data aug-
mentation technique called backtranslation, combined with which, QANet stayed on
top of the competitive SQuAD leaderboard for half a year, and superseded the human
performance in terms of exact match.

• Proposed Algorithms:

Block-normalized gradient algorithm: In view of the gradient vanishing problem in
deep neural networks, Chapter 4 proposes a generic and simple strategy for utilizing
stochastic gradient information in optimization. The technique essentially contains
two consecutive steps in each iteration: 1) computing and normalizing each block

109

(layer) of the mini-batch stochastic gradient; 2) selecting appropriate step size to up-
date the decision variable (parameter) towards the negative of the block-normalized
gradient. Extensive empirical studies on various non-convex neural network opti-
mization problems, including multi layer perceptron, convolution neural networks
and recurrent networks indicate the block-normalized gradient can help avoid the
vanishing gradient issue and accelerate the training of neural networks.

Randomized primal-dual coordinate methods: In Chapter 5 and 6, we propose two
primal-dual algorithms for the classical empirical risk minimization problem. While
the first method, DSPDC, is designed for the single-machine environment, the second
one, DSCOVR, can work well in the distributed parameter server framework. Both
methods enjoy a fast linear convergence rate theoretically and show delighting empir-
ical performance on various tasks, such as multitask large margin nearest neighbor,
matrix risk minimization among many others.

7.2 Future Directions
In this thesis, we have taken several steps in models and algorithms to boost the efficiency and ef-
ficacy of large scale learning. In the future, there are several interesting directions going forward
worth investigating, which we highlight below.

1. Theory: Bridging the gap between theory and practice. In this thesis, we show that
the proposed algorithms have provable convergence guarantee under several assumptions, e.g.,
convexity of the objective functions. However, in practice, the objective might be highly non-
convex, especially in the scenario of deep neural network training. While our algorithms such
as normalization gradient method still work well in the non-convex setting, we still have little
clue why it is the case. On the other hand, although our algorithms focuses on how to accelerate
the training, it not clear to us why they also improve the generalization. How to develop new
theories to bridge those gaps still pose great challenges and is well worth investigating.

2. Algorithm: Further scaling up model training. Evidences have shown that more data in
training can usually lead to better generalization performance, which, for example, can be seen
in accuracy gain by the back-translation technique in QANet. However, to fit larger data, we
have to train bigger models, which presents a few research questions: 1) How could we increase
the model size in terms of depth and width, but still ensure that its training converges? 2) How
could we train a huge model that could not fit in the modern hardware?

3. Application: Human level language understanding. We have proposed several methods
in this thesis to efficiently process natural language, one of which, i.e., QANet, has even achieved
the human performance on a specific dataset. However, the error analysis of QANet show that
we are still far away from having a model that can achieve human-level language understanding.
There are at least three remaining problems we have to address to enable the genuine human
intelligence. 1) How to digest extremely long texts, e.g., a book? 2) How to incorporate human

110

knowledge, e.g., commonsense, to the model? 3) How to equip the model with logical reasoning
power? A perfect touchstone to benchmark the language understanding capability of the model
might be the United States Medical Licensing Examination (USMLE), which is notoriously dif-
ficult, due to its extensivity on various medical subjects and the requirement on rigorous logical
reasoning based on massive medical knowledge and the complicated patient situation.

111

112

Part III

Appendices

113

Appendix A

Convergence Analysis for DSPDC

In this section, we provide the detailed proof of the main theoretical results in Section 5.4.

A.1 Some technical lemmas

In order to prove Theorem 5.4.1, we first present the following two technical lemmas which are
extracted but extended from [220]. In particular, the second inequality in both lemmas are given
in [220] while the first inequality is new and is the key to prove the convergence in objective
gap. These lemmas establish the relationship between two consecutive iterates, (x(t), y(t)) and
(x(t+1), y(t+1)).
Lemma 1 Given any x̄ ∈ Rp and v ∈ Rp, if we uniformly and randomly choose a set of indices
J ⊂ {1, 2, . . . , p} with |J | = q and solve an x̂ ∈ Rp with

x̂j =

{
argminα∈R

{
1
n
vjα + gj(α) + 1

2τ
(α− x̄j)2

}
if j ∈ J

x̄j if j /∈ J, (A.1.1)

then, any x ∈ Rp, we have(
p

2qτ
+

(p− q)λ
2q

)
‖x− x̄‖2 +

p− q
q

(g(x̄)− g(x))

≥
(

p

2qτ
+
pλ

2q

)
E‖x̂− x‖2 +

p

2qτ
E‖x̂− x̄‖2 +

p

q
E (g(x̂)− g(x)) +

1

n
E
〈
v, x̄+

p

q
(x̂− x̄)− x

〉
and (

p

2qτ
+

(p− q)λ
q

)
‖x? − x̄‖2

≥
(

p

2qτ
+
pλ

q

)
E‖x̂− x?‖2 +

p

2qτ
E‖x̂− x̄‖2 +

1

n
E
〈
v − ATy?, x̄+

p

q
(x̂− x̄)− x?

〉
,

where the expectation E is taken over J .

115

Proof: We prove the first conclusion first. Let x̃ defined as

x̃ = argmin
x∈Rn

{
1

n
vTx+ g(x) +

1

2τ
‖x− x̄‖2

}
.

Therefore, according to (A.1.1), x̂j = x̃j if j ∈ J and x̂j = x̄j if j /∈ J . Due to the decomposable
structure (5.1.2) of g(x), each coordinate x̃j of x̃ can be solved independently. Since gj is λ-
strongly convex, the optimality of x̃j implies that, for any xj ∈ R,

vjxj
n

+ gj(xj) +
(xj − x̄j)2

2τ
≥ vjx̃j

n
+ gj(x̃j) +

(x̃j − x̄j)2

2τ
+

(
1

2τ
+
λ

2

)
(x̃j − xj)2.(A.1.2)

Since each index j is contained in J with a probability of q
p
, we have the following equalities

E(x̂j − xj)2 =
q

p
(x̃j − xj)2 +

p− q
p

(x̄j − xj)2, (A.1.3)

E(x̂j − x̄j)2 =
q

p
(x̃j − x̄j)2, (A.1.4)

Ex̂j =
q

p
x̃j +

p− q
p

x̄j, (A.1.5)

Egj(x̂j) =
q

p
gj(x̃j) +

p− q
p

gj(x̄j). (A.1.6)

Using these equalities, we can represent all the terms in (A.1.2) involving x̃j by the terms that
only contains x̂j , x̄j and xj . By doing so and organizing terms, we obtain(

p

2qτ
+

(p− q)λ
2q

)
(xj − x̄j)2 +

p− q
q

(gj(x̄j)− gj(xj))−
1

n
vj

(
x̄j +

p

q
(Ex̂j − x̄j)− xj

)
≥

(
p

2qτ
+
pλ

2q

)
E(x̂j − xj)2 +

p

2qτ
E(x̂j − x̄j)2 +

p

q
E (gj(x̂j)− gj(xj)) ,

for any xj ∈ R. Then, the first conclusion of Lemma 1 is obtained by summing up the inequality
above over the indices j = 1, . . . , p.

In the next, we prove the second conclusion of Lemma 1. Choosing xi = x?i in (A.1.2), we
obtain

vjx
?
j

n
+ gj(x

?
j) +

(x?j − x̄j)2

2τ
≥ vjx̃j

n
+ gj(x̃j) +

(x̃j − x̄j)2

2τ
+

(
1

2τ
+
λ

2

)
(x̃j − x?j)2.(A.1.7)

According to the property (5.1.6) of a saddle point, the primal optimal solution x? satisfies x? =

argminx∈Rn

{
1
n
(y?)TAx + g(x)

}
. Due to the decomposable structure (5.1.2) of g(x), each

coordinate x?j of x? can be solved independently. Since gj is λ-strongly convex, the optimality
of x?j implies

1

n
〈Aj, y?〉x̃j + gj(x̃j) ≥

1

n
〈Aj, y?〉x?j + gj(x

?
j) +

λ

2
(x̃j − x?j)2. (A.1.8)

116

Summing up (A.1.7) and (A.1.8) gives us

1

2τ
(x?j − x̄j)2 ≥

(
1

2τ
+ λ

)
(x̃j − x?j)2 +

1

2τ
(x̃j − x̄j)2 +

1

n
(vj − 〈Aj, y?〉)(x̃j − x?j).(A.1.9)

By equalities (A.1.3), (A.1.4) and (A.1.5), we can represent all the terms in (A.1.9) that involve
x̃j by the terms that only contain x̂j , x̄j and xj . Then, we obtain(

p

2qτ
+

(p− q)λ
q

)
(x?j − x̄j)2 −

(
p

2qτ
+
pλ

q

)
E(x̂j − x?j)2

≥ p

2qτ
E(x̂j − x̄j)2 +

1

n
(vj − 〈Aj, y?〉)

(
x̄j +

p

q
(Ex̂j − x̄j)− x?j

)
.

Then, the second conclusion is obtained by summing up the inequality above over the indices
j = 1, . . . , p.

Lemma 2 Given any v ∈ Rn and ȳ ∈ Rn, if we uniformly and randomly choose a set of indices
I ⊂ {1, 2, . . . , n} with |I| = m and solve an ŷ ∈ Rn with

ŷi =

{
argmaxβ∈R

{
1
n
uiβ − φ∗i (β)

n
− 1

2σ
(β − ȳi)2

}
if i ∈ I

ȳi if i /∈ I,
(A.1.10)

then, any y ∈ Rn, we have(
n

2mσ
+

(n−m)γ

2mn

)
‖y − ȳ‖2 +

n−m
mn

n∑
i=1

(
φ∗i (y

(t)
i)− φ∗i (yi)

)
+

1

n
E
〈
u, ȳ +

n

m
(ŷ − ȳ)− y

〉
≥

(n

2mσ
+

γ

2m

)
E‖ŷ − y‖2 +

n

2mσ
E‖ŷ − ȳ‖2 +

1

m

n∑
i=1

E
(
φ∗i (y

(t+1)
i)− φ∗i (yi)

)
and (

n

2mσ
+

(n−m)γ

mn

)
‖y? − ȳ‖2

≥
(n

2mσ
+
γ

m

)
E‖ŷ − y?‖2 +

n

2mσ
E‖ŷ − ȳ‖2 − 1

n
E
〈
u− Ax?, ȳ +

n

m
(ŷ − ȳ)− y?

〉
.

where the expectation E is taken over I .
Proof: The proof is very similar to that of Lemma 1, and thus, is omitted.

A.2 Convergence in distance to the optimal solution
We use Et to represent the expectation conditioned on y(0), x(0), . . . , y(t), x(t), and Et+ the ex-
pectation conditioned on y(0), x(0), . . . , y(t), x(t), y(t+1). Lemma 1 and Lemma 2 in the previous
section provide the basis for the following proposition, which is the key to prove Theorem 5.4.1.

117

Proposition 1 Let x(t), x(t+1), y(t) and y(t+1) generated as in Algorithm 3 for t = 0, 1, . . . with
the parameters τ and σ satisfying τσ = nmq

4pΛ
. We have

(
p

2qτ
+

(p− q)λ
q

)
‖x? − x(t)‖2 +

(
n

2mσ
+

(n−m)γ

mn

)
‖y? − y(t)‖2

+
θ

n

〈
A(x(t) − x(t−1)), y(t) − y?

〉
+
θ‖x(t) − x(t−1)‖2

4τ

≥
(

p

2qτ
+
pλ

q

)
Et‖x(t+1) − x?‖2 +

(n

2mσ
+
γ

m

)
Et‖y(t+1) − y?‖2

+

(
p

2qτ
− (n−m)p

4nτq

)
Et‖x(t+1) − x(t)‖2 +

(
n

2mσ
− θnq

4σmp
− n−m

4σm

)
Et‖y(t+1) − y(t)‖2

+
p

nq
Et
〈
AT (y(t+1) − y?), x(t+1) − x(t)

〉
. (A.2.1)

Proof: Let x(t), x(t+1) and ȳ(t+1) generated as in Algorithm 3. By the second conclusion of
Lemma 1 and the tower property EtEt+ = Et, we have

(
p

2qτ
+

(p− q)λ
q

)
‖x? − x(t)‖2 ≥

(
p

2qτ
+
pλ

q

)
Et‖x(t+1) − x?‖2 +

p

2qτ
Et‖x(t+1) − x(t)‖2

+
1

n
Et
〈
AT (ȳ(t+1) − y?), x(t) +

p

q
(x(t+1) − x(t))− x?

〉
.

Similarly, let y(t), y(t+1) and x̄(t) generated as in Algorithm 3. By the second conclusion of
Lemma 2, we have

(
n

2mσ
+

(n−m)γ

mn

)
‖y? − y(t)‖2 ≥

(n

2mσ
+
γ

m

)
Et‖y(t+1) − y?‖2 +

n

2mσ
Et‖y(t+1) − y(t)‖2

− 1

n
Et
〈
A(x̄(t) − x?), y(t) +

n

m
(y(t+1) − y(t))− y?

〉
.

Summing up these two inequalities, we have

(
p

2qτ
+

(p− q)λ
q

)
‖x? − x(t)‖2 +

(
n

2mσ
+

(n−m)γ

mn

)
‖y? − y(t)‖2

≥
(

p

2qτ
+
pλ

q

)
Et‖x(t+1) − x?‖2 +

(n

2mσ
+
γ

m

)
Et‖y(t+1) − y?‖2 +

p

2qτ
Et‖x(t+1) − x(t)‖2

+
n

2mσ
Et‖y(t+1) − y(t)‖2 +

1

n
Et
〈
AT (ȳ(t+1) − y?), x(t) +

p

q
(x(t+1) − x(t))− x?

〉
(A.2.2)

− 1

n
Et
〈
A(x̄(t) − x?), y(t) +

n

m
(y(t+1) − y(t))− y?

〉
.

118

By the definition of ȳ(t+1) in Algorithm 3, we have ȳ(t+1)−y? = y(t+1)−y?+ n−m
m

(y(t+1)−y(t)),
which implies

1

n

〈
AT (ȳ(t+1) − y?), x(t) +

p

q
(x(t+1) − x(t))− x?

〉
=

1

n

〈
AT (y(t+1) − y? +

n−m
m

(y(t+1) − y(t))), x(t) +
p

q
(x(t+1) − x(t))− x?

〉
=

p

nq

〈
AT (y(t+1) − y?), x(t+1) − x(t)

〉
+

1

n

〈
AT (y(t+1) − y?), x(t) − x?

〉
(A.2.3)

+
(n−m)p

nmq

〈
AT (y(t+1) − y(t))), x(t+1) − x(t)

〉
+
n−m
nm

〈
AT (y(t+1) − y(t))), x(t) − x?

〉
.

Similarly, by the definition of x̄(t) in Algorithm 3, we have x̄(t)−x? = x(t)−x?+θ(x(t)−x(t−1)),
which implies

1

n

〈
A(x̄(t) − x?), y(t) +

n

m
(y(t+1) − y(t))− y?

〉
=

1

n

〈
A(x(t) − x? + θ(x(t) − x(t−1))), y(t) +

n

m
(y(t+1) − y(t))− y?

〉
=

1

m

〈
A(x(t) − x?), y(t+1) − y(t)

〉
+

1

n

〈
A(x(t) − x?), y(t) − y?

〉
+
θ

m

〈
A(x(t) − x(t−1)), y(t+1) − y(t)

〉
+
θ

n

〈
A(x(t) − x(t−1)), y(t) − y?

〉
. (A.2.4)

According to (A.2.3) and (A.2.4), the last two terms in the right hand side of (A.2.3) within
conditional expectation Et can be represented as

1

n

〈
AT (ȳ(t+1) − y?), x(t) +

p

q
(x(t+1) − x(t))− x?

〉
− 1

n

〈
A(x̄(t) − x?), y(t) +

n

m
(y(t+1) − y(t))− y?

〉
=

p

nq

〈
AT (y(t+1) − y?), x(t+1) − x(t)

〉
+

1

n

〈
AT (y(t+1) − y?), x(t) − x?

〉
+

(n−m)p

nmq

〈
AT (y(t+1) − y(t))), x(t+1) − x(t)

〉
+
n−m
nm

〈
AT (y(t+1) − y(t))), x(t) − x?

〉
− 1

m

〈
A(x(t) − x?), y(t+1) − y(t)

〉
− 1

n

〈
A(x(t) − x?), y(t) − y?

〉
− θ

m

〈
A(x(t) − x(t−1)), y(t+1) − y(t)

〉
− θ

n

〈
A(x(t) − x(t−1)), y(t) − y?

〉
=

p

nq

〈
AT (y(t+1) − y?), x(t+1) − x(t)

〉
+

(n−m)p

nmq

〈
AT (y(t+1) − y(t))), x(t+1) − x(t)

〉
− θ

m

〈
A(x(t) − x(t−1)), y(t+1) − y(t)

〉
− θ

n

〈
A(x(t) − x(t−1)), y(t) − y?

〉
. (A.2.5)

In the next, we establish some lower bounds for each of the four terms in (A.2.5).

119

Note that x(t)−x(t−1) is a sparse vector with non-zero values only in the coordinates indexed
by J . Hence, by Young’s inequality, we have

−
〈
A(x(t) − x(t−1)), y(t+1) − y(t)

〉
≥ − τ

m
‖(AJ)T (y(t+1) − y(t))‖2 − ‖x

(t) − x(t−1)‖2

4τ/m

≥ −τΛ

m
‖y(t+1) − y(t)‖2 − ‖x

(t) − x(t−1)‖2

4τ/m

= − nq

4σp
‖y(t+1) − y(t)‖2 − ‖x

(t) − x(t−1)‖2

4τ/m
. (A.2.6)

Here, the second inequality is because y(t+1) − y(t) has non-zero values only in the coordinates
indexed by I so that, by the definition (5.1.8) of Λ,

‖(AJ)T (y(t+1) − y(t))‖2 = ‖(AJI)T (y
(t+1)
I − y(t)

I)‖2 ≤ Λ‖y(t+1)
I − y(t)

I ‖
2 = Λ‖y(t+1) − y(t)‖2,

and the last equality is because τσ = nmq
4pΛ

.
A similar argument implies〈

AT (y(t+1) − y(t)), x(t+1) − x(t)
〉
≥ − nq

4σp
‖y(t+1) − y(t)‖2 − ‖x

(t+1) − x(t)‖2

4τ/m
.(A.2.7)

Applying (A.2.6) and (A.2.7) to the right hand side of (A.2.5), we have

1

n

〈
AT (ȳ(t+1) − y?), x(t) +

p

q
(x(t+1) − x(t))− x?

〉
− 1

n

〈
A(x̄(t) − x?), y(t) +

n

m
(y(t+1) − y(t))− y?

〉
≥ p

nq

〈
AT (y(t+1) − y?), x(t+1) − x(t)

〉
− θ

n

〈
A(x(t) − x(t−1)), y(t) − y?

〉
(A.2.8)

−
(

θnq

4σmp
+
n−m
4σm

)
‖y(t+1) − y(t)‖2 − θ‖x(t) − x(t−1)‖2

4τ
− (n−m)p‖x(t+1) − x(t)‖2

4τnq

The conclusion (A.2.1) is obtained by combining (A.2.3) and the conditional expectation of
(A.2.8).

Based on Proposition 1, we can prove Theorem 5.4.1.
Proof: [Theorem 5.4.1] We first show how to derive the forms of τ and σ in (5.4.6) and (5.4.7)
from the last two equations in (5.4.5). Let Q1 = p

2qλτ
and Q2 = n2

2mγσ
. The last two equations

in (5.4.5) imply

Q1Q2 =
pn2

4qmλγτσ
=

(np)2Λ

(mq)2nλγ
, Q1 +

p

q
= Q2 +

n

m
.

