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Abstract

We develop distributed stochastic convex op-
timization algorithms under a delayed gradi-
ent model in which server nodes update pa-
rameters and worker nodes compute stochas-
tic (sub)gradients. Our setup is motivated by
the behavior of real-world distributed com-
putation systems; in particular, we analyze
a setting wherein worker nodes can be dif-
ferently slow at different times. In contrast
to existing approaches, we do not impose a
worst-case bound on the delays experienced
but rather allow the updates to be sensitive
to the actual delays experienced. This sen-
sitivity allows use of larger stepsizes, which
can help speed up initial convergence with-
out having to wait too long for slower ma-
chines; the global convergence rate is still
preserved. We experiment with different de-
lay patterns, and obtain noticeable improve-
ments for large-scale real datasets with bil-
lions of examples and features.

1 Introduction

We study the stochastic convex optimization problem

min
x∈X

f(x) := E[F (x; ξ)], (1.1)

where X ⊂ Rd is a compact convex set, F (·, ξ) is a con-
vex loss for each ξ ∼ P, and P is a (possibly unknown)
probability distribution from which we can draw i.i.d.
samples. Problem (1.1) is important throughout opti-
mization and machine learning [7, 14, 19–21]. It should
be distinguished from (the easier) finite-sum optimiza-
tion problems [3, 18, 23, 24], for which sharper results
on the empirical loss are possible but not on the gen-
eralization error.
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A classic approach to solve (1.1) is stochastic gradient
descent (SGD) [17] (or stochastic approximation [14]).
SGD iteratively computes xt+1 ← ΠX

(
xt − αtgt

)
,

where ΠX denotes orthogonal projection onto X , while
αt ≥ 0 is a suitable stepsize and gt is an unbiased
stochastic gradient, i.e., E[gt] ∈ ∂f(xt).

Although much more scalable than gradient descent,
SGD is a sequential method that does not immediately
apply to huge-scale problems which need distributed
optimization [2]. This setting is central to real-world
machine learning and has attracted great research in-
terest, a large part of which is dedicated to scaling up
SGD [1, 6, 9, 11, 15, 16].

Motivation. We also focus on huge-scale problems,
and develop a new distributed SGD method that in-
corporates (and benefits from) more precise models of
real-world cloud computing networks. Indeed, the de-
lay properties exhibited by machines in cloud comput-
ing settings are often quite different from what one
may observe on small clusters owned by individuals
or small labs. Cloud resources are shared across users
who run variegated tasks. Consequently, the cloud en-
vironment is invariably more diverse in its availability
of resources such as CPU, disk, or network bandwidth,
in contrast to environments where resources are shared
by a small number of individuals. Thus, being able to
model network delays in a more fine-grained way, and
to use them to guide the optimization procedure can
be of great value to both providers and users of large-
scale distributed computing.

We investigate a new delay sensitive asynchronous
SGD algorithm that adapts to the actual delays experi-
enced, rather than relying on pessimistic global worst-
case “bounded delays”. One may envision the follow-
ing practical scheme: In the beginning, the server up-
dates parameters as soon as it receives a gradient from
any machine, weighting it inversely proportional to the
actual delay. Towards the end, the server takes larger
update steps when it obtains gradients from infrequent
contributors, and smaller ones with gradients from fre-
quent contributors, to reduce the bias caused by the
initial aggressive steps. This broad scheme partially
motivates our approach.
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Contributions. We introduce and analyze AdaDelay
(Adaptive Delay), an asynchronous SGD algorithm
that more closely follows the actual delays experienced
during computation. Specifically, AdaDelay uses step
sizes sensitive to the actual delays observed. While
this allows us to use larger stepsizes, it requires some-
what more intricate analysis because: (i) step sizes are
no longer guaranteed to be monotonically decreasing;
and (ii) residuals that measure progress are not inde-
pendent across time as they are coupled by the delay
random variable.

We validate AdaDelay by experimenting with real-
world large-scale datasets containing over a billion
samples and features. The experiments reveal that
the models that we introduce on network delays are a
reasonable approximation to the actual observed de-
lays, and that in the regime of large delays (e.g., when
there are stragglers) using delay sensitive steps is very
helpful for faster generalization, that is, for models
that converge more quickly on test accuracy ; this is
revealed by experiments where using AdaDelay leads
to significant improvements on the test error (AUC).