Solving the values of Q1 and Q2 from these equations, we obtain

p

2qλτ
= Q1 = 1

2

(
n
m
− p

q

)
+ 1

2

√(
n
m
− p

q

)2

+ 4(np)2Λ
(mq)2nλγ

, (A.2.9)

n2

2mγσ
= Q2 = 1

2

(
p
q
− n

m

)
+ 1

2

√(
n
m
− p

q

)2

+ 4(np)2Λ
(mq)2nλγ

, (A.2.10)

120

from which (5.4.6) and (5.4.7) can be derived.
To derive the main conclusion of Theorem 5.4.1 from Proposition 1, we want to show that

the following inequalities are satisfied by the choices for θ, τ and σ in (5.4.5).(
p

2qτ
+
pλ

q

)
θq

p
≥

(
p

2qτ
+

(p− q)λ
q

)
, (A.2.11)(n

2mσ
+
γ

m

) θq
p
≥

(
n

2mσ
+

(n−m)γ

mn

)
, (A.2.12)

n

2mσ
− θnq

4σmp
− n−m

4σm
≥ 0, (A.2.13)(

p

2qτ
− (n−m)p

4nτq

)
θq

p
≥ θ

4τ
. (A.2.14)

In fact, (A.2.11) holds since (A.2.9) implies1

p

2qλτ
+
p

q
≤ 1

2

(
n

m
+
p

q

)
+

1

2

∣∣∣∣ nm − p

q

∣∣∣∣+
np
√

Λ

mq
√
nλγ

= max

{
p

q
,
n

m

}
+

np
√

Λ

mq
√
nλγ

so that(
p

2qτ
+

(p− q)λ
q

)
/

(
p

2qτ
+
pλ

q

)
= 1− 1

p
2qλτ

+ p
q

≤ 1− 1

max
{
p
q
, n
m

}
+ np

√
Λ

mq
√
nλγ

=
θq

p
.

Similarly, (A.2.12) holds since (A.2.10) implies

n2

2mγσ
+
n

m
≤ 1

2

(
n

m
+
p

q

)
+

1

2

∣∣∣∣ nm − p

q

∣∣∣∣+
np
√

Λ

mq
√
nλγ

= max

{
p

q
,
n

m

}
+

np
√

Λ

mq
√
nλγ

so that(
n

2mσ
+

(n−m)γ

mn

)
/
(n

2mσ
+
γ

m

)
= 1− 1

n2

2mγσ
+ n

m

≤ 1− 1

max
{
p
q
, n
m

}
+ np

√
Λ

mq
√
nλγ

=
θq

p
.

The inequality (A.2.13) holds because n
2mσ
− θnq

4σmp
− n−m

4σm
≥ n

2mσ
− n

4σm
− n

4σm
= 0, where

we use the fact that θq
p
≤ 1. The inequality (A.2.14) holds because

(
p

2qτ
− (n−m)p

4nτq

)
θq
p

=

θ
(

1
2τ
− (n−m)

4nτ

)
≥ θ

(
1
2τ
− 1

4τ

)
= θ

4τ
.

Applying the four inequalities (A.2.11), (A.2.12), (A.2.13) and (A.2.14) to the coefficients of
(A.2.1) from Proposition 1 leads to Et∆(t+1) ≤

(
θq
p

)
∆(t) for any t ≥ 0, where

∆(t) =

(
p

2qτ
+
pλ

q

)
‖x? − x(t)‖2 +

(n

2mσ
+
γ

m

)
‖y? − y(t)‖2

+
p

qn

〈
A(x(t) − x(t−1)), y(t) − y?

〉
+

(
p

2qτ
− (n−m)p

4nτq

)
‖x(t) − x(t−1)‖2.(A.2.15)

1Here and when we show (A.2.12), we use the simple fact that
√
a2 + b2 ≤ a+ b when a ≥ 0 and b ≥ 0.

121

Applying this result recursively gives E∆(t) ≤
(
θq
p

)t
∆(0) where

∆(0) =

(
p

2qτ
+
pλ

q

)
‖x? − x(0)‖2 +

(n

2mσ
+
γ

m

)
‖y? − y(0)‖2

because (x(0), y(0)) = (x(−1), y(−1)).
Let Ĩ be a uniformly random subset of {1, 2, . . . , n} with |Ĩ| = m, i.e., each index in

{1, 2, . . . , n} is contained in Ĩ with a probability of m
n

. By Jensen’s inequality and (5.1.8), we
have
m2

n2
‖(AJ)T (y(t) − y?)‖2 = ‖E(AJ

Ĩ
)T (y

(t)

Ĩ
− y?

Ĩ
)‖2 ≤ E‖(AJ

Ĩ
)T (y

(t)

Ĩ
− y?

Ĩ
)‖2 =

mΛ

n
‖y(t) − y?‖2,

where the expectation E is taken over Ĩ . This result further implies

‖(AJ)T (y(t) − y?)‖2 ≤ nΛ

m
‖y(t) − y?‖2. (A.2.16)

Note that x(t)− x(t−1) is a sparse vector with non-zero values only in the coordinates indexed by
J . Hence, by Young’s inequality, we have〈

A(x(t) − x(t−1)), y(t) − y?
〉
≥ −τ

n
‖(AJ)T (y(t) − y?)‖2 − ‖x

(t) − x(t−1)‖2

4τ/n

≥ −τΛ

m
‖y(t) − y?‖2 − ‖x

(t) − x(t−1)‖2

4τ/n

= − nq

4σp
‖y(t) − y?‖2 − ‖x

(t) − x(t−1)‖2

4τ/n
, (A.2.17)

where the second inequality is because of (A.2.16) and the last equality is because τσ = nmq
4Λp

.
Applying (A.2.17) to the right hand side of (A.2.15) leads to

∆(t) ≥
(

p

2qτ
+
pλ

q

)
‖x? − x(t)‖2 +

(
n

2mσ
+
γ

m
− 1

4σ

)
‖y? − y(t)‖2

+

(
p

2qτ
− (n−m)p

4nτq
− p

4τq

)
‖x(t) − x(t−1)‖2

≥
(

p

2qτ
+
pλ

q

)
‖x? − x(t)‖2 +

(n

4mσ
+
γ

m

)
‖y? − y(t)‖2,

where the second inequalities holds because n
2mσ
− 1

4σ
≥ n

2mσ
− n

4mσ
= n

4mσ
and p

2qτ
− (n−m)p

4nτq
−

p
4τq
≥ p

2qτ
− p

4τq
− p

4τq
= 0. Then, the conclusion of Theorem 5.4.1 can be obtained as(

p

2qτ
+
pλ

q

)
E‖x? − x(t)‖2 +

(n

4mσ
+
γ

m

)
E‖y? − y(t)‖2 ≤ E∆(t) ≤

(
θq

p

)t
∆(0)

≤

1− 1

max
{
p
q
, n
m

}
+ pR

√
n

q
√
mλγ

t [(
p

2qτ
+
pλ

q

)
‖x? − x(0)‖2 +

(n

2mσ
+
γ

m

)
‖y? − y(0)‖2

]
.

122

A.3 Convergence of objective gap
To establish the convergence of primal-dual gap (Theorem 5.4.2), we define the following two
functions

P̃ (x) ≡ g(x) +
1

n
(y?)TAx−

[
g(x?) +

1

n
(y?)TAx?

]
, (A.3.1)

D̃(y) ≡ 1

n
yTAx? − 1

n

n∑
i=1

φ∗i (yi)−

[
1

n
(y?)TAx? − 1

n

n∑
i=1

φ∗i (y
?
i)

]
. (A.3.2)

Note that

P̃ (x) ≥ λ

2
‖x− x?‖2 and D̃(y) ≤ − γ

2n
‖y − y?‖2 (A.3.3)

and

P̃ (x)− D̃(y) ≤ P (x)−D(y) (A.3.4)

for any x ∈ Rp and any y ∈ Rn because of (5.1.6) and the strong convexity of g(x) and
1
n

∑n
i=1 φ

∗
i (yi). Then, we provide the following proposition, which is the key to prove Theo-

rem 5.4.2.

Proposition 2 Let x(t), x(t+1), y(t) and y(t+1) generated as in Algorithm 3 for t = 0, 1, . . . with
the parameters τ and σ satisfying τσ = nmq

4pΛ
. We have(

p

2qτ
+

(p− q)λ
2q

)
‖x? − x(t)‖2 +

(
n

2mσ
+

(n−m)γ

2mn

)
‖y? − y(t)‖2

θ

n

〈
A(x(t) − x(t−1)), y(t) − y?

〉
+
θ‖x(t) − x(t−1)‖2

4τ
+
p− q
q

P̃ (x(t))− n−m
m

D̃(y(t))

≥
(

p

2qτ
+
pλ

2q

)
Et‖x(t+1) − x?‖2 +

(n

2mσ
+

γ

2m

)
Et‖y(t+1) − y?‖2

+

(
p

2qτ
− (n−m)p

4nτq

)
Et‖x(t+1) − x(t)‖2 +

(
n

2mσ
− θnq

4σmp
− n−m

4σm

)
Et‖y(t+1) − y(t)‖2

+
p

nq
Et
〈
AT (y(t+1) − y?), x(t+1) − x(t)

〉
+
p

q
EtP̃ (x(t+1))− n

m
EtD̃(y(t+1)). (A.3.5)

Proof: Let x(t), x(t+1) and ȳ(t+1) generated as in Algorithm 3. By the first conclusion of Lemma
1 and the tower property EtEt+ = Et, for any x ∈ Rp,(

p

2qτ
+

(p− q)λ
2q

)
‖x− x(t)‖2 +

p− q
q

(
g(x(t))− g(x)

)
(A.3.6)

≥
(

p

2qτ
+
pλ

2q

)
E‖x(t+1) − x‖2 +

p

2qτ
E‖x(t+1) − x(t)‖2 +

p

q
E
(
g(x(t+1))− g(x)

)
+

1

n
E
〈
AT ȳ(t+1), x(t) +

p

q
(x(t+1) − x(t))− x

〉
.

123

Let y(t), y(t+1) and x̄(t) generated as in Algorithm 3. By the first conclusion of Lemma 2, we
have, for any y ∈ Rn,

(
n

2mσ
+

(n−m)γ

2mn

)
‖y − y(t)‖2 +

n−m
mn

n∑
i=1

(
φ∗i (y

(t)
i)− φ∗i (yi)

)
(A.3.7)

≥
(n

2mσ
+

γ

2m

)
E‖y(t+1) − y‖2 +

n

2mσ
E‖y(t+1) − y(t)‖2 +

1

m

n∑
i=1

E
(
φ∗i (y

(t+1)
i)− φ∗i (yi)

)
− 1

n
E
〈
Ax̄(t), y(t) +

n

m
(y(t+1) − y(t))− y

〉

Summing up the inequalities (A.3.6) and (A.3.7) and setting (x, y) = (x?, y?) yield

(
p

2qτ
+

(p− q)λ
2q

)
‖x? − x(t)‖2 +

(
n

2mσ
+

(n−m)γ

2mn

)
‖y? − y(t)‖2

+
p− q
q

(
g(x(t))− g(x?)

)
+
n−m
mn

n∑
i=1

(
φ∗i (y

(t)
i)− φ∗i (y?i)

)
(A.3.8)

≥
(

p

2qτ
+
pλ

2q

)
Et‖x(t+1) − x?‖2 +

p

2qτ
Et‖x(t+1) − x(t)‖2 +

(n

2mσ
+

γ

2m

)
Et‖y(t+1) − y?‖2

+
p

q
Et
(
g(x(t+1))− g(x?)

)
+

1

m

n∑
i=1

Et
(
φ∗i (y

(t+1)
i)− φ∗i (y?i)

)
+

n

2mσ
Et‖y(t+1) − y(t)‖2

+
1

n
Et
〈
AT ȳ(t+1), x(t) +

p

q
(x(t+1) − x(t))− x?

〉
− 1

n
Et
〈
Ax̄(t), y(t) +

n

m
(y(t+1) − y(t))− y?

〉
.

By the definitions of P̃ (x(t)), D̃(y(t)), P̃ (x(t+1)), and D̃(y(t+1)), (A.3.8) is equivalent to

(
p

2qτ
+

(p− q)λ
2q

)
‖x? − x(t)‖2 +

(
n

2mσ
+

(n−m)γ

2mn

)
‖y? − y(t)‖2

+
p− q
q

P̃ (x(t)) +
n−m
m

D̃(y(t))

≥
(

p

2qτ
+
pλ

2q

)
Et‖x(t+1) − x?‖2 +

p

2qτ
Et‖x(t+1) − x(t)‖2 +

(n

2mσ
+

γ

2m

)
Et‖y(t+1) − y?‖2

+
p

q
EtP̃ (x(t+1)) +

n

m
EtD̃(y(t+1))− 1

n
Et
〈
A(x̄(t) − x?), y(t) +

n

m
(y(t+1) − y(t))− y?

〉
(A.3.9)

+
1

n
Et
〈
AT (ȳ(t+1) − y?), x(t) +

p

q
(x(t+1) − x(t))− x?

〉
+

n

2mσ
Et‖y(t+1) − y(t)‖2.

124

which, together with (A.2.8), implies(
p

2qτ
+

(p− q)λ
2q

)
‖x? − x(t)‖2 +

(
n

2mσ
+

(n−m)γ

2mn

)
‖y? − y(t)‖2

+
p− q
q

P̃ (x(t))− n−m
m

D̃(y(t))

≥
(

p

2qτ
+
pλ

2q

)
Et‖x(t+1) − x?‖2 +

p

2qτ
Et‖x(t+1) − x(t)‖2 +

p

q
EtP̃ (x(t+1))− n

m
EtD̃(y(t+1))

+
(n

2mσ
+

γ

2m

)
Et‖y(t+1) − y?‖2 +

n

2mσ
Et‖y(t+1) − y(t)‖2

+
p

nq

〈
AT (y(t+1) − y?), x(t+1) − x(t)

〉
− θ

n

〈
A(x(t) − x(t−1)), y(t) − y?

〉
−
(

θnq

4σmp
+
n−m
4σm

)
‖y(t+1) − y(t)‖2 − θ‖x(t) − x(t−1)‖2

4τ
− (n−m)p‖x(t+1) − x(t)‖2

4τnq
.

The conclusion of the proposition is obtained by organizing the terms of the inequality above.

Based on Proposition 2, we now can prove Theorem 5.4.2.
Proof: [Theorem 5.4.2] We first show that the following inequalities are satisfied according to
the choice for θ in (5.4.9) and the choices for τ and σ in (5.4.5).(

p

2qτ
+
pλ

2q

)
θq

p
≥

(
p

2qτ
+

(p− q)λ
2q

)
, (A.3.10)(n

2mσ
+

γ

2m

) θq
p
≥

(
n

2mσ
+

(n−m)γ

2mn

)
, (A.3.11)

n

2mσ
− θnq

4σmp
− n−m

4σm
≥ 0, (A.3.12)(

p

2qτ
− (n−m)p

4nτq

)
θq

p
≥ θ

4τ
, (A.3.13)

θq

p
≥ p− q

p
, (A.3.14)

θq

p
≥ n−m

n
. (A.3.15)

Since τ and σ still satisfy (5.4.5) as in Theorem 5.4.1, (A.2.9) and (A.2.10) are still satisfied.
Therefore, we have

p

qλτ
+
p

q
≤ n

m
+

∣∣∣∣ nm − p

q

∣∣∣∣+
2np
√

Λ

mq
√
nλγ

= 2 max

{
p

q
,
n

m

}
+

2np
√

Λ

mq
√
nλγ

according to (A.2.9) so that, by the new choice for θ in (5.4.9),(
p

2qτ
+

(p− q)λ
2q

)
/

(
p

2qτ
+
pλ

2q

)
= 1− 1

p
qλτ

+ p
q

≤ 1− 1

2 max
{
p
q
, n
m

}
+ 2np

√
Λ

mq
√
nλγ

=
θq

p
.

125

Similarly, according to (A.2.10), we have

n2

mγσ
+
n

m
≤ p

q
+

∣∣∣∣ nm − p

q

∣∣∣∣+
2np
√

Λ

mq
√
nλγ

= 2 max

{
p

q
,
n

m

}
+

2np
√

Λ

mq
√
nλγ

so that(
n

2mσ
+

(n−m)γ

2mn

)
/
(n

2mσ
+

γ

2m

)
= 1− 1

n2

mγσ
+ n

m

≤ 1− 1

2 max
{
p
q
, n
m

}
+ 2np

√
Λ

mq
√
nλγ

=
θq

p
.

Therefore, we have shown that (A.3.10) and (A.3.11) are satisfied. The inequality (A.3.12) holds
because

n

2mσ
− θnq

4σmp
− n−m

4σm
≥ n

2mσ
− n

4σm
− n

4σm
= 0,

where we use the fact that θq
p
≤ 1. The inequality (A.3.13) holds because(

p

2qτ
− (n−m)p

4nτq

)
θq

p
= θ

(
1

2τ
− (n−m)

4nτ

)
≥ θ

(
1

2τ
− 1

4τ

)
=

θ

4τ
.

The inequalities (A.3.14) and (A.3.15) hold because

max

{
p− q
p

,
n−m
n

}
≤ 1− 1

2 max
{
p
q
, n
m

}
+ 2np

√
Λ

mq
√
nλγ

=
θq

p
.

Recall that P̃ (x) ≥ 0 and D̃(y) ≤ 0 for any x ∈ Rp and any y ∈ Rn. Therefore, applying the
six inequalities (A.3.10), (A.3.11), (A.3.12), (A.3.13), (A.3.14) and (A.3.15) to the coefficients
of (A.3.5) from Proposition 2 leads to Et∆(t+1) ≤

(
θq
p

)
∆(t) for any t ≥ 0, where

∆(t) =

(
p

2qτ
+
pλ

2q

)
‖x(t) − x?‖2 +

(n

2mσ
+

γ

2m

)
‖y(t) − y?‖2 +

p

q
P̃ (x(t))− n

m
D̃(y(t))

+

(
p

2qτ
− (n−m)p

4nτq

)
‖x(t) − x(t−1)‖2 +

p

nq

〈
AT (y(t) − y?), x(t) − x(t−1)

〉
.(A.3.16)

Applying this result recursively gives E∆(t) ≤
(
θq
p

)t
∆(0), where

∆(0) =

(
p

2qτ
+
pλ

2q

)
‖x(0) − x?‖2 +

(n

2mσ
+

γ

2m

)
‖y(0) − y?‖2 (A.3.17)

+
p

q
P̃ (x(0))− n

m
D̃(y(0))

because (x(0), y(0)) = (x(−1), y(−1)). Applying (A.2.17) to the right hand side of (A.3.16) leads
to

∆(t) ≥
(

p

2qτ
+
pλ

2q

)
‖x? − x(t)‖2 +

(
n

2mσ
+

γ

2m
− 1

4σ

)
‖y? − y(t)‖2

+

(
p

2qτ
− (n−m)p

4nτq
− p

4τq

)
‖x(t) − x(t−1)‖2 +

p

q
P̃ (x(t))− n

m
D̃(y(t))

≥ p

q
P̃ (x(t))− n

m
D̃(y(t)). (A.3.18)

126

Combining (A.3.17), E∆(t) ≤
(
θq
p

)t
∆(0) and (A.3.18) together, we obtain

min

{
p

q
,
n

m

}
E
(
P̃ (x(t))− D̃(y(t))

)
≤ pEP̃ (x(t))

q
− nED̃(y(t))

m
≤ E∆(t) ≤

(
θq

p

)t
∆(0).(A.3.19)

In the next, we will establish the relationship between P̃ (x(t)) − D̃(y(t)) and the actual primal-
dual objective gap P (x(t))−D(y(t)).

Because 1
n

∑n
i=1 φ

∗
i (yi) is a γ

n
-strong convex function of y, according to Theorem 1 in [130],

the function defined as

P̂ (x) ≡ max
y∈Rn

{
1

n
yTAx− 1

n

n∑
i=1

φ∗i (yi)

}
(A.3.20)

is a convex and smooth function of x. Moreover, its gradient ∇P̂ (x) is Lipschitz continuous
with a Lipschitz constant of n‖A‖2

n2γ
= ‖A‖2

nγ
and ∇P̂ (x?) = 1

n
ATy?. As a result, we have

P̂ (x(t)) ≤ P̂ (x?) +
〈
∇P̂ (x?), x(t) − x?

〉
+
‖A‖2

2nγ
‖x(t) − x?‖2 (A.3.21)

According to the definition of the primal and dual objective functions (5.1.1) and (5.1.4) and
their relationship with the saddle-point problem (5.1.5), we have

P (x(t)) = max
y∈Rn

{
g(x(t)) +

1

n
yTAx(t) − 1

n

n∑
i=1

φ∗i (yi)

}
= g(x(t)) + P̂ (x(t))

≤ g(x(t)) + max
y∈Rn

{
1

n
yTAx? − 1

n

n∑
i=1

φ∗i (yi)

}
+

1

n
(y?)TA(x(t) − x?) +

‖A‖2

2nγ
‖x(t) − x?‖2

= g(x(t))− 1

n

n∑
i=1

φ∗i (y
?
i) +

1

n
(y?)TAx(t) +

‖A‖2

2nγ
‖x(t) − x?‖2, (A.3.22)

where the inequality is due to (A.3.20) and (A.3.21) and the last equality is due to (5.1.6).
Similarly, because g(x) is a λ-strong convex function of x, according to Theorem 1 in [130]

again, the function defined as

D̂(y) ≡ min
x∈Rp

{
1

n
yTAx+ g(x)

}
(A.3.23)

is a concave and smooth function of y. Moreover, its gradient ∇D̂(x) is Lipschitz continuous
with a Lipschitz constant of ‖A‖

2

n2λ
and ∇D̂(y?) = 1

n
Ax?. As a result, we have

D̂(y(t)) ≥ D̂(y?) +
〈
∇D̂(y?), y(t) − y?

〉
− ‖A‖

2

2n2γ
‖y(t) − y?‖2 (A.3.24)

127

With a derivation similar to (A.3.22), we can show

D(y(t)) = min
x∈Rp

{
g(x) +

1

n
(y(t))TAx− 1

n

n∑
i=1

φ∗i (y
(t)
i)

}
= D̂(y(t))− 1

n

n∑
i=1

φ∗i (y
(t)
i)

≥ − 1

n

n∑
i=1

φ∗i (y
(t)
i) + min

x∈Rp

{
g(x) +

1

n
(y?)TAx

}
+

1

n
(y(t) − y?)TAx? − ‖A‖

2

2λn2
‖y(t) − y?‖2

= − 1

n

n∑
i=1

φ∗i (y
(t)
i) + g(x?) +

1

n
(y(t))TAx? − ‖A‖

2

2λn2
‖y(t) − y?‖2. (A.3.25)

Combining (A.3.22) and (A.3.25) and using the definitions (A.3.1) and (A.3.2), we obtain

P (x(t))−D(y(t))− ‖A‖
2

2nγ
‖x(t) − x?‖2 − ‖A‖

2

2λn2
‖y(t) − y?‖2 ≤ P̃ (x(t))− D̃(y(t)). (A.3.26)

Applying (A.3.26) to the left hand side of (A.3.19), we can show

min

{
p

q
,
n

m

}
E
(
P (x(t))−D(y(t))

)
(A.3.27)

≤
(
θq

p

)t
∆(0) + min

{
p

q
,
n

m

}
E
(
‖A‖2

2nγ
‖x(t) − x?‖2 +

‖A‖2

2λn2
‖y(t) − y?‖2

)
The property (A.3.3) of P̃ and D̃ and (A.3.18) imply

λpE‖x? − x(t)‖2

2q
+
γE‖y? − y(t)‖2

2m

≤ pEP̃ (x(t))

q
− nED̃(y(t))

m
≤ E∆(t) ≤

(
θq

p

)t
∆(0) (A.3.28)

which, together with (A.3.27), further implies

min

{
p

q
,
n

m

}
E
(
P (x(t))−D(y(t))

)
≤

{
1 +

min
{
p
q
, n
m

}
max

{
‖A‖2
nγ

, ‖A‖
2

λn2

}
min

{
λp
q
, γ
m

} }(
θq

p

)t
∆(0). (A.3.29)

It is from (A.3.4) that

p

q
P̃ (x(0))− n

m
D̃(y(0)) ≤ max

{
p

q
,
n

m

}(
P̃ (x(0))− D̃(y(0))

)
≤ max

{
p

q
,
n

m

}(
P (x(0))−D(y(0))

)
.

Using this inequality and the definition (A.3.17) of ∆(0), we obtain

∆(0) ≤
(

p

2qτ
+
pλ

2q

)
‖x(0)−x?‖2+

(n

2mσ
+

γ

2m

)
‖y(0)−y?‖2+max

{
p

q
,
n

m

}(
P (x(0))−D(y(0))

)
Applying this inequality to the right hand size of (A.3.29), we obtain the conclusion of Theo-
rem 5.4.2 by the new definition (5.4.9) of θ.

128

Appendix B

Convergence Analysis for DSCOVR

B.1 Proof of Theorem 6.3.1
We first prove two lemmas concerning the primal and dual proximal updates in Algorithm 7.
Throughout this appendix, Et[·] denotes the conditional expectation taken with respect to the
random indices j and l generated during the tth inner iteration in Algorithm 7, conditioned on
all quantities available at the beginning of the tth iteration, including w(t) and α(t). Whenever
necessary, we also use the notation j(t) and l(t) to denote the random indices generated in the tth
iteration.

Lemma 3 For each i = 1, . . . ,m, let u(t+1)
i ∈ RNi be a random variable and define

α̃
(t+1)
i = proxσif∗i

(
α

(t)
i + σiu

(t+1)
i

)
. (B.1.1)

We choose an index j randomly from {1, . . . ,m} with probability distribution
{
pj
}m
j=1

and let

α
(t+1)
i =

{
α̃

(t+1)
i if i = j,

α
(t)
i otherwise.

If each u(t+1)
i is independent of j and satisfies Et

[
u

(t+1)
i

]
= Xi:w

(t) for i = 1, . . . ,m, then we
have

m∑
i=1

(
1

pi

(
1

2σi
+ γi

)
− γi

)
‖α(t)

i − α?i ‖2

≥
m∑
i=1

1

pi

(
1

2σi
+ γi

)
Et[‖α(t+1)

i − α?i ‖2] +
m∑
i=1

1

pi

(
1

2σi
− 1

ai

)
Et[‖α(t+1)

i − α(t)
i ‖2]

−
m∑
i=1

ai
4

Et

[
‖u(t+1)

i −Xi:w
(t)‖2

]
+
〈
w(t) − w?, XT (α? − α(t))

〉
−

m∑
i=1

1

pi
Et

[〈
α

(t+1)
i − α(t)

i , Xi:(w
(t) − w?)

〉]
, (B.1.2)

129

where (w?, α?) is the saddle point of L(w, α) defined in (6.2.1), and the ai’s are arbitrary positive
numbers.

Proof: First, consider a fixed index i ∈ {1, . . . ,m}. The definition of α̃(t+1)
i in (B.1.1) is

equivalent to

α̃
(t+1)
i = argmin

β∈RNi

{
f ∗i (β)−

〈
β, u

(t+1)
i

〉
+
‖β − α(t)

i ‖2

2σi

}
. (B.1.3)

By assumption, f ∗i (β) and 1
2σi
‖β − α(t)

i ‖2 are strongly convex with convexity parameters γi and
1
σi

respectively. Therefore, the objective function in (B.1.3) is (1
σi

+ γi)-strongly convex, which
implies

‖α?i − α
(t)
i ‖2

2σi
−
〈
α?i , u

(t+1)
i

〉
+ f ∗i (α?i)

≥ ‖α̃(t+1)
i − α(t)

i ‖2

2σi
−
〈
α̃

(t+1)
i , u

(t+1)
i

〉
+ f ∗i (α̃

(t+1)
i) +

(
1

σi
+ γi

)
‖α̃(t+1)

i − α?i ‖2

2
.(B.1.4)

In addition, since (w?, α?) is the saddle-point of L(w, α), the function f ∗i (αi) − 〈αi, Xi:w
?〉 is

γi-strongly convex in αi and attains its minimum at α?i . Thus we have

f ∗i
(
α̃

(t+1)
i

)
−
〈
α̃

(t+1)
i , Xi:w

?
〉
≥ f ∗i (α?i)−

〈
α?i , Xi:w

?
〉

+
γi
2
‖α̃(t+1)

i − α?i ‖2.

Summing up the above two inequalities gives

‖α?i − α
(t)
i ‖2

2σi
≥ ‖α̃(t+1)

i − α(t)
i ‖2

2σi
+
(1

2σi
+ γi

)
‖α̃(t+1)

i − α?i ‖2 +
〈
α?i − α̃

(t+1)
i , u

(t+1)
i −Xi:w

?
〉

=
‖α̃(t+1)

i − α(t)
i ‖2

2σi
+
(1

2σi
+ γi

)
‖α̃(t+1)

i − α?i ‖2 +
〈
α?i − α̃

(t+1)
i , Xi:(w

(t) − w?)
〉

+
〈
α?i − α

(t)
i , u

(t+1)
i −Xi:w

(t)
〉

+
〈
α

(t)
i − α̃

(t+1)
i , u

(t+1)
i −Xi:w

(t)
〉

≥ ‖α̃(t+1)
i − α(t)

i ‖2

2σi
+
(1

2σi
+ γi

)
‖α̃(t+1)

i − α?i ‖2 +
〈
α?i − α̃

(t+1)
i , Xi:(w

(t) − w?)
〉

+
〈
α?i − α

(t)
i , u

(t+1)
i −Xi:w

(t)
〉
− ‖α

(t)
i − α̃

(t+1)
i ‖2

ai
− ai‖u(t+1)

i −Xi:w
(t)‖2

4
,

where in the last step we used Young’s inequality with ai being an arbitrary positive number.
Taking conditional expectation Et on both sides of the above inequality, and using the assumption
Et[u

(t+1)
i] = Xi:w

(t), we have

‖α?i−α
(t)
i ‖2

2σi
≥

Et

[
‖α̃(t+1)

i −α(t)
i ‖2

]
2σi

+
(1

2σi
+γi

)
Et[‖α̃(t+1)

i −α?i ‖2] + Et

[〈
α?i−α̃

(t+1)
i , Xi:(w

(t)−w?)
〉]

−Et[‖α(t)
i − α̃

(t+1)
i ‖2]

ai
− aiEt[‖u(t+1)

i −Xi:w
(t)‖2]

4
. (B.1.5)

130

Notice that each α̃
(t+1)
i depends on the random variable u(t+1)

i and is independent of the
random index j. But α(t+1)

i depends on both u(t+1)
i and j. Using the law of total expectation,

Et[·] = P(j = i)Et[· |j = i] + P(j 6= i)Et[· |j 6= i],

we obtain

Et[α
(t+1)
i] = piEt[α̃

(t+1)
i] + (1− pi)α(t)

i , (B.1.6)

Et[‖α(t+1)
i − α(t)

i ‖2] = piEt[‖α̃(t+1)
i − α(t)

i ‖2], (B.1.7)

Et[‖α(t+1)
i − α?i ‖2] = piEt[‖α̃(t+1)

i − α?i ‖2] + (1− pi)Et[‖α(t)
i − α?i ‖2]. (B.1.8)

Next, using the equalities (B.1.6), (B.1.7) and (B.1.8), we can replace each term in (B.1.5) con-
taining α̃(t+1)

i with terms that contain only α(t)
i and α(t+1)

i . By doing so and rearranging terms
afterwards, we obtain(

1

pi

(
1

2σi
+ γi

)
− γi

)
‖α(t)

i − α?i ‖2

≥ 1

pi

(
1

2σi
+ γi

)
Et[‖α(t+1)

i − α?i ‖2 +
1

pi

(
1

2σi
− 1

ai

)
Et[‖α(t+1)

i − α(t)
i ‖2

− aiEt[‖u(t+1)
i −Xi:w

(t)‖2]

4
+
〈
α?i − α

(t)
i , Xi:(w

(t) − w?)
〉

−Et

[〈 1

pi
(α

(t+1)
i − α(t)

i), Xi:(w
(t) − w?)

〉]
.

Summing up the above inequality for i = 1, . . . ,m gives the desired result in (B.1.2).

Lemma 4 For each k = 1, . . . , n, let v(t+1)
k ∈ Rdi be a random variable and define

w̃
(t+1)
k = proxτkgk

(
w

(t)
k − τkv

(t+1)
k

)
.

We choose an index l randomly from {1, . . . , n} with probability distribution
{
ql
}n
l=1

and let

w
(t+1)
k =

{
w̃

(t+1)
k if k = l,

w
(t)
k otherwise.

If each v(t+1)
k is independent of l and satisfies Et

[
v

(t+1)
k

]
= 1

m
(X:k)

Tα(t), then we have
n∑
k=1

(
1

qk

(
1

2τk
+ λ

)
− λ
)
‖w(t)

k − w
?
k‖2

≥
n∑
k=1

1

qk

(
1

2τk
+ λ

)
Et[‖w(t+1)

k − w?k‖2] +
n∑
k=1

1

qk

(
1

2τk
− 1

bk

)
Et[‖w(t+1)

k − w(t)
k ‖

2]

−
n∑
k=1

bk
4

Et

[∥∥∥v(t+1)
k − 1

m
(X:k)

Tα(t)
∥∥∥2
]

+
1

m

〈
X(w(t) − w?), α(t) − α?

〉
+

n∑
k=1

1

qk
Et

[〈
w

(t+1)
k − w(t)

k ,
1

m
(X:k)

T (α(t) − α?)
〉]

, (B.1.9)

131

where (w?, α?) is the saddle point of L(w, α) defined in (6.2.1), and the bi’s are arbitrary positive
numbers.

Lemma 4 is similar to Lemma 3 and can be proved using the same techniques. Based on
these two lemmas, we can prove the following proposition.
Proposition 3 The t-th iteration within the s-th stage of Algorithm 7 guarantees

m∑
i=1

1

m

[
1

pi

(
1

2σi
+ γi

)
− γi +

n∑
k=1

3τk‖Xik‖2

mpi

]
‖α(t)

i − α?i ‖2 +
m∑
i=1

n∑
k=1

2τk‖Xik‖2

m2pi
‖ᾱ(s)

i − α?i ‖2

+
n∑
k=1

[
1

qk

(
1

2τk
+ λ

)
− λ+

m∑
i=1

3σi‖Xik‖2

mqk

]
‖w(t)

k − w
?
k‖2 +

m∑
i=1

n∑
k=1

2σi‖Xik‖2

mqk
‖w̄(s)

k − w
?
k‖2

≥
m∑
i=1

1

mpi

(
1

2σi
+ γi

)
Et

[
‖α(t+1)

i − α?i ‖2
]

+
n∑
k=1

1

qk

(
1

2τk
+ λ

)
Et

[
‖w(t+1)

k − w?k‖2
]
. (B.1.10)

Proof: Multiplying both sides of the inequality (B.1.2) by 1
m

and adding to the inequality (B.1.9)
gives

m∑
i=1

1

m

(
1

pi

(
1

2σi
+ γi

)
− γi

)
‖α(t)

i − α?i ‖2 +
n∑
k=1

(
1

qk

(
1

2τk
+ λ

)
− λ
)
‖w(t)

k − w
?
k‖2

≥
m∑
i=1

1

mpi

(
1

2σi
+ γi

)
Et[‖α(t+1)

i − α?i ‖2] +
n∑
k=1

1

qk

(
1

2τk
+ λ

)
Et[‖w(t+1)

k − w?k‖2]

+
m∑
i=1

1

mpi

(
1

2σi
− 1

ai

)
Et[‖α(t+1)

i − α(t)
i ‖2] +

n∑
k=1

1

qk

(
1

2τk
− 1

bk

)
Et[‖w(t+1)

k − w(t)
k ‖

2]

−
n∑
k=1

bk
4

Et

[∥∥∥v(t+1)
k − 1

m
(X:k)

Tα(t)
∥∥∥2
]

+
n∑
k=1

1

qk
Et

[〈
w

(t+1)
k − w(t)

k ,
1

m
(X:k)

T (α(t) − α?)
〉]

−
m∑
i=1

ai
4m

Et[‖u(t+1)
i −Xi:w

(t)‖2]−
m∑
i=1

1

mpi
Et

[〈
α

(t+1)
i − α(t)

i , Xi:(w
(t) − w?)

〉]
. (B.1.11)

We notice that the terms containing 1
m

〈
X(w(t) − w?), α(t) − α?

〉
from (B.1.2) and (B.1.9) can-

celed each other. Next we bound the last four terms on the right-hand side of (B.1.11).
As in Algorithm 7, for each i = 1, . . . ,m, we define a random variable

u
(t+1)
i = ū

(s)
i −

1

ql
Xilw̄

(s)
l +

1

ql
Xilw

(t)
l ,

which depends on the random index l ∈ {1, . . . , n}. Taking expectation with respect to l yields

Et[u
(t+1)
i] =

n∑
k=1

qk

(
ū

(s)
i −

1

qk
Xikw̄

(s)
k +

1

qk
Xikw

(t)
k

)
= Xi:w

(t), i = 1, 2, . . . ,m.

Therefore u(t+1)
i satisfies the assumption in Lemma 3. In order to bound its variance, we notice

that
n∑
k=1

qk

(
1

qk
Xikw̄

(s)
k −

1

qk
Xikw

(t)
k

)
= Xi:w̄

(s) −Xi:w
(t) = ū

(s)
i −Xi:w

(t).

132

Using the relation between variance and the second moment, we have

Et

[
‖u(t+1)

i −Xi:w
(t)‖2

]
=

n∑
k=1

qk

∥∥∥ū(s)
i −

1

qk
Xikw̄

(s)
k +

1

qk
Xikw

(t)
k −Xi:w

(t)
∥∥∥2

=
n∑
k=1

1

qk

∥∥∥Xikw̄
(s)
k −Xikw

(t)
k

∥∥∥2

− ‖ū(s)
i −Xi:w

(t)‖2

≤
n∑
k=1

1

qk

∥∥∥Xik(w̄
(s)
k − w

(t)
k)
∥∥∥2

≤
n∑
k=1

2‖Xik‖2

qk

(
‖w̄(s)

k − w
?
k‖2 + ‖w(t)

k − w
?
k‖2
)
. (B.1.12)

Similarly, for k = 1, . . . , n, we have

Et[v
(t+1)
k] =

m∑
i=1

pi

(
v̄

(s)
k −

1

pi

1

m
(Xik)

T ᾱ
(s)
i +

1

pi

1

m
(Xik)

Tα
(t)
i

)
=

1

m
(X:k)

Tα(t).

Therefore v(t+1)
k satisfies the assumption in Lemma 4. Furthermore, we have

Et

[∥∥∥v(t+1)
k − 1

m
(X:k)

Tα(t)
∥∥∥2
]

=
m∑
i=1

pi

∥∥∥v̄(s)
k −

1

pi

1

m
(Xik)

T ᾱ
(s)
i +

1

pi

1

m
(Xik)

Tα
(t)
i −

1

m
(X:k)

Tα(t)
∥∥∥2

=
m∑
i=1

1

pi

∥∥∥ 1

m
(Xik)

T ᾱ
(s)
i −

1

m
(Xik)

Tα
(t)
i

∥∥∥2

−
∥∥∥v̄(s)

k −
1

m
(X:k)

Tα(t)
∥∥∥2

≤
m∑
i=1

1

pi

∥∥∥ 1

m
(Xik)

T
(
ᾱ

(s)
i − α

(t)
i

)∥∥∥2

≤
m∑
i=1

2‖Xik‖2

pim2

(
‖ᾱ(s)

i − α?i ‖2 + ‖α(t)
i − α?i ‖2

)
. (B.1.13)

Now we consider the two terms containing inner products in (B.1.11). Using the conditional
expectation relation (B.1.6), we have

Et

[
−
〈
α

(t+1)
i − α(t)

i , Xi:(w
(t) − w?)

〉]
= piEt

[
−
〈
α̃

(t+1)
i − α(t)

i , Xi:(w
(t) − w?)

〉]
≥ piEt

[
− 1

ci
‖α̃(t+1)

i − α(t)
i ‖2 − ci

4
‖Xi:(w

(t) − w?)‖2

]
= −pi

ci
Et

[
‖α̃(t+1)

i − α(t)
i ‖2

]
− cipi

4
‖Xi:(w

(t) − w?)‖2

= − 1

ci
Et

[
‖α(t+1)

i − α(t)
i ‖2

]
− cipi

4
‖Xi:(w

(t) − w?)‖2,

(B.1.14)

133

where we used Young’s inequality with ci being an arbitrary positive number, and the last equality
used (B.1.7). We note that for any n vectors z1, . . . , zn ∈ RNi , it holds that

∥∥∥ n∑
k=1

zk

∥∥∥2

≤
n∑
k=1

1

qk
‖zk‖2.

To see this, we let zk,j denote the jth component of zk and use the Cauchy-Schwarz inequality:

∥∥∥∥ n∑
k=1

zk

∥∥∥∥2

=

Ni∑
j=1

(
n∑
k=1

zk,j

)2

=

Ni∑
j=1

(
n∑
k=1

zk,j√
qk

√
qk

)2

≤
Ni∑
j=1

(
n∑
k=1

(
zk,j√
qk

)2
)(

n∑
k=1

(√
qk
)2

)

=

Ni∑
j=1

(
n∑
k=1

z2
k,j

qk

)
=

n∑
k=1

1

qk

Ni∑
j=1

z2
k,j =

n∑
k=1

1

qk
‖zk‖2.