Related Work. Our work is built on [1]. How-
ever, the most important difference is that [1] uses
worst case delays that can be overly pessimistic, while
AdaDelay uses the actual delays experienced, though
at the cost of more involved theoretical analysis.

The body of related work on distributed optimization
is quite large, so we can hardly be comprehensive. We
summarize below a few closely related works, breaking
up our summary into two typical settings: synchronous
and asynchronous approaches.

Synchronous methods usually proceed in epochs,
where a central node (parameter server) updates the
global parameters, and waits until all the workers have
finished their updates. For example, [22] and [8] lever-
age the finite sum structure of empirical risk minimiza-
tion problems to derive a separable dual formulation
for which a synchronous distributed coordinate ascent
algorithm is adopted. Both [25] and [26] use an ex-
treme strategy that only carries out a single round of
communication at the end of the algorithm and then
simply averages the results trained on the local work-
ers. Performance of these algorithms, however, de-
pends heavily on the slowest machine; commonly seen
delay phenomena in commercial cloud computing sys-
tems involve multiple uncontrollable factors, and can
contribute to a huge waste of resources due to waiting.

Asynchronous algorithms operate by letting each
worker node run its local update without waiting for
the others. Since network delays are inevitable, asyn-
chronous methods ameliorate slow downs by avoiding
waiting; thus, any updates computed by a local worker

can be immediately used to update the global parame-
ter. The work [2] is a classic reference that introduces
important asynchronous strategies; several more re-
cent key works are [1, 9, 13, 19]. In [4, 15] the authors
base their convergence on sparse data or variable set-
tings; in comparison, our framework is more general,
and thus capable of covering more applications. Of
particular relevance to our paper is the recent work
on delay adaptive gradient scaling in an AdaGrad [5]
like framework [12]. The work [12] claims substan-
tial improvements under specialized settings over [4].
Our experiments also confirm [12]’s claims that their
best learning rate is insensitive to maximum delays.
However, in our experience the method of [12] overly
smooths the optimization path, which can have ad-
verse effects on real-world data (see Section 4).

Finally, to our knowledge, previous works on asyn-
chronous SGD (and its AdaGrad variants) assume
monotonically decreasing step sizes. Our analysis in-
volves non-monotonic steps to allow using actual de-
lays instead of worst-case bounds; this proves to be
quite beneficial in realistic settings. For instance, when
there are stragglers that can slow down progress for all
the machines in a worst-case delay model.

2 Problem Setup and Algorithm

We build on groundwork laid by [1, 13]; like them, we
also optimize (1.1) under a delayed gradient model.
We use the parameter-server computational frame-
work [11], so that a central server1 maintains the global
parameters, while worker nodes compute stochastic
gradients using their share of the data. The workers
communicate their gradients back to the central server
(using powerful communication saving techniques im-
plemented in the work of [10]), which then updates the
shared parameters and communicates them back.

To highlight our key ideas and avoid getting bogged
down in unilluminating details, we consider only
smooth stochastic optimization, i.e., f ∈ C1

L, in this
paper. Straightforward, (though tedious) extensions
are possible to non-smooth problems, strongly convex
costs, mirror descent versions, proximal splitting set-
tings. We leave these details to the future.

As in [1, 7, 14], we make some standard assumptions:2

Assumption 2.1 (Lipschitz gradients). The function
f has a locally L-Lipschitz gradients. That is,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ X .

1This server is virtual; its physical realization may in-
volve several machines, e.g., [10].

2These are easily satisfied for logistic-regression, least-
squares, if the training data are bounded.
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Assumption 2.2 (Bounded variance). There exists a
constant σ <∞ such that

Eξ[‖∇f(x)−∇F (x; ξ)‖2] ≤ σ2, ∀ x ∈ X .

Assumption 2.3 (Compact domain). Let x∗ ∈
argminx∈X f(x). Then,

max
x∈X
‖x− x∗‖ ≤ R.