Applying this inequality to the vector Xi:(w
(t) − w?) =

∑n
k=1Xik(w

(t)
k − w?k), we get

‖Xi:(w
(t) − w?)‖2 ≤

n∑
k=1

1

qk
‖Xik(w

(t)
k − w

?
k)‖2.

Therefore we can continue the inequality (B.1.14), for each i = 1, . . . ,m, as

Et

[
−
〈
α

(t+1)
i − α(t)

i , Xi:(w
(t) − w?)

〉]
≥ − 1

ci
Et

[
‖α(t+1)

i − α(t)
i ‖2

]
− cipi

4

n∑
k=1

1

qk
‖Xik(w

(t)
k − w

?
k)‖2

≥ − 1

ci
Et

[
‖α(t+1)

i − α(t)
i ‖2

]
− cipi

4

n∑
k=1

1

qk
‖Xik‖2‖w(t)

k − w
?
k‖2. (B.1.15)

Using similarly arguments, we can obtain, for each k = 1, . . . , n and arbitrary hk > 0,

Et

[〈
w

(t+1)
k − w(t)

k ,
1

m
(X:k)

T (α(t) − α?)
〉]

≥ − 1

hk
Et

[
‖w(t+1)

k − w(t)
k ‖

2
]
− hkqk

4m2

m∑
i=1

1

pi
‖Xik‖2‖α(t)

i − α?i ‖2. (B.1.16)

134

Applying the bounds in (B.1.12), (B.1.13), (B.1.15) and (B.1.16) to (B.1.11) and rearranging
terms, we have

m∑
i=1

1

m

[
1

pi

(
1

2σi
+ γi

)
− γi +

n∑
k=1

bk‖Xik‖2

2mpi
+

n∑
k=1

hk‖Xik‖2

4mpi

]
‖α(t)

i − α?i ‖2

+
n∑
k=1

[
1

qk

(
1

2τk
+ λ

)
− λ+

m∑
i=1

ai‖Xik‖2

2mqk
+

m∑
i=1

ci‖Xik‖2

4mqk

]
‖w(t)

k − w
?
k‖2

+
m∑
i=1

n∑
k=1

bk‖Xik‖2

2m2pi
‖ᾱ(s)

i − α?i ‖2 +
m∑
i=1

n∑
k=1

ai‖Xik‖2

2mqk
‖w̄(s)

k − w
?
k‖2

≥
m∑
i=1

1

mpi

(
1

2σi
+ γi

)
Et[‖α(t+1)

i − α?i ‖2] +
n∑
k=1

1

qk

(
1

2τk
+ λ

)
Et[‖w(t+1)

k − w?k‖2]

+
m∑
i=1

1

mpi

(
1

2σi
− 1

ai
− 1

ci

)
Et[‖α(t+1)

i − α(t)
i ‖2]

+
n∑
k=1

1

qk

(
1

2τk
− 1

bk
− 1

hk

)
Et[‖w(t+1)

k − w(t)
k ‖

2].

The desired result (B.1.10) is obtained by choosing ai = ci = 4σi and bk = hk = 4τk.

Finally, we are ready to prove Theorem 6.3.1. Let θ ∈ (0, 1) be a parameter to be determined
later, and let Γ and η be two constants such that

Γ ≥ max
i,k

{
1

pi

(
1 +

3‖Xik‖2

2θqkλγi

)
,

1

qk

(
1 +

3n‖Xik‖2

2θmpiλγi

)}
, (B.1.17)

η = 1− 1− θ
Γ

. (B.1.18)

It is easy to check that Γ > 1 and η ∈ (0, 1). By the choices of σi and τk in (6.3.5) and (6.3.6)
respectively, we have

1

pi

(
1 +

1

2σiγi

)
=

1

qk

(
1 +

1

2τkλ

)
= Γ, (B.1.19)

for all i = 1, . . . ,m and k = 1, . . . , n. Comparing the above equality with the definition of Γ
in (B.1.17), we have

3‖Xik‖2

2θqkλγi
≤ 1

2σiγi
and

3n‖Xik‖2

2θmpiλγi
≤ 1

2τkλ
,

which implies
3σi‖Xik‖2

qk
≤ θλ and

3nτk‖Xik‖2

mpi
≤ θγi,

135

for all i = 1, . . . ,m and k = 1, . . . , n. Therefore, we have
n∑
k=1

3τk‖Xik‖2

mpi
=

1

n

n∑
k=1

3nτk‖Xik‖2

mpi
≤ 1

n

n∑
k=1

θγi = θγi, i = 1, . . . ,m,(B.1.20)

m∑
i=1

3σi‖Xik‖2

mqk
=

1

m

m∑
i=1

3σi‖Xik‖2

qk
≤ 1

m

m∑
i=1

θλ = θλ, k = 1, . . . , n. (B.1.21)

Now we consider the inequality (B.1.10), and examine the ratio between the coefficients of
‖α(t)

i − α?i ‖2 and Et[‖α(t+1)
i − α?i ‖2]. Using (B.1.20) and (B.1.19), we have

1
pi

(
1

2σi
+ γi

)
− γi +

∑n
k=1

3τk‖Xik‖2
mpi

1
pi

(
1

2σi
+ γi

) ≤ 1− (1− θ)γi
1
pi

(
1

2σi
+ γi

) = 1− 1− θ
Γ

= η. (B.1.22)

Similarly, the ratio between the coefficients of ‖w(t)
k − w?k‖2 and Et[‖w(t+1)

k − w?k‖2] can be
bounded using (B.1.21) and (B.1.19):

1
qk

(
1

2τk
+ λ
)
− λ+

∑m
i=1

3σi‖Xik‖2
mqk

1
qk

(
1

2τk
+ λ
) ≤ 1− (1− θ)λ

1
qk

(
1

2τk
+ λ
) = 1− 1− θ

Γ
= η. (B.1.23)

In addition, the ratio between the coefficients of ‖ᾱ(s)
i − α?i ‖2 and Et[‖α(t+1)

i − α?i ‖2] and that of
‖w̄(s)

k − w?k‖2 and Et[‖w(t+1)
k − w?k‖2] can be bounded as∑k

k=1
2τk‖Xik‖2

mpi

1
pi

(
1

2σi
+ γi

) ≤ (2/3)θγi
1
pi

(
1

2σi
+ γi

) =
(2/3)θ

Γ
=

2θ(1− η)

3(1− θ)
, (B.1.24)

∑m
i=1

3σi‖Xik‖2
mqk

1
qk

(
1

2τk
+ λ
) ≤ (2/3)θλ

1
qk

(
1

2τk
+ λ
) =

(2/3)θ

Γ
=

2θ(1− η)

3(1− θ)
. (B.1.25)

Using (B.1.19) and the four inequalities (B.1.22), (B.1.23), (B.1.24) and (B.1.25), we conclude
that the inequality (B.1.10) implies

η
m∑
i=1

Γγi
m
‖α(t)

i − α?i ‖2 +
2θ(1− η)

3(1− θ)

m∑
i=1

Γγi
m
‖ᾱ(s)

i − α?i ‖2

+η
n∑
k=1

Γλ‖w(t)
k − w

?
k‖2 +

2θ(1− η)

3(1− θ)

n∑
k=1

Γλ‖w̄(s)
k − w

?
k‖2

≥
m∑
i=1

Γγi
m

Et[‖α(t+1)
i − α?i ‖2] +

n∑
k=1

ΓλEt[‖w(t+1)
k − w?k‖2].

Using the definite of Ω(·) in (6.3.3), the inequality above is equivalent to

ηΩ
(
w(t) − w?, α(t) − α?

)
+

2θ(1− η)

3(1− θ)
Ω
(
w̄(s) − w?, |−|α?

)
≥ Et

[
Ω
(
w(t+1) − w?, α(t+1) − α?

)]
. (B.1.26)

136

To simplify further derivation, we define

∆(t) = E
[
Ω
(
w(t) − w?, α(t) − α?

)]
,

∆̄(s) = E
[
Ω
(
w̄(s) − w?, |−|α?

)]
,

where the expectation is taken with respect to all randomness in the sth stage, that is, the random
variables {(j(0), l(0)), (j(1), l(1)), . . . , (j(M−1), l(M−1))}. Then the inequality (B.1.26) implies

2θ(1− η)

3(1− θ)
∆̄(s) + η∆(t) ≥ ∆(t+1).

Dividing both sides of the above inequality by ηt+1 gives

2θ(1− η)

3(1− θ)
∆̄(s)

ηt+1
+

∆(t)

ηt
≥ ∆(t+1)

ηt+1
.

Summing for t = 0, 1, , . . . ,M − 1 gives(
1

η
+

1

η2
+ · · ·+ 1

ηM

)
2θ(1− η)

3(1− θ)
∆̄(s) + ∆(0) ≥ ∆(T)

ηM
,

which further leads to

(1− ηM)
2θ

3(1− θ)
∆̄(s) + ηM∆(0) ≥ ∆(M).

Now choosing θ = 1/3 and using the relation ∆̄(s) = ∆(0) for each stage, we obtain(
1

3
+

2

3
ηM
)

∆(0) ≥ ∆(M).

Therefore if we choose M large enough such that ηM ≤ 1
2
, then

∆(M) ≤ 2

3
∆(0), or equivalently, ∆̄(s+1) ≤ 2

3
∆̄(s).

The condition ηM ≤ 1
2

is equivalent to M ≥ log(2)
log(1/η)

, which can be guaranteed by

M ≥ log(2)

1− η
=

log(2)

1− θ
Γ =

3 log(2)

2
Γ = log(

√
8)Γ.

To further simplify, it suffices to have M ≥ log(3)Γ. Finally, we notice that ∆̄(s+1) ≤ (2/3)∆̄(s)

implies ∆̄(s) ≤ (2/3)s ∆̄(0). which is the desired result in Theorem 6.3.1.

137

B.1.1 Alternative bounds and step sizes
Alternatively, we can let Γ to satisfy

Γ ≥ max
i,k

{
1

pi

(
1 +

3‖X:k‖2
F

2θmqkλγi

)
,

1

qk

(
1 +

3‖Xi:‖2
F

2θmpiλγi

)}
, (B.1.27)

where ‖ · ‖F denotes the Frobenius norm of a matrix. Then by choosing σi and τk that sat-
isfy (B.1.19), we have

3σi‖X:k‖2
F

mqk
≤ θλ and

3τk‖Xi:‖2
F

mpi
≤ θγi,

We can bound the left-hand sides in (B.1.20) and (B.1.21) using Hölder’s inequality, which
results in

n∑
k=1

3τk‖Xik‖2

mpi
≤

n∑
k=1

3τk‖Xik‖2
F

mpi
≤ 3 maxk{τk}‖Xi:‖2

F

mpi
≤ θγi, i = 1, . . . ,m,(B.1.28)

m∑
i=1

3σi‖Xik‖2

mqk
≤

m∑
i=1

3σi‖Xik‖2
F

mqk
≤ 3 maxi{σi}‖X:k‖2

F

mqk
≤ θλ, k = 1, . . . , n.(B.1.29)

The rest of the proof hold without any change. Setting θ = 1/3 gives the condition on Γ in (6.3.8).
In Theorem 6.3.1 and the proof above, we choose Γ as a uniform bound over all combinations

of (i, k) in order to obtain a uniform convergence rates on all blocks of the primal and dual
variables w(t)

k and α(t)
i , so we have a simple conclusion as in (6.3.7). In practice, we can use

different bounds on different blocks and choose step sizes to allow them to converge at different
rates.

For example, we can choose the step sizes σi and τk such that

1

pi

(
1 +

1

2σiγi

)
= max

k

{
1

pi

(
1 +

3‖X:k‖2
F

2θmqkλγi

)}
, i = 1, . . . ,m,

1

qk

(
1 +

1

2τkλ

)
= max

i

{
1

qk

(
1 +

3‖Xi:‖2
F

2θmpiλγi

)}
, k = 1, . . . , n.

Then the inequalities (B.1.28) and (B.1.29) still hold, and we can still show linear convergence
with a similar rate. In this case, the step sizes are chosen as

σi = min
k

{
θmqkλ

3‖X:k‖2
F

}
, i = 1, . . . ,m,

τk = min
i

{
θmpiγi
3‖Xi:‖2

F

}
, k = 1, . . . , n.

If we choose the probabilities to be proportional to the norms of the data blocks, i.e.,

pi =
‖Xi:‖2

F

‖X‖2
F

, qk =
‖X:k‖2

F

‖X‖2
F

,

138

then we have

σi =
θmλ

3‖X‖2
F

, τk =
θmγi

3‖X‖2
F

.

If we further normalize the rows of X , and let R be the norm of each row, then (with θ = 1/3)

σi =
θλ

3R2

m

N
=

λ

9R2

m

N
, τk =

θγi
3R2

m

N
=

γi
9R2

m

N
.

For distributed ERM, we have γi = N
m
γ, thus τk = γ

9R2 as in (6.3.11).

B.2 Proof of Theorem 6.3.2
Consider the following saddle-point problem with doubly separable structure:

min
w∈RD

max
α∈RN

{
L(w, α) ≡ 1

m

m∑
i=1

n∑
k=1

αTi Xikwk −
1

m

m∑
i=1

f ∗i (αi) +
n∑
k=1

gk(wk)

}
. (B.2.1)

Under Assumption 2, L has a unique saddle point (w?, α?). We define

P̃k(wk) ≡
1

m
(α?)TX:kwk + gk(wk)−

1

m
(α?)TX:kw

?
k − gk(w?k), k = 1, . . . , n,(B.2.2)

D̃i(αi) ≡
1

m

(
αTi Xi:w

? − f ∗i (αi)− (α?i)
TXi:w

? + f ∗i (α?i)
)
, i = 1, . . . ,m. (B.2.3)

We note that w?k is the minimizer of P̃k with P̃k(w?k) = 0 and α?i is the maximizer of D̃i with
D̃i(α

?
i) = 0. Moreover, by the assumed strong convexity,

P̃k(wk) ≥
λ

2
‖wk − w?k‖2, D̃i(αi) ≤ − γi

2m
‖αi − α?i ‖2. (B.2.4)

Moreover, we have the following lower bound for the duality gap P (w)−D(α):

n∑
k=1

P̃k(wk)−
m∑
i=1

D̃i(αi) = L(w, α?)− L(w?, α) ≤ P (w)−D(α). (B.2.5)

We can also use them to derive an upper bound for the duality gap, as in the following lemma.
Lemma 5 Suppose Assumption 2 holds. Let (w?, α?) be the saddle-point of L(w, α) and define

P (w) = sup
α
L(w, α), D(α) = inf

w
L(w, α).

Then we have

P (w)−D(α) ≤ L(w, α?)− L(w?, α) +

(
1

m

m∑
i=1

‖Xi:‖2

2γi

)
‖w − w?‖2 +

‖X‖2

2m2λ
‖α− α?‖2.

139

Proof: By definition, the primal function can be written as P (w) = F (w) + g(w), where

F (w) =
1

m

m∑
i=1

fi(Xi:w) =
1

m
max
α

{
αTXw −

m∑
i=1

f ∗i (αi)

}
.

From the optimality conditions satisfied by the saddle point (w?, α?), we have

∇F (w?) =
1

m
XTα?.

By assumption,∇F (w) is Lipschitz continuous with smooth constant 1
m

∑m
i=1

‖Xi:‖2
γi

, which im-
plies

F (w) ≤ F (w?) + 〈∇F (w?), w − w?〉+

(
1

m

m∑
i=1

‖Xi:‖2

2γi

)
‖w − w?‖2

=
1

m

(
(α?)TXw? −

m∑
i=1

f ∗i (α?i)

)
+

1

m
(α?)TX(w − w?) +

(
1

m

m∑
i=1

‖Xi:‖2

2γi

)
‖w − w?‖2

=
1

m

(
(α?)TXw −

m∑
i=1

f ∗i (α?i)

)
+

(
1

m

m∑
i=1

‖Xi:‖2

2γi

)
‖w − w?‖2.

Therefore,

P (w) = F (w) + g(w)

≤ 1

m
(α?)TXw − 1

m

m∑
i=1

f ∗i (α?i) + g(w) +

(
1

m

m∑
i=1

‖Xi:‖2

2γi

)
‖w − w?‖2

= L(w, α?) +

(
1

m

m∑
i=1

‖Xi:‖2

2γi

)
‖w − w?‖2.

Using similar arguments, especially that∇g∗(α) has Lipschitz constant ‖X‖
m2λ

, we can show that

D(α) ≥ L(w?, α)− ‖X‖
2

2m2λ
‖α− α?‖2.

Combining the last two inequalities gives the desired result.

The rest of the proof follow similar steps as in the proof of Theorem 6.3.1. The next two
lemmas are variants of Lemmas 3 and 4.
Lemma 6 Under the same assumptions and setup in Lemma 3, we have

m∑
i=1

(
1

pi

(
1

2σi
+
γi
2

)
− γi

2

)
‖α(t)

i − α?i ‖2 −
m∑
i=1

(
1

pi
− 1

)
mD̃i(α

(t)
i)

≥
m∑
i=1

1

pi

(
1

2σi
+
γi
2

)
Et[‖α(t+1)

i − α?i ‖2] +
m∑
i=1

1

2piσi
Et[‖α(t+1)

i − α(t)
i ‖2]−

m∑
i=1

m

pi
Et

[
D̃i(α

(t+1)
i)

]
+
〈
w(t) − w?, XT (α? − α(t))

〉
−

m∑
i=1

1

pi
Et

[〈
α

(t+1)
i − α(t)

i , u
(t+1)
i −Xi:w

?
〉]
. (B.2.6)

140

Proof: We start by taking conditional expectation Et on both sides of the inequality (B.1.4), and
would like to replace every term containing α̃(t+1)

i with terms that contain only α(t)
i and α(t+1)

i .
In addition to the relations in (B.1.6), (B.1.7) and (B.1.8), we also need

Et

[
f ∗i (α

(t+1)
i)

]
= pif

∗
i (α̃

(t+1)
i) + (1− pi)f ∗i (α

(t)
i).

After the substitutions and rearranging terms, we have

(
1

pi

(
1

2σi
+
γi
2

)
− γi

2

)
‖α(t)

i − α?i ‖2 +

(
1

pi
− 1

)(
f ∗i (α

(t)
i)− f ∗i (α?i)

)
≥ 1

pi

(
1

2σi
+
γi
2

)
Et[‖α(t+1)

i − α?i ‖2] +
1

2piσi
Et[‖α(t+1)

i − α(t)
i ‖2] +

1

pi
Et

[(
f ∗i (α

(t+1)
i)− f ∗i (α?i)

)]
Et

[
〈α?i − α

(t)
i , u

(t+1)
i 〉

]
− 1

pi
Et

[〈
α

(t+1)
i − α(t)

i , u
(t+1)
i

〉]
.

Next, we use the assumption Et

[
u

(t+1)
i

]
= Xi:w

(t) and the definition of D̃i(·) in (B.2.3) to obtain

(
1

pi

(
1

2σi
+
γi
2

)
− γi

2

)
‖α(t)

i − α?i ‖2 −
(

1

pi
− 1

)
mD̃i(α

(t)
i)

≥ 1

pi

(
1

2σi
+
γi
2

)
Et[‖α(t+1)

i − α?i ‖2] +
1

2piσi
Et[‖α(t+1)

i − α(t)
i ‖2]− m

pi
Et

[
D̃i(α

(t+1)
i)

]
+
〈
α?i − α

(t)
i , Xi:

(
w(t) − w?

)〉
− 1

pi
Et

[〈
α

(t+1)
i − α(t)

i , u
(t+1)
i −Xi:w

?
〉]
.

Summing up the above inequality for i = 1, . . . ,m gives the desired result (B.2.6).

Lemma 7 Under the same assumptions and setup in Lemma 4, we have

K∑
k=1

(
1

qk

(
1

2τk
+
λ

2

)
− λ

2

)
‖w(t)

k − w
?
k‖2 +

n∑
k=1

(
1

qk
− 1

)
P̃k(w

(t)
k)

≥
n∑
k=1

1

qk

(
1

2τk
+
λ

2

)
Et[‖w(t+1)

k − w?k‖2] +
n∑
k=1

1

2qkτk
Et[‖w(t+1)

k − w(t)
k ‖

2] +
n∑
k=1

1

qk
Et

[
P̃k(w

(t+1)
k)

]
+

1

m

〈
X(w(t) − w?), α(t) − α?

〉
+

n∑
k=1

1

qk
Et

[〈
w

(t+1)
k − w(t)

k , v
(t+1)
k − 1

m
(X:k)

Tα?
〉]

.

Based on Lemma 6 and Lemma 7, we can prove the following proposition. The proof is very
similar to that of Proposition 3, thus we omit the details here.

141

Proposition 4 The t-th iteration within the s-th stage of Algorithm 7 guarantees
n∑
k=1

(
1

qk
− 1

)
P̃k(w

(t)
k)−

m∑
i=1

(
1

pi
− 1

)
D̃i(α

(t)
i)

+
m∑
i=1

1

m

[
1

pi

(
1

2σi
+
γi
2

)
− γi

2
+

n∑
k=1

3τk‖Xik‖2

mpi

]
‖α(t)

i − α?i ‖2 +
m∑
i=1

n∑
k=1

2τk‖Xik‖2

m2pi
‖ᾱ(s)

i − α?i ‖2

+
n∑
k=1

[
1

qk

(
1

2τk
+
λ

2

)
− λ

2
+

m∑
i=1

3σi‖Xik‖2

mqk

]
‖w(t)

k − w
?
k‖2 +

m∑
i=1

n∑
k=1

2σi‖Xik‖2

mqk
‖w̄(s)

k − w
?
k‖2

≥
n∑
k=1

1

qk
Et

[
P̃k(w

(t+1)
k)

]
−

m∑
i=1

1

pi
Et

[
D̃i(α

(t+1)
i)

]
+

m∑
i=1

1

mpi

(
1

2σi
+
γi
2

)
Et

[
‖α(t+1)

i − α?i ‖2
]

+
n∑
k=1

1

qk

(
1

2τk
+
λ

2

)
Et

[
‖w(t+1)

k − w?k‖2
]
. (B.2.7)

Now we proceed to prove Theorem 6.3.2. Let θ ∈ (0, 1) be a parameter to be determined
later, and let Γ and η be two constants such that

Γ ≥ max
i,k

{
1

pi

(
1 +

6Λ

θqkλγi

)
,

1

qk

(
1 +

6nΛ

θpimλγi

)}
, (B.2.8)

η = 1− 1− θ
Γ

. (B.2.9)

It is easy to check that Γ > 1 and η ∈ (0, 1). The choices of σi and τk in (6.3.14) and (6.3.15)
satisfy

1

pi

(
1

2
+

1

2σiγi

)
=

Γ

2
, i = 1, . . . ,m, (B.2.10)

1

qk

(
1

2
+

1

2τkλ

)
=

Γ

2
, k = 1, . . . , n. (B.2.11)

Comparing them with the definition of Γ in (B.2.8), and using the assumption Λ ≥ ‖Xik‖2
F ≥

‖Xik‖2, we get

6‖Xik‖2

θqkλγi
≤ 6Λ

θqkλγi
≤ 1

σiγi
and

6n‖Xik‖2

θpimλγi
≤ 6nΛ

θpimλγi
≤ 1

τkλ
,

which implies
3σi‖Xik‖2

qk
≤ θ

λ

2
and

3nτk‖Xik‖2

mpi
≤ θ

γi
2
,

for all i = 1, . . . ,m and k = 1, . . . , n. Therefore, we have
n∑
k=1

3τk‖Xik‖2

mpi
=

1

n

n∑
k=1

3nτk‖Xik‖2

mpi
≤ θ

γi
2
, i = 1, . . . ,m, (B.2.12)

m∑
i=1

3σi‖Xik‖2

mqk
=

1

m

m∑
i=1

3σi‖Xik‖2

qk
≤ θ

λ

2
, k = 1, . . . , n. (B.2.13)

142

Now we consider the inequality (B.2.7), and examine the ratio between the coefficients of
‖α(t)

i − α?i ‖2 and Et[‖α(t+1)
i − α?i ‖2]. Using (B.2.12) and (B.2.10), we have

1
pi

(
1

2σi
+ γi

2

)
− γi

2
+
∑n

k=1
3τk‖Xik‖2

mpi

1
pi

(
1

2σi
+ γi

2

) ≤ 1−
(1− θ)γi

2

1
pi

(
1

2σi
+ γi

2

) = 1− 1− θ
Γ

= η. (B.2.14)

Similarly, the ratio between the coefficients of ‖w(t)
k − w?k‖2 and Et[‖w(t+1)

k − w?k‖2] can be
bounded using (B.2.13) and (B.2.11):

1
qk

(
1

2τk
+ λ

2

)
− λ

2
+
∑m

i=1
3σi‖Xik‖2

mqk

1
qk

(
1

2τk
+ λ

2

) ≤ 1−
(1− θ)λ

2

1
qk

(
1

2τk
+ λ

2

) = 1− 1− θ
Γ

= η. (B.2.15)

In addition, the ratio between the coefficients of ‖ᾱ(s)
i − α?i ‖2 and Et[‖α(t+1)

i − α?i ‖2] and that of
‖w̄(s)

k − w?k‖2 and Et[‖w(t+1)
k − w?k‖2] can be bounded as∑n

k=1
2τk‖Xik‖2

mpi

1
pi

(
1

2σi
+ γi

2

) ≤ (2/3)θ γi
2

1
pi

(
1

2σi
+ γi

2

) =
(2/3)θ

Γ
=

2θ(1− η)

3(1− θ)
, (B.2.16)

∑m
i=1

2σi‖Xik‖2
mqk

1
qk

(
1

2τk
+ λ

2

) ≤ (2/3)θ λ
2

1
qk

(
1

2τk
+ λ

2

) =
(2/3)θ

Γ
=

2θ(1− η)

3(1− θ)
. (B.2.17)

Also, the ratios between the coefficients of P̃k(w
(t)
k) and Et

[
P̃k(w

(t+1)
k)

]
is 1 − qk, and that of

D̃k(α
(t)
i) and Et

[
D̃i(α

(t+1)
i)

]
is 1− pi. From the definition of Γ and η in (B.2.8) and (B.2.9), we

have

1− pi ≤ η for i = 1, . . . ,m, and 1− qk ≤ η for k = 1, . . . , n. (B.2.18)

Using the relations in (B.2.10) and (B.2.11) and the inequalities (B.2.14), (B.2.15), (B.2.16),
(B.2.17) and (B.2.18), we conclude that the inequality (B.2.7) implies

η

(
n∑
k=1

1

qk
P̃k(w

(t)
k)−

m∑
i=1

1

pi
D̃i(α

(t)
i)

)
+ η

(
m∑
i=1

Γγi
2m
‖α(t)

i − α?i ‖2 +
n∑
k=1

Γλ

2
‖w(t)

k − w
?
k‖2

)

+
2θ(1− η)

3(1− θ)

(
m∑
i=1

Γγi
2m
‖ᾱ(s)

i − α?i ‖2

n∑
k=1

Γλ

2
‖w̄(s)

k − w
?
k‖2

)

≥
n∑
k=1

1

qk
Et

[
P̃k(w

(t+1)
k)

]
−

m∑
i=1

1

pi
Et

[
D̃i(α

(t+1)
i)

]
+

m∑
i=1

Γγi
2m

Et[‖α(t+1)
i − α?i ‖2] +

n∑
k=1

Γλ

2
Et[‖w(t+1)

k − w?k‖2],

143

which is equivalent to

η

(
n∑
k=1

1

qk
P̃k(w

(t)
k)−

m∑
i=1

1

pi
D̃i(α

(t)
i) +

Γλ

2
‖w(t) − w?‖2 +

1

m

m∑
i=1

Γγi
2
‖α(t)

i − α?i ‖2

)

+
2θ(1− η)

3(1− θ)

(
Γλ

2
‖w̄(s) − w?‖2 +

1

m

m∑
i=1

Γγi
2
‖ᾱ(s)

i − α?i ‖2

)
(B.2.19)

≥ Et

[
n∑
k=1

1

qk
P̃k(w

(t+1)
k)−

m∑
i=1

1

pi
D̃i(α

(t+1)
i) +

Γλ

2
‖w(t+1)− w?‖2 +

1

m

m∑
i=1

Γγi
2
‖α(t+1)

i − α?i ‖2

]
.

To simplify further derivation, we define

∆(t) =
n∑
k=1

1

qk
P̃k(w

(t)
k)−

m∑
i=1

1

pi
D̃i(α

(t)
i) +

Γλ

2
‖w(t) − w?‖2 +

1

m

m∑
i=1

Γγi
2
‖α(t)

i − α?i ‖2,

∆̄(s) =
n∑
k=1

1

qk
P̃k(w̄

(s)
k)−

m∑
i=1

1

pi
D̃i(ᾱ

(s)
i) +

Γλ

2
‖w̄(s) − w?‖2 +

1

m

m∑
i=1

Γγi
2
‖ᾱ(s)

i − α?i ‖2.

Using the facts that P̃k(w̄
(s)
k) ≥ 0 and −D̃i(ᾱ

(s)
i) ≥ 0, the inequality (B.2.19) implies

2θ(1− η)

3(1− θ)
∆̄(s) + ηE

[
∆(t)

]
≥ E

[
∆(t+1)

]
,

where the expectation is taken with respect to all randomness in the s-th stage, that is, the random
variables {(j(0), l(0)), (j(1), l(1)), . . . , (j(M−1), l(M−1))}. Next we choose θ = 1/3 and follow the
same arguments as in the proof for Theorem 6.3.1 to obtain E

[
∆(M)

]
≤ 2

3
∆(0), provided

M ≥ log(3)Γ. This further implies

E
[
∆̄(s)

]
≤
(

2

3

)s
∆̄(0). (B.2.20)

From the definition of Γ in (B.2.8), we have 1
qk

< Γ for k = 1, . . . , n and 1
pi
< Γ for

i = 1, . . . ,m. Therefore,

∆̄(0) ≤ Γ

(
n∑
k=1

P̃k(w̄
(0)
k)−

m∑
i=1

D̃i(ᾱ
(0)
i) +

λ

2
‖w̄(0) − w?‖2 +

1

m

m∑
i=1

γi
2
‖ᾱ(0)

i − α?i ‖2

)

≤ 2Γ

(
n∑
k=1

P̃k(w̄
(0)
k)−

m∑
i=1

D̃i(ᾱ
(0)
i)

)
≤ 2Γ

(
P (w̄(0))−D(ᾱ(0))

)
, (B.2.21)

where the second inequality used (B.2.4) and the last inequality used (B.2.5). On the other hand,
we can also lower bound ∆̄(s) using P (w̄(s))−D(|)|. To this end, we notice that with θ = 1/3,

Γ ≥ max
i,k

{
1

pi

(
1 +

18Λ

qkλγi

)
,

1

qk

(
1 +

18nΛ

pimλγi

)}
≥ max

i,k

{
18Λ

piqkλγi
,

18nΛ

piqkmλγi

}
.

144

Noticing that maxk{1/qk} ≥ n and nΛ ≥ ‖Xi:‖2
F for all i = 1, . . . ,m, we have

Γ ≥ max
i,k

{
18Λ

qkλγi

}
≥ max

i

{
18nΛ

λγi

}
≥ 18

mλ

m∑
i=1

nΛ

γi
≥ 18

mλ

m∑
i=1

‖Xi:‖2
F

γi
≥ 18

mλ

m∑
i=1

‖Xi:‖2

γi
.

Moreover, since Γ ≥ maxk

{
18Λ

piqkλγi

}
≥ 18nΛ

piλγi
for all i and mnΛ ≥ ‖X‖2

F , we have

1

m

m∑
i=1

Γγi‖ᾱ(s)
i − α?i ‖2 ≥ 1

m

m∑
i=1

18nΛ

piλγi
γi‖ᾱ(s)

i − α?i ‖2 =
18mnΛ

m2λ

m∑
i=1

‖ᾱ(s)
i − α?i ‖2

pi

≥ 18‖X‖2
F

m2λ

(m∑
i=1

‖ᾱ(s)
i − α?i ‖

)2

≥ 18‖X‖2

m2λ

m∑
i=1

‖ᾱ(s)
i − α?i ‖2 =

18‖X‖2

m2λ
‖ |−|α?‖2.

Therefore, from the definition of ∆̄(s),

∆̄(s) =
n∑
k=1

1

qk
P̃k(w̄

(s)
k)−

m∑
i=1

1

pi
D̃i(ᾱ

(s)
i) +

Γλ

2
‖w̄(s) − w?‖2 +

1

m

m∑
i=1

Γγi
2
‖ᾱ(s)

i − α?i ‖2

≥
n∑
k=1

P̃k(w̄
(s)
k)−

m∑
i=1

D̃i(ᾱ
(s)
i) +

(
18

m

m∑
i=1

‖Xi:‖2

γi

)
‖w̄(s) − w?‖2 +

18‖X‖2

m2λ
‖ |−|α?‖2

= L(w̄(s), α?)− L(w?, |)|+
(

18

m

m∑
i=1

‖Xi:‖2

γi

)
‖w̄(s) − w?‖2 +

18‖X‖2

m2λ
‖ |−|α?‖2

≥ P (w̄(s))−D(|)| , (B.2.22)

where the last inequality is due to Lemma 5. Combining (B.2.20), (B.2.21) and (B.2.22) gives
the desired result:

E
[
P (w̄(s))−D(|)|

]
≤
(

2

3

)s
2Γ
(
P (w̄(0))−D(ᾱ(0))

)
.

B.3 Proof of Theorem 6.4.1
To facilitate the analysis of DSCOVR-SAGA in Algorithm 8, we define two sequences of ma-
trices recursively. The first is {W (t)}t≥0, where each W (t) ∈ Rm×d. They are partitioned into
m × n blocks, and we denote each block as W (t)

ik ∈ R1×dk . The recursive updates for W (t) are
as follows:

W (0) = 1m ⊗
(
w(0)

)T
,

W
(t+1)
ik =

{ (
w

(t)
l

)T if i = j and k = l,

W
(t)
ik otherwise,

t = 0, 1, 2, . . . , (B.3.1)

145

where 1m denotes the vector of all ones in Rm. and ⊗ denotes the Kronecker product of two
matrices. The second sequence is {A(t)}t≥0, where each A(t) ∈ RN×n. They are partitioned into
m× n blocks, and we denote each block as A(t)

ik ∈ RNi×1. The recursive updates for A(t) are as
follows:

A(0) = α(0) ⊗ 1Tn ,

A
(t+1)
ik =

{
α

(t)
j if i = j and k = l,

A
(t)
ik otherwise,

t = 0, 1, 2, (B.3.2)

The matricesW (t) andA(t) consist of most recent values of the primal and dual block coordinates,
updated at different times, up to time t.

Notice that in Algorithm 8, the matrices U (t) ∈ RN×n follow the same partitioning as the
matrices A(t), and the matrices V (t) ∈ Rm×d follow the same partitioning as the matrices W (t).
According to the updates of U (t), V (t), ū(t) and v̄(t) in Algorithm 8, we have for each t ≥ 0,

U
(t)
ik = Xik

(
W

(t)
ik

)T
, i = 1, . . . ,m, k = 1, . . . , n,

V
(t)
ik =

1

m

(
A

(t)
ik

)T
Xik, i = 1, . . . ,m, k = 1, . . . , n.

Proposition 5 Suppose Assumption 2 holds. The t-th iteration of Algorithm 8 guarantees
m∑
i=1

1

m

[
1

pi

(
1

2σi
+ γi

)
− γi +

n∑
k=1

3τk‖Xik‖2

mpi

]
‖α(t)

i − α?i ‖2 +
m∑
i=1

n∑
k=1

2τk‖Xik‖2

m2pi
‖A(t)

ik − α
?
i ‖2

+
n∑
k=1

[
1

qk

(
1

2τk
+ λ

)
− λ+

m∑
i=1

3σi‖Xik‖2

mqk

]
‖w(t)

k − w
?
k‖2 +

m∑
i=1

n∑
k=1

2σi‖Xik‖2

mqk
‖
(
W

(t)
ik

)T − w?k‖2

≥
m∑
i=1

1

mpi

(
1

2σi
+ γi

)
Et

[
‖α(t+1)

i − α?i ‖2
]

+
n∑
k=1

1

qk

(
1

2τk
+ λ

)
Et

[
‖w(t+1)

k − w?k‖2
]

(B.3.3)

Proof: The main differences between Algorithm 7 and Algorithm 8 are the definitions of u(t+1)
j

and v(t+1)
l . We start with the inequality (B.1.11) and revisit the bounds for the following two

quantities:

Et

[
‖u(t+1)

i −Xi:w
(t)‖2

]
and Et

[∥∥∥v(t+1)
k − 1

m
(X:k)

Tα(t)
∥∥∥2
]
.

For Algorithm 8, we have

u
(t+1)
i = ū

(t)
i −

1

ql
U

(t)
il +

1

ql
Xilw

(t)
l , i = 1, . . . ,m,

v
(t+1)
k = v̄

(t)
k −

1

pj
(V

(t)
jk)T +

1

pj

1

m
(Xjk)

Tα
(t)
j , k = 1, . . . , n.

We can apply the reasoning in (6.4.5) and (6.4.6) to every block coordinate and obtain

Et

[
u

(t+1)
i

]
= Xi:w

(t), i = 1, . . . ,m,

Et

[
v

(t+1)
k

]
=

1

m
(X:k)

Tα(t), k = 1, . . . , n.

146

Therefore they satisfy the assumptions in Lemma 3 and Lemma 4, respectively. Moreover, fol-
lowing similar arguments as in (B.1.12) and (B.1.13), we have

Et

[
‖u(t+1)

i −Xi:w
(t)‖2

]
≤

n∑
k=1

2‖Xik‖2

qk

(∥∥∥(W (t)
ik

)T − w?k∥∥∥2

+ ‖w(t)
k − w

?
k‖2

)
,

Et

[∥∥∥v(t+1)
k − 1

m
(X:k)

Tα(t)
∥∥∥2
]
≤

m∑
i=1

2‖Xik‖2

m2pi

(∥∥∥(A(t)
ik

)T − α?i∥∥∥2

+ ‖α(t)
i − α?i ‖2

)
.

The rest of the proof are the same as in the proof of Proposition 3.