Finally, an additional assumption, also made in [1] is
that of bounded gradients.

Assumption 2.4 (Bounded gradient). There exists a
constant G > 0 so that

‖∇f(x)‖ ≤ G ∀x ∈ X .

These assumptions are typically satisfied in many ma-
chine learning problems, for instance, with logistic and
least-squares losses, as long as the data samples ξ re-
main bounded, which is easy to satisfy.

Notation: Whenever a worker node returns an up-
dated gradient at time t, we denote its associated ran-
dom delay as τt , the delayed gradient as g(t−τt), and
the step size as α(t, τt). For a differentiable convex
function h, the corresponding Bregman divergence is
Dh(x, y) := h(x)−h(y)−〈∇h(y), x− y〉. For simplic-
ity, all norms are assumed to be Euclidean.

2.1 Delay model

Assumption 2.5 (Delay). We consider the following
two practical delay models:

(A) Uniform: Here τt ∼ U({0, 2τ̄}). This model is a
reasonable approximation to observed delays after
an initial startup time of the network. We could
make a more refined assumption that for 1 ≤ t ≤
T1 the delays are uniform on {0, . . . , T1−1}. The
analysis can be easily modified to handle this case;
we omit it for brevity. Furthermore, the analysis
also extends to delays having distributions with
bounded support. Therefore, it indeed captures a
wide spectrum of practical models.

(B) Scaled: For each t, there is a θt ∈ (0, 1) such that
τt < θtt. Moreover, assume that

E[τt] = τ̄t, E[τ2
t ] = B2

t ,

where τ̄t and Bt are constants that do not grow
with t (the subscript only indicates that for each
t, the random variable τt may have a different
distribution). This model allows delay processes
that are richer than uniform, as it no longer re-
quires the support to be bounded. What it needs
instead are bounded first and second moments.

Note. Our analysis is flexible, and can actually cover
many other delay distributions by combining the above
two delay models. For example, with Gaussian delays
(where τt obeys a Gaussian distribution but its support
is truncated, since t > 0) may be seen as a combination
of the following: 1) When t ≥ C (a suitable constant),
the Gaussian assumption indicates τt < θt, which falls
under our second delay model; 2) When 0 ≤ t ≤ C, our
proof technique with bounded support (same as uni-
form model) applies. Of course, more refined analysis
for specific delay models may help tighten constants.

2.2 Algorithm

Under the above delay models, we consider the follow-
ing projected stochastic gradient iteration:

xt+1 ← argmin
x∈X

[
〈g(t− τt), x〉+

1

2α(t, τt)
‖x− xt‖2

]
,

(2.1)
where the stepsize α(t, τt) is sensitive to the actual
delay observed. Whenever a worker transmits a de-
layed gradient g(t−τt) at time t, the parameter server
conducts an update of (2.1). Thus, (2.1) generates a
sequence of iterates {xt}t≥1; the server also maintains
the averaged iterate

x̄T :=
1

T

T∑
t=1

xt+1; (2.2)

our convergence analysis is stated for this iterate.

3 Convergence analysis

We use stepsizes of the form α(t, τt) = (L+η(t, τt))
−1,

where the step offsets η(t, τt) are chosen to be sensi-
tive to the actual delay of the incoming gradients. We
typically use

η(t, τt) = c
√
t+ τt, (3.1)

for some constant c (to be chosen later). We can also
consider time-varying ct multipliers in (3.1) (see Corol-
lary 3.4), but initially for clarity of presentation we let
c be independent of t. If there are no delays, then
τt = 0 and iteration (2.1) reduces to the usual syn-
chronous SGD. The constant c is used to trade off
contributions to the error bound from the noise vari-
ance σ, the feasible set radius R, and the bounds on
gradient norms.

Our convergence analysis builds on the groundwork
of [1]. But the key difference is that our step sizes
α(t, τt) depend on the actual delay τt experienced,
rather than on a fixed worst-case bounds on the max-
imum possible delay. These delay sensitive step sizes
necessitate a more intricate analysis. There are two
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main reasons for this: (i) the stepsize α(t, τt) is no
longer independent of the actual delay τt; whereby (ii)
the α(t, τt) values are no longer monotonically decreas-
ing, a property that the analysis of [1] relies on (and
usual SGD convergence analysis also uses). We high-
light our main theoretical results below; to streamline
presentation, auxiliary technical lemmas are available
in the supplement.

Theorem 3.1. Let xt be generated according to (2.1).
Under Assumption 2.5 (A) (uniform delay) we have

E
[∑T

t=1

(
f(xt+1)− f(x∗)

)]
≤
(√

2cR2τ̄ +
σ2

c

)√
T +

LG2(4τ̄ + 3)(τ̄ + 1)

6c2
log T

+ 1
2 (L+ c)R2 + τ̄GR+

LG2τ̄(τ̄ + 1)(2τ̄ + 1)2

6(L2 + c2)
,

while under Assumption 2.5 (B) (scaled delay) we have

E
[∑T

t=1

(
f(xt+1)− f(x∗)

)]
≤ σ2

c

√
T +

1

2
cR2

T∑
t=2

τ̄t + 1√
2t− 1

+GR

[
1 +

T−1∑
t=1

B2
t

(T − t)2

]

+G2
T∑
t=1

B2
t + 1 + τ̄t

L2 + c2(1− θt)t
+

1

2
R2(L+ c).

Proof Sketch. The proof begins by analyzing the dif-
ference f(xt+1)− f(x∗); Lemma A.2 (provided in the
supplement) bounds this difference, ultimately leading
to an inequality of the form:

E
[∑T

t=1

(
f(xt+1)−f(x∗)

)]
≤ E

[∑T

t=1
∆(t)+Γ(t)+Σ(t)

]
.

The random variables ∆(t), Γ(t), Σ(t) are defined as

∆(t) :=
1

2α(t, τt)

[
‖x∗ − xt‖2 − ‖x∗ − xt+1‖2

]
; (3.2)

Γ(t) := 〈∇f(xt)−∇f(xt−τt), xt+1 − x∗〉; (3.3)

Σ(t) := 1
2η(t,τt)

‖∇f(xt−τt)− g(t− τt)‖2. (3.4)

Thus, all that remains to do is bound each of these
random variables and combine the bounds to obtain
the claim of the theorem. Lemma A.3 bounds ∆(t)
under Assumption 2.5(A), while Lemma A.4 bounds
it under Assumption 2.5(B). Similarly, Lemmas A.5
and Lemma A.6 bound (3.3), while Lemma A.7
bounds (3.4).

Theorem 3.1 has several implications, which we now
present as corollaries. Corollaries 3.2 and 3.3 show
that both our delay models share a similar conver-
gence rate of O( 1√

T
). Corollary 3.4 shows that such

results continue to hold even if we replace the constant
c with a bounded (away from zero, and from above) se-
quence {ct}, a setting of great practical value. Finally,
Corollary 3.5 gives the convergence of a more general
choice of step sizes by considering ηt = ct(t+ τt)

β for
0 < β < 1. It also highlights the known fact that for
β = 0.5, the algorithm achieves the best theoretical
convergence.

Corollary 3.2. Let τt satisfy Assumption 2.5 (A).
Then we have the following bound on x̄T :

E[f(x̄T )− f∗] = O

(
D1

√
T

T
+D2

log T

T
+D3

1

T

)
.

where

D1 =
√

2cR2τ̄ +
σ2

c
,D2 =

LG2(4τ̄ + 3)(τ̄ + 1)

6c2
,

D3 = 1
2 (L+ c)R2 + τ̄GR+

LG2τ̄(τ̄ + 1)(2τ̄ + 1)2

6(L2 + c2)
.

The constant D1 captures the variance due to stochas-
tic gradients as well as the added variance due to the
nonmonotone step sizes. The terms D2 and D3 cap-
ture the contribution to convergence based on delays
and the Lipschitz smoothness of the gradients. We
believe that it may be possible to get rid of the extra
log T factor in the bound by a more refined analysis.

The following corollary follows easily from adapting
the proof of Theorem 3.1, and combining it with
Lemma A.6 which bounds Γ(t) under the stated as-
sumptions on the first two moments of the delay ran-
dom variables.