Now we are ready to prove Theorem 6.4.1. By the definition of W (t) in (B.3.1) and A(t)

in (B.3.2), we have

Et

[∥∥(W (t+1)
ik)T − w?k

∥∥2
]

= piqk
∥∥w(t)

k − w
?
k

∥∥2
+ (1− piqk)

∥∥(W (t)
ik

)T − w?k∥∥2
, (B.3.4)

Et

[∥∥A(t+1)
ik − α?i

∥∥2
]

= piqk
∥∥α(t)

i − α?i
∥∥2

+ (1− piqk)
∥∥A(t)

ik − α
?
i

∥∥2
. (B.3.5)

For all i = 1, . . . ,m and k = 1, . . . , n, let

ξik =
3σi‖Xik‖2

mpiq2
k

and ζik =
3τk‖Xik‖2

m2p2
i qk

. (B.3.6)

We multiply (B.3.4) by ξik and (B.3.5) by ζik and add them to (B.3.3) to obtain

m∑
i=1

1

m

[
1

pi

(
1

2σi
+ γi

)
− γi +

n∑
k=1

6τk‖Xik‖2

mpi

]
‖α(t)

i − α?i ‖2

+
n∑
k=1

[
1

qk

(
1

2τk
+ λ

)
− λ+

m∑
i=1

6σi‖Xik‖2

mqk

]
‖w(t)

k − w
?
k‖2

+
m∑
i=1

n∑
k=1

(
1− 1

3
piqk

)
ζik
∥∥A(t)

ik − α
?
i

∥∥2
+

m∑
i=1

n∑
k=1

(
1− 1

3
piqk

)
ξik
∥∥(W (t)

ik

)T − w?k∥∥2

≥
m∑
i=1

1

mpi

(
1

2σi
+ γi

)
Et

[
‖α(t+1)

i − α?i ‖2
]

+
n∑
k=1

1

qk

(
1

2τk
+ λ

)
Et

[
‖w(t+1)

k − w?k‖2
]

+
m∑
i=1

n∑
k=1

ζikEt

[∥∥A(t+1)
ik − α?i

∥∥2]
+

m∑
i=1

n∑
k=1

ξikEt

[∥∥(W (t+1)
ik

)T − w?k∥∥2]
. (B.3.7)

Let θ ∈ (0, 1) be a parameter to be determined later, and Γ be a constant such that

Γ ≥ max
i,k

{
1

pi

(
1 +

3‖Xik‖2

2θqkλγi

)
,

1

qk

(
1 +

3n‖Xik‖2

2θpimλγi

)
,

1

piqk

}
. (B.3.8)

The choices of σi in (6.4.8) and τk in (6.4.9) satisfy

1

pi

(
1 +

1

2σiγi

)
=

1

qk

(
1 +

1

2τkλ

)
= Γ. (B.3.9)

147

Comparing the above equality with the definition of Γ in (B.3.8), we have

3‖Xik‖2

2θqkλγi
≤ 1

2σiγi
and

3n‖Xik‖2

2θpimλγi
≤ 1

2τkλ
,

which implies that

6σi‖Xik‖2

qk
≤ 2θλ and

6nτk‖Xik‖2

mpi
≤ 2θγi (B.3.10)

hold for all i = 1, . . . ,m and k = 1, . . . , n. Therefore, we have

n∑
k=1

6τk‖Xik‖2

mpi
=

1

n

n∑
k=1

6nτk‖Xik‖2

mpi
≤ 2θγi, i = 1, . . . ,m, (B.3.11)

m∑
i=1

6σi‖Xik‖2

mqk
=

1

m

m∑
i=1

6σi‖Xik‖2

qk
≤ 2θλ, k = 1, . . . , n. (B.3.12)

Now we consider the inequality (B.3.7), and examine the ratio between the coefficients of ‖α(t)
i −

α?i ‖2 and Et[‖α(t+1)
i − α?i ‖2]. Using (B.3.11) and (B.3.9), we have

1
pi

(
1

2σi
+ γi

)
− γi +

∑n
k=1

6τk‖Xik‖2
mpi

1
pi

(
1

2σi
+ γi

) ≤ 1− (1− 2θ)γi
1
pi

(
1

2σi
+ γi

) = 1− 1− 2θ

Γ
. (B.3.13)

Similarly, the ratio between the coefficients of ‖w(t)
k − w?k‖2 and Et[‖w(t+1)

k − w?k‖2] can be
bounded using (B.3.12) and (B.3.9):

1
qk

(
1

2τk
+ λ
)
− λ+

∑m
i=1

6σi‖Xik‖2
mqk

1
qk

(
1

2τk
+ λ
) ≤ 1− (1− 2θ)λ

1
qk

(
1

2τk
+ λ
) = 1− 1− 2θ

Γ
. (B.3.14)

We notice that in (B.3.7), the ratios between the coefficients of ζik
∥∥A(t)

ik −α?i
∥∥2 and ζikEt

[∥∥A(t+1)
ik − α?i

∥∥2
]
,

as well as and that of ξik
∥∥(W (t)

ik

)T −w?k∥∥2 and ξikEt

[∥∥(W (t+1)
ik

)T −w?k∥∥2], are all 1− 1
3
piqk. By

definition of Γ in (B.3.8), we have

1− 1

3
piqk ≤ 1− 1

3Γ
, i = 1, . . . ,m, k = 1, . . . , n. (B.3.15)

We choose θ = 1/3 so that the ratios in (B.3.13) and (B.3.14) have the same bound 1 − 1
3Γ

.

148

Therefore, it follows from inequality (B.3.7) that
m∑
i=1

Γγi
m

Et

[
‖α(t+1)

i − α?i ‖2
]

+
n∑
k=1

ΓλEt

[
‖w(t+1)

k − w?k‖2
]

+
m∑
i=1

n∑
k=1

ζikEt

[∥∥A(t+1)
ik − α?i

∥∥2]
+

m∑
i=1

n∑
k=1

ξikEt

[∥∥(W (t+1)
ik

)T − w?k∥∥2]
.

≤
(

1− 1

3Γ

)(m∑
i=1

Γγi
m
‖α(t)

i − α?i ‖2 +
n∑
k=1

Γλ‖w(t)
k − w

?
k‖2

+
m∑
i=1

n∑
k=1

ζik
∥∥A(t)

ik − α
?
i

∥∥2
+

m∑
i=1

n∑
k=1

ξik
∥∥(W (t)

ik

)T − w?k∥∥2

)
. (B.3.16)

Let’s define

∆(t) = λ‖w(t)−w?‖2+
1

m

m∑
i=1

γi‖α(t)
i −α?i ‖2+

m∑
i=1

n∑
k=1

ζik
Γ

∥∥A(t)
ik−α

?
i

∥∥2
+

m∑
i=1

n∑
k=1

ξik
Γ

∥∥(W (t)
ik

)T−w?k∥∥2
.

Then (B.3.16) implies

E
[
∆(t)

]
≤
(

1− 1

3Γ

)t
∆(0), (B.3.17)

where the expectation is taken with respect to all random variables generated by Algorithm 8 up
to iteration t.

By the definition of ξik in (B.3.6), we have

ξik
Γ

=
3σi‖Xik‖2

mpiq2
k

1

Γ
≤ θλ

mpiqk

1

Γ
≤ θλ

m
=

λ

3m
,

where the first inequality is due to (B.3.10) and the second inequality is due to the relation
Γ ≥ 1

piqk
from the definition of Γ in (B.3.8). Similarly, we have

ζik
Γ

=
3τk‖Xik‖2

m2p2
i qk

1

Γ
≤ θγi
mnpiqk

1

Γ
≤ θγi

3mn
=

γi
3mn

.

Moreover, by the construction in (B.3.1) and (B.3.2), we have for t = 0,

A
(0)
ik = α

(0)
i , for k = 1, . . . , n and i = 1, . . . ,m,(

W
(0)
ik

)T
= w

(0)
k , for i = 1, . . . ,m and k = 1, . . . , n.

Therefore, the last two terms in the definition of ∆(0) can be bounded as
m∑
i=1

n∑
k=1

ζik
Γ

∥∥A(0)
ik − α

?
i

∥∥2
+

m∑
i=1

n∑
k=1

ξik
Γ

∥∥(W (0)
ik

)T − w?k∥∥2

≤
m∑
i=1

n∑
k=1

γi
3mn

∥∥α(0)
i − α?i

∥∥2
+

m∑
i=1

n∑
k=1

λ

3m

∥∥w(0)
k − w

?
k

∥∥2

=
1

3m

m∑
i=1

γi
∥∥α(0)

i − α?i
∥∥2

+
λ

3

∥∥w(0) − w?
∥∥2
,

149

which implies

∆(0) ≤ 4

3

(
λ
∥∥w(0) − w?

∥∥2
+

1

m

m∑
i=1

γi
∥∥α(0)

i − α?i
∥∥2

)
.

Finally, combining with (B.3.17), we have

E
[
∆(t)

]
≤
(

1− 1

3Γ

)t
4

3

(
λ
∥∥w(0) − w?

∥∥2
+

1

m

m∑
i=1

γi
∥∥α(0)

i − α?i
∥∥2

)
,

which further implies the desired result.

B.4 Proof of Theorem 6.5.1
To simplify the presentation, we present the proof for the case γi = γ for all i = 1, . . . ,m. It is
straightforward to generalize to the case where the γi’s are different.
Lemma 8 Let g : RD → R be λ-strongly convex, and f ∗i : RNi → R ∪ {∞} be γ-strongly
convex over its domain. Given any w̃ ∈ Rd and α̃ ∈ RN , we define the following two functions:

L(w, α) = g(w) +
1

m
αTXw − 1

m

m∑
i=1

fi ∗ (αi), (B.4.1)

Lδ(w, α) = L(w, α) +
δλ

2
‖w − w̃‖2 − δγ

2m
‖α− α̃‖2. (B.4.2)

Let (w?, α?) and (w̃?, α̃?) be the (unique) saddle points of L(w, α) and Lδ(w, α), respectively.
Then we have

λ‖w̃ − w̃?‖2 +
γ

m
‖α̃− α̃?‖2 ≤ λ‖w̃ − w?‖2 +

γ

m
‖α̃− α?‖2, (B.4.3)(

λ‖w̃? − w?‖2 +
γ

m
‖α̃? − α?‖2

)1/2

≤ δ

1 + δ

(
λ‖w̃ − w?‖2 +

γ

m
‖α̃− α?‖2

)1/2

.(B.4.4)

Proof: This lemma can be proved using the theory of monotone operators [e.g., 156, 158], as
done by Balamurugan and Bach [12]. Here we give an elementary proof based on first-order
optimality conditions.

By assumption, we have

(w?, α?) = arg min
w

max
α

L(w, α),

(w̃?, α̃?) = arg min
w

max
α

Lδ(w, α).

Optimality conditions for (w̃?, α̃?) as a saddle point of Lδ:

− 1

m
XT α̃? − δλ (w̃? − w̃) ∈ ∂g(w̃?), (B.4.5)

Xw̃? − δγ (α̃? − α̃) ∈ ∂
m∑
i=1

f ∗i (α̃?). (B.4.6)

150

For any ξ ∈ ∂g(w̃?), it holds that ξ + 1
m
XTα? ∈ ∂wL(w̃?, α?). Therefore using (B.4.5) we have

1

m
XT (α? − α̃?)− δλ (w̃? − w̃) ∈ ∂wL(w̃?, α?).

Since L(w, α?) is strongly convex in w with convexity parameter λ, we have

L(w̃?, α?) +

(
1

m
XT (α? − α̃?)− δλ (w̃? − w̃)

)T
(w? − w̃?) +

λ

2
‖w̃? − w?‖2 ≤ L(w?, α?).

(B.4.7)
Similarly, we have

1

m
XT (w̃? − w?)− δγ

m
(α̃? − α̃) ∈ ∂α (−L(w?, α̃?)) ,

and since −L(w?, α) is strongly convex in α with convexity parameter γ
m

, we have

−L(w?, α̃?)+

(
1

m
XT (w̃? − w?)− δγ

m
(α̃? − α̃)

)T
(α?− α̃?)+

γ

2m
‖α̃?−α?‖2 ≤ −L(w?, α?).

(B.4.8)
Adding inequalities (B.4.7) and (B.4.8) together gives

L(w̃?, α?)− L(w?, α̃?)

+ δλ(w̃? − w̃)T (w̃? − w?) +
δγ

m
(α̃? − α̃)T (α̃? − α?) +

λ

2
‖w̃? − w?‖2 +

γ

2m
‖α̃? − α?‖2 ≤ 0.

Combining with the inequality

L(w̃?, α?)− L(w?, α̃?) ≥ λ

2
‖w̃? − w?‖2 +

γ

2m
‖α̃? − α?‖2,

we obtain

λ‖w̃?−w?‖2 +
γ

m
‖α̃?−α?‖2 + δλ(w̃?− w̃)T (w̃?−w?) +

δγ

m
(α̃?− α̃)T (α̃?−α?) ≤ 0. (B.4.9)

Proof of the first claim. We can drop the nonnegative terms on the left-hand side of (B.4.9)
to obtain

λ(w̃? − w̃)T (w̃? − w?) +
γ

m
(α̃? − α̃)T (α̃? − α?) ≤ 0.

The two inner product terms on the left-hand side of the inequality above can be expanded as
follows:

(w̃? − w̃)T (w̃? − w?) = (w̃? − w̃)T (w̃? − w̃ + w̃ − w?) = ‖w̃? − w̃‖2 + (w̃? − w̃)T (w̃ − w?) ,
(α̃? − α̃)T (α̃? − α?) = (α̃? − α̃)T (α̃? − α̃ + α̃− α?) = ‖α̃? − α̃‖2 + (α̃? − α̃)T (α̃− α?).

Combining them with the last inequality, we have

λ‖w̃? − w̃‖2 +
γ

m
‖α̃? − α̃‖2 ≤ −λ(w̃? − w̃)T (w̃ − w?)− γ

m
(α̃? − α̃)T (α̃− α?)

≤ λ

2

(
‖w̃? − w̃‖2 + ‖w̃ − w?‖2

)
+

γ

2m

(
‖α̃? − α̃‖2 + ‖α̃− α?‖2

)
,

151

which implies

λ

2
‖w̃? − w̃‖2 +

γ

2m
‖α̃? − α̃‖2 ≤ λ

2
‖w̃ − w?‖2 +

γ

2m
‖α̃− α?‖2.

Proof of the second claim. We expand the two inner product terms in (B.4.9) as follows:

(w̃? − w̃)T (w̃? − w?) = (w̃? − w? + w? − w̃)T (w̃? − w?) = ‖w̃? − w?‖2 + (w? − w̃)T (w̃? − w?),
(α̃? − α̃)T (α̃? − α?) = (α̃? − α? + α? − α̃)T (α̃? − α?) = ‖α̃? − α?‖2 + (α? − α̃)T (α̃? − α?).

Then (B.4.9) becomes

(1 + δ)λ‖w̃? − w?‖2 + (1 + δ)
Γ

m
‖w̃? − w?‖2

≤ δλ(w̃ − w?)T (w̃? − w?) +
δγ

m
(α̃− α?)T (α̃? − α?)

≤ δ
(
λ‖w̃ − w?‖2 +

γ

m
‖α̃− α?‖2

)1/2 (
λ‖w̃? − w?‖2 +

γ

m
‖α̃? − α?‖2

)1/2

,

where in the second inequality we used the Cauchy-Schwarz inequality. Therefore we have(
λ‖w̃? − w?‖2 +

γ

m
‖α̃? − α?‖2

)1/2

≤ δ

1 + δ

(
λ‖w̃ − w?‖2 +

γ

m
‖α̃− α?‖2

)1/2

,

which is the desired result.

To simplify notations in the rest of the proof, we let z = (w, α) and define

‖z‖ =
(
λ‖w‖2 +

γ

m
‖α‖2

)1/2

.

The results of Lemma 8 can be written as

‖z̃ − z̃?‖ ≤ ‖z̃ − z?‖, (B.4.10)

‖z̃? − z?‖ ≤ δ

1 + δ
‖z̃ − z?‖. (B.4.11)

Next consider the convergence of Algorithm 9, and follow the proof ideas in Balamurugan and
Bach [12, Section D.3].

If we use DSCOVR-SVRG (option 1) in each round of Algorithm 9, then Algorithm 7 is
called with initial point z̃(r) = (w̃(r), α̃(r)) and after S stages, it outputs z̃(r+1) as an approximate
saddle point of L(r)

δ (w, α), which is defined in (6.5.1). Then Theorem 6.3.1 implies

E
[
‖z̃(r+1) − z̃?(r)‖2

]
≤
(

2

3

)S
E
[
‖z̃(r) − z̃?(r)‖2

]
, (B.4.12)

where z̃?(r) denotes the unique saddle point of L(r)
δ (w, α). By Minkowski’s inequality, we have(

E
[
‖z̃(r+1) − z?‖2

])1/2 ≤
(
E
[
‖z̃(r+1) − z̃?(r)‖2

])1/2
+
(
E
[
‖z̃?(r) − z?‖2

])1/2
,

152

where z? is the unique saddle point of L(w, α). Using (B.4.12), (B.4.10) and (B.4.11), we obtain

(
E
[
‖z̃(r+1) − z?‖2

])1/2 ≤
(

2

3

)S/2 (
E
[
‖z̃(r) − z̃?(r)‖2

])1/2
+
(
E
[
‖z̃?(r) − z?‖2

])1/2

≤
(

2

3

)S/2 (
E
[
‖z̃(r) − z?‖2

])1/2
+

δ

1 + δ

(
E
[
‖z̃(r) − z?‖2

])1/2

=

[(
2

3

)S/2
+

δ

1 + δ

] (
E
[
‖z̃(r) − z?‖2

])1/2
, (B.4.13)

Therefore, if S ≥ 2 log(2(1+δ))
log(3/2)

, we have(
2

3

)S/2
+

δ

1 + δ
≤ 1

2(1 + δ)
+

δ

1 + δ
=

1 + 2δ

2(1 + δ)
= 1− 1

2(1 + δ)
,

which implies

E
[
‖z̃(r+1) − z?‖2

]
≤
(

1− 1

2(1 + δ)

)2

E
[
‖z̃(r) − z?‖2

]
. (B.4.14)

If we use DISCOVR-SAGA (option 2) in Algorithm 9, then Algorithm 8 is called with initial
point z̃(r) = (w̃(r), α̃(r)) and after M steps, it outputs z̃(r+1) as an approximate saddle point of
L

(r)
δ (w, α). Then Theorem 6.4.1 implies

E
[
‖z̃(r+1) − z̃?(r)‖2

]
≤ 4

3

(
1− 1

3Γδ

)M
E
[
‖z̃(r) − z̃?(r)‖2

]
.

Using similar arguments as in (B.4.13), we have

(
E
[
‖z̃(r+1) − z?‖

]2)1/2

≤

[
4

3

(
1− 1

3Γδ

)M/2

+
δ

1 + δ

] (
E
[
‖z̃(r) − z?‖2

])1/2
.

Therefore, if M ≥ 6 log
(

8(1+δ)
3

)
Γδ, we have

4

3

(
1− 1

3Γδ

)M/2

+
δ

1 + δ
≤ 1

2(1 + δ)
+

δ

1 + δ
=

1 + 2δ

2(1 + δ)
= 1− 1

2(1 + δ)
,

which implies the same inequality in (B.4.14).
In summary, using either option 1 or option 2 in Algorithm 9, we have

E
[
‖z̃(r) − z?‖2

]
≤
(

1− 1

2(1 + δ)

)2r

‖z̃(0) − z?‖2.

In order to have E
[
‖z̃(r) − z?‖2

]
≤ ε, it suffices to have r ≥ (1 + δ) log

(
‖z̃(0) − z?‖2/ε

)
.

153

154

Bibliography

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian J. Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,
Rafal Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Ra-
jat Monga, Sherry Moore, Derek Gordon Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A. Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda B. Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: Large-scale ma-
chine learning on heterogeneous distributed systems. CoRR, abs/1603.04467, 2016. URL
http://arxiv.org/abs/1603.04467. 3.5.1

[2] Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In Ad-
vances in Neural Information Processing Systems (NIPS) 24, pages 873–881, 2011. 6.2.2

[3] Zeyuan Allen-Zhu. Katyusha: Accelerated variance reduction for faster sgd. ArXiv e-
prints, abs/1603.05953, 2016. 5.2

[4] Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods.
In Proceedings of 49th Annual ACM Symposium on the Theory of Computing (STOC),
pages 1200–1205, 2017. 6.2.1

[5] Zeyuan Allen-Zhu, Peter Richtárik, Zheng Qu, and Yang Yuan. Even faster accelerated
coordinate descent using non-uniform sampling. arXiv preprint arXiv:1512.09103, 2016.
5.2, 5.3

[6] Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman
Ganchev, Slav Petrov, and Michael Collins. Globally normalized transition-based neural
networks. arXiv preprint arXiv:1603.06042, 2016. 2.1

[7] Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learn-
ing and optimization. In Advances in Neural Information Processing Systems (NIPS) 28,
pages 1756–1764. 2015. 6.2.2, 6.9

[8] Arda Aytekin, Hamid Reza Feyzmahdavian, and Mikael Johansson. Analysis and
implementatino of an asynchronous optimization algorithm for the parameter server.
arXiv:1610.05507, 2016. 6.2.2

[9] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object recognition with
visual attention. arXiv preprint arXiv:1412.7755, 2014. 2.2

[10] Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,

155

http://arxiv.org/abs/1603.04467

abs/1607.06450, 2016. URL http://arxiv.org/abs/1607.06450. 3.3.2

[11] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. In International Conference on Learning Represen-
tations, 2015. 2.1, 2.2, 3.1, 3.4

[12] Palaniappan Balamurugan and Francis Bach. Stochastic variance reduction methods for
saddle-point problems. In Advances in Neural Information Processing Systems (NIPS) 29,
pages 1416–1424, 2016. 5.2, 6.2.1, 6.2.2, 6.5, B.4, B.4

[13] Maria Florina Balcan, Simon S. Du, Yining Wang, and Adams Wei Yu. An Improved
Gap-Dependency Analysis of the Noisy Power Method. In COLT, 2016. 1.4

[14] A. Beck and M. Teboulle. A fast iterative shrinkage-threshold algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009. 6.2.1

[15] Yoshua Bengio. Learning deep architectures for ai. Foundations and trends R© in Machine
Learning, 2(1):1–127, 2009. 4.1

[16] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation: Nu-
merical Methods. Prentice-Hall, 1989. 6.1

[17] Stephen P. Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122, 2011. 6.2.2, 6.8, 6.8

[18] A Chambolle and T Pock. A first-order primal-dual algorithm for convex problems with
applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145,
2011. 5.2

[19] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex
problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40
(1):120–145, 2011. 6.2.1

[20] Antonin Chambolle and Thomas Pock. On the ergodic convergence rates of a first-order
primal–dual algorithm. Mathematical Programming, pages 1–35, 2015. 6.2.1