Corollary 3.3. Let τt satisfy Assumption 2.5 (B); let
τ̄t = τ , θt = θ, and Bt = B for all t. Then,

E[f(x̄T )− f∗] = O
(
D4√
T

+
D5 log L2+c2(1−θ)T

L2

T
+
D6

T

)
where

D4 =

[
1√
2
cR2(τ̄ + 1) +

σ2

c

]
, D5 =

G2(B2 + τ + 1)

c2(1− θ)
,

D6 = 1
2 (L+ c)R2 +GR

(
1 +

π2B2

6

)
.

Here, the constant D4 describes the contribution due
to the variance introduced by stochastic gradients as
well as the non-monotone step sizes. The role of D5

and D6 is similar to D2 and D3 from Corollary 3.2.
As the reader may notice, the impact of the noise
model on delay is on its contribution to D5 and D6

(which shrink asO(log T/T ) andO(1/T ) respectively),
and using properties of more specialized noise models
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one may be able to obtained more refined estimates of
these constants.

The next corollary is of great value empirically. Theo-
retically, it states the impact on convergence rates for
time varying choice of ct.

Corollary 3.4. If ηt = ct
√
t+ τt with 0 < M1 ≤ ct ≤

M2, then the conclusion of Theorem 3.1, Corollary 3.2
and 3.3 still hold, except that the term c is replaced by
M2 and 1

c by 1
M1

.

Finally, if one wishes to use step size offsets ηt =
ct(t + τt)

β where 0 < β < 1, we obtain a convergence
bound of the form stated below (we report only the
asymptotically worst term, as this result is of limited
importance).

Corollary 3.5. Let ηt = ct(t + τt)
β with 0 < M1 ≤

ct ≤M2 and 0 < β < 1. Then, there exists a constant
D7 such that

E[f(x̄T )− f∗] = O
(

D7

Tmin(β,1−β)

)
.

4 Experiments

We now evaluate the efficiency of AdaDelay in a dis-
tributed environment using large-scale real datasets.

4.1 Datasets and setup

We collected two click-through rate datasets for eval-
uation, which are shown in Table 1. One is the Criteo
dataset3, where the first 8 days are used for train-
ing while the following 2 days are used for validation.
We applied one-hot encoding for category and string
features. The other dataset, named CTR2, is col-
lected from a large Internet company. We sampled 100
million examples from three weeks for training, and
20 millions examples from the next week for valida-
tion. We extracted 2 billion unique features using the
on-production feature extraction module. These two
datasets have comparable size, but different example-
feature ratios. We adopt Logistic Regression as our
classification model.

# train # test # features nnz
Criteo 1.5B 400M 360M 58B
CTR2 110M 20M 1.9B 13B

Table 1: CTR datasets. M denotes millions; B billions.

All experiments were carried on a cluster with 20 ma-
chines. Most machines are equipped with dual Intel
Xeon 2.40GHz CPUs, 32 GB memory and 1 Gbit/s
Ethernet.

3http://labs.criteo.com/downloads/
download-terabyte-click-logs/

4.2 Algorithms

We compare AdaDelay with two related methods
AsyncAdaGrad [1] and AdaptiveRevision [12]. Their
main difference lies in the choice of the learning
rate at time t: α(t, τt) = (L + η(t, τt))

−1. De-
note by ηj(t, τt) the j-th element of η(t, τt), and
similarly gj(t − τt) the delayed gradient on feature
j. AsyncAdaGrad adopts a scaled learning rate

ηj(t, τt) =
√∑t

i=1 g
2
j (i, τi). AdaptiveRevision takes

into account actual delays by considering gbak
j (t, τt) =∑t−τ

i=t−1 gj(i, τi). It uses a non-decreasing learning rate

based on
√∑t

i=1 g
2
j (i, τi) + 2gj(t, τt)gbak

j (t, τt).

Similar to AsyncAdaGrad and AdaptiveRevision, we
use a scaled learning rate in AdaDelay to better
model the nonuniform sparsity of the dataset (this step
size choice falls within the purview of Corollary 3.4).
In other words, we set ηj(t, τt) = cj

√
t+ τt, where

cj =
√

1
t

∑t
i=1

i
i+τi

g2
j (i− τi) averages the weighted

delayed gradients on feature j. We follow the com-
mon practice of fixing L to 1 while choosing the best
α(t, τt) = α0(L+ η(t, τt))

−1 by a grid search over α0.

We set the minibatch size to 105 and 104 for Criteo
and CTR2, respectively, to reduce the communication
frequency for better system performance4. We search
for α0 in the range [10−4, 1] and report the best results
for each compared algorithm.

4.3 Implementation

We implemented these three methods in the parame-
ter server framework [11], which is a high-performance
asynchronous communication library supporting vari-
ous data consistency models. There are two groups of
nodes in this framework: workers and servers. Worker
nodes run independently from each other. At each
time, a worker first reads a minibatch of data from a
distributed filesystem, and then pulls the relevant re-
cent working set of parameters, namely the weights of
the features that appear in this minibatch, from the
server nodes. It next computes the gradients and then
pushes these gradients to the server nodes.

The server nodes maintain the weights. For each fea-
ture, both AsyncAdaGrad and AdaDelay store the
weight and the accumulated gradient which is used to
compute the scaled learning rate. While AdaptiveRe-
vision needs two more entries for each feature.

To compute the actual delay τ for AdaDelay, we let
the server nodes record the time t(w, i) when worker

4Probably due to the scale and the sparsity of the
datasets, we observed no significant improvement when de-
creasing the minibatch size.

http://labs.criteo.com/downloads/download-terabyte-click-logs/
http://labs.criteo.com/downloads/download-terabyte-click-logs/
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Figure 1: The first 3,000 observed delays at server nodes.
Left: Criteo dataset with 1,600 workers; Right: CTR2
dataset with 400 workers.
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Figure 2: Histogram of all delays (left: Criteo with
1,600 workers; right: CTR2 with 400 workers).

w is pulling the weight for minibatch i. Denote by
t′(w, i) the time when the server nodes are updating
the weight by using the gradients of this minibatch.
Then the actual delay of this minibatch can be ob-
tained by t′(w, i)− t(w, i).

AdaptiveRevision needs gradient components gbck
j for

each feature j to calculate its learning rate. If we send
gbck
j over the network by following [12], we increase the

total network communication by 50%, which greatly
harms system performance due to the limited network
bandwidth. Instead, we store gbck

j at the server node
during while processing this minibatch. This incurs
no extra network overhead, however, it increases the
memory consumption of the server nodes.

The parameter server implements a node using an op-
erating system process, which has its own communica-
tion and computation threads. In order to run thou-
sands of workers on our limited hardware, we may
combine server workers into a single process to reduce
the system overhead.

4.4 Results

Delays. We first visualize the actual delays observed
at server nodes. As noted from Figure 1, delay τt is
around θt at the early stage of the training, where
the scaling constant θ varies for different tasks. For
example, it is close to 0.2 when training the Criteo
dataset with 1,600 workers, while it increases to 1 for
the CTR2 dataset with 400 workers. After the delay
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Figure 3: Relative (% worsening) of online LogLoss as
function of maximal delays (lower is better).

hits the value u, which is often half of the number of
worker nodes, it behaves like a Gaussian distribution
with mean u, which are shown in Figure 2.

Loss and AUC. Next, we present the comparison
results of these three algorithms by varying the number
of workers. Following [12] we use the online LogLoss
as the criterion. That is, given example with feature
vector d and label y ∈ {+1,−1}, we calculate the loss
function f(x, (d, y)) = log(1 + exp(−y〈d, x〉)) before
updating x using (y, d). Similar to [12], we report the
average LogLoss over the second half of the training
data to ignore the possible large values when starting
training.

Figure 3 reports the relative change in online LogLoss
for the three algorithms compared (smaller value is
better). It is seen that on the Criteo dataset, AdaDe-
lay performs better than AsyncAdaGrad, though
AdaptiveRevision is slightly better than both. How-
ever, for the larger CTR2 dataset, both AdaDelay and
AsyncAdaGrad are substantially better than Adap-
tiveRevision. The reason why it differs from [12] is
probably due to the datasets we used are 1000 times
larger than the ones reported by [12], and we evaluated
the algorithms in a distributed environment rather
than a simulated setting where a large minibatch size
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Figure 4: Relative test AUC (higher is better) as func-
tion of maximal delays.

is necessary for the former. However, as reported [12],
we also observed that AdaptiveRevision’s best learning
rate is insensitive to the number of workers.