[21] William Chan, Navdeep Jaitly, Quoc V Le, and Oriol Vinyals. Listen, attend and spell.
arXiv preprint arXiv:1508.01211, 2015. 2.2

[22] Danqi Chen, Jason Bolton, and Christopher D. Manning. A thorough examination of the
cnn/daily mail reading comprehension task. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers, 2016. 2.4.4

[23] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to
answer open-domain questions. In Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4,
Volume 1: Long Papers, pages 1870–1879, 2017. (document), 3.2, 3.3.2, 3.5.1, 3.5.1, 3.2

[24] Weizhu Chen, Zhenghao Wang, and Jingren Zhou. Large-scale L-BFGS using MapRe-
duce. In Advances in Neural Information Processing Systems (NIPS) 27, pages 1332–
1340. 2014. 6.2.2

156

http://arxiv.org/abs/1607.06450

[25] Eunsol Choi, Daniel Hewlett, Alexandre Lacoste, Illia Polosukhin, Jakob Uszkoreit, and
Jonathan Berant. Hierarchical question answering for long documents. arXiv preprint
arXiv:1611.01839, 2016. 2.2

[26] François Chollet. Xception: Deep learning with depthwise separable convolutions. CoRR,
abs/1610.02357, 2016. URL http://arxiv.org/abs/1610.02357. 3.3.2

[27] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014. 3.2

[28] Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent
neural networks. arXiv preprint arXiv:1609.01704, 2016. 2.2

[29] Christopher Clark and Matt Gardner. Simple and effective multi-paragraph reading com-
prehension. CoRR, abs/1710.10723, 2017. URL http://arxiv.org/abs/1710.
10723. 3.5.2

[30] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine
Learning Research, 12(Aug):2493–2537, 2011. 2.1

[31] Dominik Csiba and Peter Richtárik. Importance sampling for minibatches. arXiv preprint
arXiv:1602.02283, 2016. 5.3

[32] Dominik Csiba, Zheng Qu, and Peter Richtarik. Stochastic dual coordinate ascent with
adaptive probabilities. In ICML, 2015. 5.3

[33] Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu, and Guoping Hu. Attention-
over-attention neural networks for reading comprehension. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver,
Canada, July 30 - August 4, Volume 1: Long Papers, pages 593–602, 2017. (document),
3.2, 3.2

[34] Andrew M. Dai and Quoc V. Le. Semi-supervised sequence learning. In Advances in
Neural Information Processing Systems, pages 3079–3087, 2015. 2.1

[35] Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina Balcan, and Le Song.
Scalable kernel methods via doubly stochastic gradients. In NIPS, pages 3041–3049,
2014. 5.2

[36] Cong Dang and Guanghui Lan. Randomized first-order methods for saddle point opti-
mization. Technical report, 2014. 5.2

[37] Cong D. Dang and Guanghui Lan. Stochastic block mirror descent methods for nonsmooth
and stochastic optimization. SIAM Journal on Optimization, 25(2):856–881, 2015. 5.2

[38] Jeff Dean and Sanjay Ghemawat. MapReduce: Simplfied data processing on large clus-
ters. Communications of the ACM, 51(1):107–113, 2008. 6.1

[39] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gra-
dient method with support for non-strongly convex composite objectives. In Advances
in Neural Information Processing Systems (NIPS) 27, pages 1646–1654. 2014. 5.2, 6.2,
6.2.1, 6.2.1, 6.3, 6.4

157

http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1710.10723
http://arxiv.org/abs/1710.10723

[40] Aaron Defazio, Justin Domke, and Tibrio S. Caetano. Finito: A faster, permutable incre-
mental gradient method for big data problems. In ICML, pages 1125–1133, 2014. 5.2

[41] Qi Deng, Guanghui Lan, and Anand Rangarajan. Randomized block subgradient methods
for convex nonsmooth and stochastic optimization. Technical report, 2015. 5.2

[42] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805,
2018. 1.1

[43] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. In NAACL, pages 4171–
4186, 2019. 3.5.1

[44] Li Dong, Jonathan Mallinson, Siva Reddy, and Mirella Lapata. Learning to paraphrase
for question answering. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 875–886. Association for Computational Linguis-
tics, 2017. URL http://aclweb.org/anthology/D17-1091. 3.4

[45] Petros Drineas, Michael W. Mahoney, S. Muthukrishnan, and Tamàs Sarlós. Faster least
squares approximation. Numerische Mathematik, 117(2):219–249, feb 2011. 5.4.2

[46] John Duchi, Michael I Jordan, and Brendan McMahan. Estimation, optimization, and
parallelism when data is sparse. In NIPS, pages 2832–2840, 2013. 4.5

[47] John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12:2121–
2159, 2011. 4.1, 4.3, 4.4, 4.4, 4.4

[48] John C Duchi, Alekh Agarwal, and Martin J Wainwright. Dual averaging for distributed
optimization: convergence analysis and network scaling. IEEE Transactions on Automatic
Control, 57(3):592–606, 2012. 4.2, 6.1

[49] R.-E. Fan and C.-J. Lin. LIBSVM data: Classification, regression and multi-label. URL:
http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets, 2011. 6.8

[50] Olivier Fercoq and Peter Richtrik. Accelerated, parallel and proximal coordinate descent.
CoRR, abs/1312.5799, 2013. 5.2

[51] Roy Frostig, Rong Ge, Sham Kakade, and Aaron Sidford. Un-regularizing: approxi-
mate proximal point and faster stochastic algorithms for empirical risk minimization. In
Proceedings of The 32nd International Conference on Machine Learning (ICML), pages
2540–2548. 2015. 6.5

[52] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convo-
lutional sequence to sequence learning. In International Conference on Machine Learning,
2017. 3.2

[53] Yichen Gong and Samuel R. Bowman. Ruminating reader: Reasoning with gated multi-
hop attention. CoRR, abs/1704.07415, 2017. URL http://arxiv.org/abs/1704.
07415. (document), 3.2, 3.7

[54] Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016. 2.2

158

http://aclweb.org/anthology/D17-1091
http://arxiv.org/abs/1704.07415
http://arxiv.org/abs/1704.07415

[55] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014. 2.2

[56] Michael Hahn and Frank Keller. Modeling human reading with neural attention. In
EMNLP, pages 85–95, 2016. 2.2

[57] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions. SIAM Review,
53(2):217–288, May 2011. 5.4.2

[58] Robert Hannah and Wotao Yin. More iterations per second, same quality — why asyn-
chronous algorithms may drastically outperform traditional ones. CAM Report 17-50,
University of California at Los Angeles, 2017. 6.2.2

[59] Elad Hazan, Kfir Y. Levy, and Shai Shalev-Shwartz. Beyond convexity: Stochastic quasi-
convex optimization. In NIPS, pages 1594–1602, 2015. 4.1, 4.2

[60] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In ICCV, 2015. (docu-
ment), 4.1, 4.5.2, 4.2

[61] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In CVPR, 2016. 1.1, 4.5.2, 4.5.2

[62] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. CoRR, abs/1603.05027, 2016. 4.5.3

[63] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay,
Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In
Advances in Neural Information Processing Systems, pages 1693–1701, 2015. 2.1, 3.2

[64] Daniel Hewlett, Alexandre Lacoste, Llion Jones, Illia Polosukhin, Andrew Fandrianto, Jay
Han, Matthew Kelcey, and David Berthelot. Wikireading: A novel large-scale language
understanding task over wikipedia. In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany,
Volume 1: Long Papers, 2016. 3.2

[65] Felix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston. The goldilocks principle:
Reading children’s books with explicit memory representations. CoRR, abs/1511.02301,
2015. 2.1, 2.4.4, 3.2

[66] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Lecture 6a: Overview of mini-
batch gradient descent. Neural Networks for Machine Learning. 4.2, 4.3

[67] Geoffrey Hinton, George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior,
Vincent Vanhoucke, Brian Kingsbury, and Tara Sainath. Deep neural networks for acoustic
modeling in speech recognition. IEEE Signal Processing Magazine, 29:82–97, November
2012. 1.1

[68] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of Convex Analysis. Springer,
2001. 6.2.1

[69] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997. 2.1, 2.2, 2.4, 3.2, 4.5.4

159

[70] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gradient flow
in recurrent nets: the difficulty of learning long-term dependencies. In S. C. Kremer and
J. F. Kolen, editors, A Field Guide to Dynamical Recurrent Neural Networks. IEEE press,
2001. 2.2

[71] Minghao Hu, Yuxing Peng, and Xipeng Qiu. Reinforced mnemonic reader for machine
comprehension. CoRR, abs/1705.02798, 2017. URL http://arxiv.org/abs/
1705.02798. (document), 3.1, 3.2, 3.5.2, 3.2, 3.7, 3.8

[72] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks
with stochastic depth. In Computer Vision - ECCV 2016 - 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV, pages 646–
661, 2016. 3.3.2, 3.5.1

[73] Lei Huang, Xianglong Liu, Bo Lang, Adams Wei Yu, and Bo Li. Orthogonal weight
normalization: Solution to optimization over multiple dependent stiefel manifolds in deep
neural networks. In AAAI, 2018. 1.4

[74] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In ICML, pages 448–456, 2015. 4.2, 4.5.2

[75] Martin Jaggi, Virginia Smith, Martin Takac, Jonathan Terhorst, Sanjay Krishnan, Thomas
Hofmann, and Michael I Jordan. Communication-efficient distributed dual coordinate
ascent. In Advances in Neural Information Processing Systems (NIPS) 27, pages 3068–
3076. 2014. 6.2.2

[76] Yacine Jernite, Edouard Grave, Armand Joulin, and Tomas Mikolov. Variable computation
in recurrent neural networks. arXiv preprint arXiv:1611.06188, 2016. 2.2

[77] Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension
systems. In Proceedings of the 2017 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017, pages
2021–2031, 2017. 3.5.1, 14

[78] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive vari-
ance reduction. In Advances in Neural Information Processing Systems (NIPS) 26, pages
315–323. 2013. 5.2, 6.2, 6.2.1, 6.2.1, 6.3, 6.3

[79] Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large
scale distantly supervised challenge dataset for reading comprehension. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pages 1601–1611, 2017.
(document), 3.2, 3.5, 3.5.2, 3.8

[80] Lukasz Kaiser, Aidan N Gomez, and Francois Chollet. Depthwise separable convolutions
for neural machine translation. arXiv preprint arXiv:1706.03059, 2017. 3.3.2

[81] Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In
EMNLP, 2013. 2.1

[82] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014. 2.1, 3.2, 4.5.5

160

http://arxiv.org/abs/1705.02798
http://arxiv.org/abs/1705.02798

[83] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980. 2.4, 3.5.1, 4.1,
4.2, 4.3, 4.5

[84] Krzysztof C Kiwiel. Convergence and efficiency of subgradient methods for quasiconvex
minimization. Mathematical programming, 90(1):1–25, 2001. 4.2

[85] Jakub Konecný and Peter Richtárik. Semi-stochastic gradient descent methods. CoRR,
abs/1312.1666, 2013. 5.2

[86] Jakub Konecný, Zheng Qu, and Peter Richtárik. Semi-stochastic coordinate descent.
CoRR, abs/1412.6293, 2014. 5.2

[87] Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen Schmidhuber. A clockwork rnn.
In International Conference on Machine Learning, 2014. 2.2

[88] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. In NIPS, pages 1106–1114, 2012. 1.1

[89] Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method. Tech-
nical report, Department of Industrial and System Engineering, University of Florida, July
2015. 5.2, 6.2.1, 6.6, 6.6

[90] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and documents.
In International Conference on Machine Learning (ICML), 2014. 2.1

[91] N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential
convergence rate for finite training sets. In Advances in Neural Information Processing
Systems 25, pages 2672–2680. 2012. 5.2, 6.2.1, 6.3

[92] Yann Lecun, Leon Bottou, Yoshua Bengio, and Patrick Haffner? Gradient-based learning
applied to document recognition. In Proceedings of the IEEE, pages 2278–2324, 1998.
4.5.1

[93] Ching-Pei Lee, Po-Wei Wang, Weizhu Chen, and Chih-Jen Lin. Limited-memory
common-directions method for distributed optimization and its application on empirical
risk minimization. In Proceedings of the 2017 SIAM International Conference on Data
Mining, pages 732–740, 2017. 6.2.2

[94] Jason D. Lee, Qihang Lin, Tengyu Ma, and Tianbao Yang. Distributed stochastic
variance reduced gradient methods and a lower bound for communication complexity.
arXiv:1507.07595, 2015. 6.2.2

[95] Kenton Lee, Tom Kwiatkowski, Ankur P. Parikh, and Dipanjan Das. Learning recurrent
span representations for extractive question answering. CoRR, abs/1611.01436, 2016.
(document), 2.1, 3.2, 3.7

[96] Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationalizing neural predictions. arXiv
preprint arXiv:1606.04155, 2016. 2.2

[97] Kfir Y. Levy. The power of normalization: Faster evasion of saddle points. CoRR,
abs/1611.04831, 2016. URL http://arxiv.org/abs/1611.04831. 4.1, 4.2

[98] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josi-

161

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1611.04831

fovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed machine
learning with the parameter server. In Proceedings of the 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages 583–598, 2014. 6.1, 6.2.2

[99] Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus, and Ni Lao. Neural symbolic
machines: Learning semantic parsers on freebase with weak supervision. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017:
Long Papers, 2017. 2.2

[100] C.-Y. Lin, C.-H. Tsai, C.-P. Lee, and C.-J. Lin. Large-scale logistic regression and linear
support vector machines using Spark. In Proceedings of the IEEE Conference on Big
Data, Washington DC, USA, 2014. 6.1, 6.2.2

[101] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order
optimization. In Advances in Neural Information Processing Systems (NIPS) 28, pages
3384–3392. 2015. 6.5

[102] Qihang Lin and Lin Xiao. An adaptive accelerated proximal gradient method and its
homotopy continuation for sparse optimization. Computatoinal Optimization and Appli-
cations, 60(3):633–674, 2015. 6.8

[103] Qihang Lin, Zhaosong Lu, and Lin Xiao. An accelerated randomized proximal coordinate
gradient method and its application to regularized empirical risk minimization. SIAM
Journal on Optimization, 2015. 5.2, 5.3, 5.4.1

[104] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar. An asynchronous parallel stochastic
coordinate descent algorithm. In Proceedings of the 31st International Conference on
Machine Learning (ICML), pages 469–477, 2014. 6.2.2

[105] Rui Liu, Junjie Hu, Wei Wei, Zi Yang, and Eric Nyberg. Structural embedding of syn-
tactic trees for machine comprehension. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark,
September 9-11, 2017, pages 826–835, 2017. (document), 3.2, 3.7

[106] Zhaosong Lu and Lin Xiao. On the complexity analysis of randomized block-coordinate
descent methods. Mathematical Programming, 152:615–642, 2015. 5.2, 5.3, 5.4.1

[107] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to
attention-based neural machine translation. In EMNLP, 2015. 3.4

[108] Minh-Thang Luong, Eugene Brevdo, and Rui Zhao. Neural machine translation (seq2seq)
tutorial. https://github.com/tensorflow/nmt, 2017. 3.4

[109] Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I. Jordan, Peter Richtárik, and Martin
Takáč. Adding vs. averaging in distributed primal-dual optimization. In Proceedings
of the 32Nd International Conference on International Conference on Machine Learning
(ICML), pages 1973–1982, 2015. 6.2.2, 6.8

[110] Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I. Jordan, Peter Richtárik, and Martin
Takáč. Distributed optimization with arbitrary local solvers. Optimization Methods and
Software, 32(4):813–848, 2017. 6.8

[111] Andrew L Maas, Raymond E Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and

162

Christopher Potts. Learning word vectors for sentiment analysis. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies-Volume 1, pages 142–150. Association for Computational Linguistics, 2011.
2.1, 2.4.2

[112] Michael W. Mahoney. Randomized algorithms for matrices and data. Foundations and
Trends in Machine Learning, 3(2):123–224, 2011. 5.4.2

[113] Julien Mairal. Incremental majorization-minimization optimization with application to
large-scale machine learning. SIAM Journal on Optimization, 25:829–855, 2015. 5.2

[114] Jonathan Mallinson, Rico Sennrich, and Mirella Lapata. Paraphrasing revisited with neu-
ral machine translation. In Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 1, Long Papers, pages 881–
893. Association for Computational Linguistics, 2017. URL http://aclweb.org/
anthology/E17-1083. 3.4

[115] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large
annotated corpus of english: The penn treebank. Computational Linguistics, 19(2):313–
330, 1993. 4.5.4

[116] Shin Matsushima, Hyokun Yun, Xinhua Zhang, and S. V. N. Vishwanathan. Distributed
stochastic optimization of the regularized risk. arXiv:1406.4363, 2014. 5.2, 6.2

[117] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in trans-
lation: Contextualized word vectors. In NIPS, pages 6294–6305, 2017. 3.5.1

[118] H. Brendan McMahan and Matthew J. Streeter. Delay-tolerant algorithms for asyn-
chronous distributed online learning. In Advances in Neural Information Processing Sys-
tems (NIPS) 27, pages 2915–2923, 2014. 6.2.2

[119] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman,
Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold
Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet Talwalkar. MLlib:
Machine learning in Apache Spark. Journal of Machine Learning Research, 17(34):1–7,
2016. 6.1

[120] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013. 2.4.2

[121] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention.
In Advances in neural information processing systems, pages 2204–2212, 2014. 2.2, 2.3.2

[122] MPI Forum. MPI: a message-passing interface standard, Version 3.0. Document available
at http://www.mpi-forum.org, 2012. 6.1, 6.7

[123] Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, et al. Abstractive text
summarization using sequence-to-sequence RNNs and beyond. In Conference on Compu-
tational Natural Language Learning (CoNLL), 2016. 2.1

[124] Angelia Nedić and Asuman Ozdaglar. Distributed subgradient methods for multi-agent
optimization. IEEE Transactions on Automatic Control, 54(1):48–61, January 2009. 6.1

163

http://aclweb.org/anthology/E17-1083
http://aclweb.org/anthology/E17-1083

[125] Angelia Nedić, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for dis-
tributed optimizaiton over time-varying graphs. arXiv:1607.03218, 2016. 6.1

[126] Arkadi Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequal-
ities with lipschitz continuous monotone operators and smooth convex-concave saddle-
point problems. SIAM Journal on Optimization, 15(1):229–251, 2004. 5.2

[127] Nesterov. Minimization methods for nonsmooth convex and quasiconvex functions.
Matekon, 29:519–531, 1984. 4.2

[128] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer,
Boston, 2004. 5.2, 5.4.1, 6.2.1, 6.8

[129] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization prob-
lems. SIAM Journal on Optimization, 22(2):341–362, 2012. 5.2, 6.8

[130] Yu. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Program-
ming, 103:127–152, 2005. 5.2, 5.4.1, A.3, A.3

[131] Yu. Nesterov. Gradient methods for minimizing composite functions. Mathematical Pro-
gramming, Ser. B, 140:125–161, 2013. 6.2.1, 6.8

[132] Yurii Nesterov and Sebastian Stich. Efficiency of accelerated coordinate descent method
on structured optimization problems. Technical report, Université catholique de Louvain,
Center for Operations Research and Econometrics (CORE), 2016. 5.2

[133] Behnam Neyshabur, Ruslan Salakhutdinov, and Nathan Srebro. Path-sgd: Path-
normalized optimization in deep neural networks. In NIPS, pages 2422–2430, 2015. 4.2

[134] Atsushi Nitanda. Stochastic proximal gradient descent with acceleration techniques. In
NIPS, 2014. 5.2

[135] OpenMP Architecture Review Board. OpenMP Application Program Interface, Version
3.1. Available at http://www.openmp.org, July 2011. 6.8

[136] Boyuan Pan, Hao Li, Zhou Zhao, Bin Cao, Deng Cai, and Xiaofei He. MEMEN:
multi-layer embedding with memory networks for machine comprehension. CoRR,
abs/1707.09098, 2017. (document), 3.5.2, 3.8

[137] Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment cat-
egorization with respect to rating scales. In Proceedings of the 43rd annual meeting on
association for computational linguistics, pages 115–124. Association for Computational
Linguistics, 2005. 2.1, 4.5.5

[138] Shibin Parameswaran and Kilian Q. Weinberger. Large margin multi-task metric learning.
In NIPS, 2010. 5.3, 5.5.2, 5.5.3, 5.5.3, 5.6.3

[139] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recur-
rent neural networks. In ICML, pages 1310–1318, 2013. 4.2

[140] Zhimin Peng, Yangyang Xu, Ming Yan, and Wotao Yin. ARock: An algorithmic frame-
work for asynchronous parallel coordinate updates. SIAM Journal on Scientific Comput-
ing, 38(5):2851–2879, 2016. 6.2.2

[141] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vec-

164

tors for word//w representation. In Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543, 2014. URL http://www.aclweb.org/anthology/
D14-1162. 3.3.2, 3.5.1

[142] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Ken-
ton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In NAACL,
pages 2227–2237, 2018. 3.5.1

[143] Vu Pham and Laurent El Ghaoui. Robust sketching for multiple square-root lasso prob-
lems. In AISTATS, 2015. 5.4.2

[144] Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary sampling ii: Expected
separable overapproximation. Optimization Methods Software, 31(5):858–884, 2016. 5.2,
5.3

[145] Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary sampling i: Algorithms
and complexity. Optimization Methods and Software, 31(5):829–857, 2016. 5.2, 5.3

[146] Jonathan Raiman and John Miller. Globally normalized reader. In Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017,
Copenhagen, Denmark, September 9-11, 2017, pages 1070–1080, 2017. 3.2, 3.4

[147] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+
questions for machine comprehension of text. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA,
November 1-4, 2016, pages 2383–2392, 2016. (document), 3.1, 3.2, 3.5, 3.5.1, 3.2, 3.7

[148] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence
level training with recurrent neural networks. CoRR, abs/1511.06732, 2015. URL http:
//arxiv.org/abs/1511.06732. 2.2

[149] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Advances in Neural Information
Processing Systems (NIPS) 24, pages 693–701, 2011. 6.2.2

[150] Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczós, and Alexander J Smola.
On variance reduction in stochastic gradient descent and its asynchronous variants. In
Advances in Neural Information Processing Systems (NIPS) 28, pages 2647–2655. 2015.
6.2.2

[151] Sashank J. Reddi, Jakub Konečný, Peter Richtárik, Barnabás Póczós, and Alex Smola.
AIDE: Fast and communication efficient distributed optimization. arXiv:1608.06879,
2016. 6.2.2

[152] P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1):1–38,
2014. 5.2, 6.8

[153] P. Richtárik and M. Takáč. Parallel coordinate descent methods for big data optimization.
Mathematical Programming, 156(1):433–484, 2016. 6.2.2

[154] Peter Richtárik and Martin Takáč. On optimal probabilities in stochastic coordinate de-
scent methods. Optimization Letters, 10(6):1233–1243, 2016. 5.2, 5.3

165

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1511.06732

[155] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970. 1

[156] R. Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM
Journal on Control and Optimization, 14(5), 1976. 6.5, B.4

[157] Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for ab-
stractive sentence summarization. In Empirical Methods in Natural Language Processing
(EMNLP), 2015. 2.1

[158] Ernest K. Ryu and Stephen P. Boyd. A primer on monotone operator methods. Applied
and Computational Mathematics: an International Journal, 15(1):3–43, 2016. B.4

[159] Tim Salimans and Diederik P. Kingma. Weight normalization: A simple reparameteriza-
tion to accelerate training of deep neural networks. In NIPS, 2016. 4.2

[160] Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié.
Optimal algorithms for smooth and strongly convex distributed optimization in networks.
In Proceedings of the 34th International Conference on Machine Learning (ICML), pages
3027–3036, Sydney, Australia, 2017. 6.1, 6.2.2, 6.9

[161] Mark W. Schmidt, Nicolas Le Roux, and Francis R. Bach. Minimizing finite sums with
the stochastic average gradient. CoRR, abs/1309.2388, 2013. 5.2

[162] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. In Annual Meeting of the Association for Computational Lin-
guistics (ACL), 2015. 2.1

[163] Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine transla-
tion models with monolingual data. In ACL (1). The Association for Computer Linguistics,
2016. 3.4

[164] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. CoRR, abs/1611.01603, 2016. URL http://
arxiv.org/abs/1611.01603. (document), 2.1, 3.1, 3.2, 3.3.2, 3.3.2, 3.3.2, 3.3.2,
3.5.1, 3.5.1, 3.2, 3.4, 3.7, 3.8

[165] Pierre Sermanet, Andrea Frome, and Esteban Real. Attention for fine-grained categoriza-
tion. arXiv preprint arXiv:1412.7054, 2014. 2.2

[166] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regular-
ized loss minimization. Journal of Machine Learning Research, 14:567–599, 2013. 5.2,
5.6, 5.6.2, 6.3, 6.8, 6.9

[167] Shai Shalev-Shwartz and Ambuj Tewari. Stochastic methods for l1 regularized loss mini-
mization. In ICML, volume 382, 2009. 5.2

[168] Shai Shalev-Shwartz and Tong Zhang. Accelerated mini-batch stochastic dual coordinate
ascent. In NIPS, pages 378–385, 2013. 5.2, 5.3, 5.4.1

[169] Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed opti-
mization using an approximate newton-type method. In Proceedings of the 31st Interna-
tional Conference on Machine Learning (ICML), pages 1000–1008, Bejing, China, 2014.
6.2.2

166

http://arxiv.org/abs/1611.01603
http://arxiv.org/abs/1611.01603

[170] Lifeng Shang, Zhengdong Lu, and Hang Li. Neural responding machine for short-text
conversation. In Annual Meeting of the Association for Computational Linguistics (ACL),
2015. 2.1

[171] Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan, and Chengqi Zhang.
Disan: Directional self-attention network for rnn/cnn-free language understanding. CoRR,
abs/1709.04696, 2017. URL http://arxiv.org/abs/1709.04696. 3.2

[172] Yelong Shen, Po-Sen Huang, Jianfeng Gao, and Weizhu Chen. Reasonet: Learning to
stop reading in machine comprehension. In Proceedings of the 23rd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada,
August 13 - 17, 2017, pages 1047–1055, 2017. (document), 2.2, 3.2, 3.2, 3.7

[173] Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. EXTRA: An exact first-order algorithm
for decentralized consensus optimization. SIAM Journal on Optimization, 25(2):944–966,
2015. 6.2.2

[174] Bharat Singh, Soham De, Yangmuzi Zhang, Thomas Goldstein, and Gavin Taylor. Layer-
specific adaptive learning rates for deep networks. CoRR, abs/1510.04609, 2015. 4.2

[175] Martin Slawski, Ping Li, and Matthias Hein. Regularization-free estimation in trace re-
gression with symmetric positive semidefinite matrices. In NIPS, 2015. 5.3, 5.5.2

[176] Richard Socher, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng, and Christopher D.
Manning. Semi-supervised recursive autoencoders for predicting sentiment distributions.
In Proceedings of the conference on empirical methods in natural language processing,
2011. 2.1

[177] Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, An-
drew Y. Ng, Christopher Potts, et al. Recursive deep models for semantic compositionality
over a sentiment treebank. In EMNLP, 2013. 2.1

[178] Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng Ji, Mar-
garet Mitchell, Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. A neural network ap-
proach to context-sensitive generation of conversational responses. arXiv preprint
arXiv:1506.06714, 2015. 2.1

[179] Suvrit Sra, Adams Wei Yu, Mu Li, and Alexander J. Smola. Adadelay: Delay adaptive
distributed stochastic optimization. In Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics, pages 957–965, 2016. 1.4, 6.2.2

[180] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks.
CoRR, abs/1505.00387, 2015. URL http://arxiv.org/abs/1505.00387. 3.3.2

[181] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.
2.1

[182] Adam Trischler, Zheng Ye, Xingdi Yuan, Jing He, Phillip Bachman, and Kaheer Suleman.
A parallel-hierarchical model for machine comprehension on sparse data. arXiv preprint
arXiv:1603.08884, 2016. 2.1

[183] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

167

http://arxiv.org/abs/1709.04696
http://arxiv.org/abs/1505.00387

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR,
abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762. (document),
3.2, 3.3.2, 3.3.2, 3.1

[184] Oriol Vinyals and Quoc Le. A neural conversational model. arXiv preprint
arXiv:1506.05869, 2015. 2.1

[185] Jialei Wang and Lin Xiao. Exploiting strong convexity from data with primal-dual first-
order algorithms. In Proceedings of the 34th International Conference on Machine Learn-
ing (ICML), pages 3694–3702, Sydney, Australia, 2017. 6.6, 6.6, 6.9

[186] Jialei Wang, Jason D Lee, Mehrdad Mahdavi, Mladen Kolar, and Nathan Srebro. Sketch-
ing meets random projection in the dual: A provable recovery algorithm for big and high-
dimensional data. arXiv preprint arXiv:1610.03045, 2016. 5.4.2

[187] Shuohang Wang and Jing Jiang. Machine comprehension using match-lstm and an-
swer pointer. CoRR, abs/1608.07905, 2016. URL http://arxiv.org/abs/1608.
07905. (document), 2.1, 3.2, 3.7

[188] Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. Gated self-matching
networks for reading comprehension and question answering. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver,
Canada, July 30 - August 4, Volume 1: Long Papers, pages 189–198, 2017. (document),
3.2, 3.5.1, 3.2

[189] Yining Wang, Adams Wei Yu, and Aarti Singh. On computationally tractable selection of
experiments in measurement-constrained regression models. Journal of Machine Learning
Research, 18:143:1–143:41, 2017. 1.4

[190] Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu Florian. Multi-perspective context
matching for machine comprehension. CoRR, abs/1612.04211, 2016. URL http://
arxiv.org/abs/1612.04211. (document), 2.1, 3.2, 3.7

[191] Kilian Q. Weinberger and Lawrence K. Saul. Fast solvers and efficient implementations
for distance metric learning. In ICML, ICML ’08, pages 1160–1167, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-205-4. doi: 10.1145/1390156.1390302. URL
http://doi.acm.org/10.1145/1390156.1390302. 5.3, 5.5.2

[192] Kilian Q. Weinberger and Lawrence K. Saul. Distance metric learning for large mar-
gin nearest neighbor classification. Journal of Machine Learning Research, 10:207–244,
June 2009. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=
1577069.1577078. 5.3, 5.5.2

[193] Dirk Weissenborn, Georg Wiese, and Laura Seiffe. Making neural QA as simple as pos-
sible but not simpler. In Proceedings of the 21st Conference on Computational Natural
Language Learning (CoNLL 2017), Vancouver, Canada, August 3-4, 2017, pages 271–
280, 2017. (document), 3.2, 3.3.2, 3.2

[194] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van Merriënboer,
Armand Joulin, and Tomas Mikolov. Towards ai-complete question answering: A set of
prerequisite toy tasks. arXiv preprint arXiv:1502.05698, 2015. 2.1

168

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1608.07905
http://arxiv.org/abs/1608.07905
http://arxiv.org/abs/1612.04211
http://arxiv.org/abs/1612.04211
http://doi.acm.org/10.1145/1390156.1390302
http://dl.acm.org/citation.cfm?id=1577069.1577078
http://dl.acm.org/citation.cfm?id=1577069.1577078

[195] John Wieting, Jonathan Mallinson, and Kevin Gimpel. Learning paraphrastic sentence
embeddings from back-translated bitext. In EMNLP, pages 274–285. Association for
Computational Linguistics, 2017. 3.4

[196] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8:229–256, 1992. 2.2, 2.3.2

[197] Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht.
The marginal value of adaptive gradient methods in machine learning. In Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 4151–4161,
2017. 4.2, 4.5.2, 4.5.3

[198] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva
Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff
Hughes, and Jeffrey Dean. Google’s neural machine translation system: Bridging the gap
between human and machine translation. arXiv preprint arXiv:1609.08144, 2016. 2.1, 3.4

[199] Lin Xiao and Stephen P. Boyd. Optimal scaling of a gradient method for distributed
resource allocation. Journal of Optimization Theory and Applications, 129(3):469–488,
June 2006. 6.1

[200] Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive vari-
ance reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014. 5.2, 6.2.1

[201] Lin Xiao, Adams Wei Yu, Qihang Lin, and Weizhu Chen. DSCOVR: randomized primal-
dual block coordinate algorithms for asynchronous distributed optimization. Journal of
Machine Learning Research, 20:43:1–43:58, 2019. 1.3.2

[202] Eric P. Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun Zheng,
Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. Petuum: A new platform for distributed
machine learning on big data. IEEE Transactions on Big Data, 1(2):49–67, 2015. 6.1,
6.2.2

[203] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for
question answering. CoRR, abs/1611.01604, 2016. URL http://arxiv.org/abs/
1611.01604. (document), 2.1, 3.1, 3.2, 3.3.2, 3.5.1, 3.2

[204] Tianbao Yang. Trading computation for communication: Distributed stochastic dual co-
ordinate ascent. In Advances in Neural Information Processing Systems (NIPS) 26, pages
629–637. 2013. 6.2.2

[205] Tianbao Yang, Yu feng Li, Mehrdad Mahdavi, Rong Jin, and Zhi hua Zhou. Nyström
method vs random fourier features: A theoretical and empirical comparison. In NIPS,
pages 485–493, 2012. 5.4.2

[206] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size to 32k for imagenet
training. CoRR, abs/1708.03888, 2017. 4.5.2

169

http://arxiv.org/abs/1611.01604
http://arxiv.org/abs/1611.01604

[207] Adams Wei Yu, Fatma Kilinç-Karzan, and Jaime G. Carbonell. Saddle points and accel-
erated perceptron algorithms. In ICML, pages 1827–1835, 2014. 1.4, 5.2

[208] Adams Wei Yu, Wanli Ma, Yaoliang Yu, Jaime G. Carbonell, and Suvrit Sra. Efficient
Structured Matrix Rank Minimization. In NIPS, 2014. 1.4

[209] Adams Wei Yu, Qihang Lin, and Tianbao Yang. Doubly stochastic primal-dual coordinate
method for bilinear saddle-point problem. arXiv:1508.03390, 2015. 1.3.2, 5.2, 6.2.2

[210] Adams Wei Yu, Hongrae Lee, and Quoc V. Le. Learning to Skim Text. ACL, 2017. 1.2.1,
3.2

[211] Adams Wei Yu, Qihang Lin, Ruslan Salakhutdinov, and Jaime G. Carbonell. Nor-
malized gradient with adaptive stepsize method for deep neural network training.
arXiv:1707.04822, 2017. 1.3.1

[212] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad
Norouzi, and Quoc V. Le. Qanet: Combining local convolution with global self-attention
for reading comprehension. ICLR, 2018. 1.2.2

[213] Yang Yu, Wei Zhang, Kazi Saidul Hasan, Mo Yu, Bing Xiang, and Bowen Zhou. End-to-
end reading comprehension with dynamic answer chunk ranking. CoRR, abs/1610.09996,
2016. URL http://arxiv.org/abs/1610.09996. (document), 3.2, 3.7

[214] Hyokyun Yun, Hsiang-Fu Yu, Cho-Jui Hsieh, S V N Vishwanathan, and Inderjit Dhillon.
NOMAD: Non-locking, stochastic multi-machine algorithm for asynchronous and decen-
tralized matrix completion. In Proceedings of the VLDB Endowment, 2014. 6.2

[215] Matei Zaharia, Reynold Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur
Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali
Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache Spark: A unified engine
for big data processing. Communications of the ACM, 59(11):56–65, 2016. 6.1

[216] Wojciech Zaremba and Ilya Sutskever. Reinforcement learning neural turing machines-
revised. arXiv preprint arXiv:1505.00521, 2015. 2.2, 2.3.2

[217] Junbei Zhang, Xiao-Dan Zhu, Qian Chen, Li-Rong Dai, Si Wei, and Hui Jiang. Explor-
ing question understanding and adaptation in neural-network-based question answering.
CoRR, abs/1703.04617, 2017. (document), 3.2, 3.7

[218] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for
text classification. In Advances in neural information processing systems, pages 649–657,
2015. 2.1, 2.1, 2.4.3, 3.2

[219] Yuchen Zhang and Lin Xiao. DiSCO: Distributed optimization for self-concordant em-
pirical loss. In Proceedings of the 32nd International Conference on Machine Learning
(ICML), pages 362–370, Lille, France, 2015. 6.2.2

[220] Yuchen Zhang and Lin Xiao. Stochastic primal-dual coordinate method for regularized
empirical risk minimization. In ICML, 2015. 5.2, 5.3, 5.4.1, 5.6, 5.6.2, 6.2.1, 6.2.2, 6.3,
A.1

[221] Yuchen Zhang, John C Duchi, and Martin J Wainwright. Communication-efficient algo-
rithms for statistical optimization. Journal of Machine Learning Research, 14:3321–3363,

170

http://arxiv.org/abs/1610.09996

2013. 6.8, 6.8

[222] Tuo Zhao, Mo Yu, Yiming Wang, Raman Arora, and Han Liu. Accelerated mini-batch
randomized block coordinate descent method. In NIPS, pages 3329–3337, 2014. 5.2

[223] Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan, Hangbo Bao, and Ming Zhou. Neural
question generation from text: A preliminary study. CoRR, abs/1704.01792, 2017. URL
http://arxiv.org/abs/1704.01792. 3.2

171

http://arxiv.org/abs/1704.01792

	Introduction
	Background and Motivation
	Part One: Efficient and Effective Deep Learning Models for Sequential Data Processing
	Fast Recurrent Model to Capture Important Information
	Recurrence Free Model for Parallel Training and Inference

	Part Two: Efficient Algorithms for General Model Training
	Layer-wise Normalized Gradient Method for Training Deep Neural Networks
	 Distributed Optimization on Parameter Servers

	Excluded Research

	I Efficient and Effective Models for Sequential Data Processing
	Learning to Skip Unimportant Information in Sequential Data
	Introduction
	Related Work
	Methodology
	Model Overview
	Training with REINFORCE
	Inference

	Experimental Results
	Number Prediction with a Synthetic Dataset
	Word Level Sentiment Analysis with Rotten Tomatoes and IMDB datasets
	Character Level News Article Classification with AG dataset
	Sentence Level Automatic Question Answering with Children's Book Test dataset

	Discussion

	Recurrency-Free Model for Fully Parallel Computation
	Introduction
	Related Work
	The Model
	Problem Formulation
	Model Overview

	Data Augmentation by Backtranslation
	Experiments
	Experiments on SQuAD
	Experiments on TriviaQA

	Discussion

	II Efficient Algorithms for Large Scale Optimization
	Normalized Gradient Method for Training Deep Neural Networks
	Introduction
	Related Work
	Algorithm Framework
	Convergence Analysis for A Concrete Case
	Numerical Experiments
	Multi Layer Perceptron for MNIST Image Classification
	Residual Network on CIFAR10 and CIFAR100
	Residual Network for ImageNet Classification
	Language Modeling with Recurrent Neural Network
	Sentiment Analysis with Convolution Neural Network

	Discussion

	DSPDC: Doubly Stochastic Primal-Dual Coordinate Method for Bilinear Saddle-Point Problem
	Introduction
	Related Work
	Summary of Results
	Doubly Stochastic Primal-Dual Coordinate Method
	Algorithm and Convergence Properties
	Efficient Implementation for Factorized Data Matrix

	Extension with Block Coordinate Updates
	Algorithm and Convergence Properties
	Application 1: Matrix Risk Minimization
	Application 2: Multi-task Large Margin Nearest Neighbor Problem

	Numerical Experiments
	Learning with factorized data
	Matrix Risk Minimization
	Multi-task Large Margin Nearest Neighbor Problem

	Discussion

	DSCOVR: Randomized Primal-Dual Block Coordinate Algorithms for Asynchronous Distributed Optimization
	Introduction
	The DSCOVR Framework and Main Results
	Summary of Main Results
	Related Work

	The DSCOVR-SVRG Algorithm
	The DSCOVR-SAGA Algorithm
	Accelerated DSCOVR Algorithms
	Proximal Mapping for Accelerated DSCOVR

	Conjugate-Free DSCOVR Algorithms
	Asynchronous Distributed Implementation
	Implementation of DSCOVR-SVRG
	Implementation of DSCOVR-SAGA
	Implementation of Accelerated DSCOVR

	Experiments
	Discussion

	Concluding Remarks
	Conclusions
	Future Directions

	III Appendices
	Convergence Analysis for DSPDC
	Some technical lemmas
	Convergence in distance to the optimal solution
	Convergence of objective gap

	Convergence Analysis for DSCOVR
	Proof of Theorem 6.3.1
	Alternative bounds and step sizes

	Proof of Theorem 6.3.2
	Proof of Theorem 6.4.1
	Proof of Theorem 6.5.1

	Bibliography