AdaDelay seems to have a tiny edge over AsyncAda-
Grad, and as predicted by our theory, this edge grows
much bigger when there are large delays (e.g., due to
stragglers)—we report on this in greater detail in Sec-
tion 4.4.1.

Besides the LogLoss, AUC is another important merit
for computational advertising, which measures the
ranking ability of the model and often 1% difference is
significant for click-through rate estimation. We made
a separate validation dataset for calculating the AUC,
and shown the results on Figure 4. As can be seen,
the test AUC results are consistent with the online
LogLoss.

4.4.1 Stragglers

Previous experiments indicate that AdaDelay im-
proves upon AsyncAdaGrad when a large number of
workers (greater than 400) is used, which means the
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Figure 5: Relative test AUC (higher is better) as func-
tion of maximal delays with the existence of stragglers.

delay adaptive learning rate takes effect when the de-
lay can be large. To further investigate this phe-
nomenon, we simulated an overloaded cluster where
several stragglers may produce large delays; we do this
by slowing down half of the workers by a random factor
in [1, 4] when computing gradients. The test AUC are
shown in Figure 55. As can be seen, AdaDelay consis-
tently outperforms AsyncAdaGrad, which shows that
adaptive modeling of the actual delay is better than
using a constant worst case delay when the variance of
the delays is large.

4.4.2 Scalability

Finally we report the system performance. We first
present the speedup from 1 machine to 16 machines,
where each machine runs 100 workers. We observed
a near linear speedup of AdaDelay, which is shown
in Figure 6. The main reason is due to the asyn-
chronous updating which removes the dependencies
between worker nodes. In addition, using multiple

5As before, the results on online LogLoss are similar to
the test AUC and therefore omitted.
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AdaDelay AsyncAdaGrad AdaptiveRevision
Criteo 24 GB 24 GB 55 GB
CTR2 97 GB 97 GB 200 GB

Table 2: Total memory used by server nodes.

workers within a machine can fully utilize the com-
putational resources by hiding the overhead of reading
data and communicating the parameters. The results
of AsyncAdaGrad and AdaptiveRevision are similar to
AdaDelay because their computational workloads are
identical except for parameter updating, which affects
the overall system performance little.
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Figure 6: The speedup of AdaDelay. The results
of AsyncAdaGrad and AdaptiveRevision are almost
identical to AdaDelay and therefore omitted.

In the parameter server framework, worker nodes only
need to cache one or a few data minibatches. Most
memory is used by the server nodes to store the model.
We summarize the server memory usage for the three
algorithms compared in Table 2.

As expected, AdaDelay and AsyncAdaGrad have sim-
ilar memory consumption because the extra storage
needed by AdaDelay to track and compute the in-
curred delays τt is tiny. However AdaptiveRevision
doubles memory usage, because of the extra entries
that it needs for each feature, and because of the
cached delayed gradient gbak.

5 Conclusions

In real distributed computing environment, there are
multiple factors contributing to delay, such as the CPU
speed, I/O of disk, and network throughput. With the
inevitable and sometimes unpredictable phenomenon
of delay, we considered distributed convex optimiza-
tion by developing and analyzing AdaDelay, an asyn-
chronous SGD method that tolerates stale gradients.

A key component of our work that differs from existing
approaches is the use of (server-side) updates sensitive

to the actual delay observed in the network. This al-
lows us to use larger stepsizes initially, which can lead
to more rapid initial convergence, and stronger ability
to adapt to the environment. We discussed details of
two different realistic delay models: (i) uniform (more
generally, bounded support) delays, and (ii) scaled de-
lays with constant first and second moments but not-
necessarily bounded support. Under both models, we
obtain theoretically optimal convergence rates.

Adapting more closely to observed delays and incor-
porating server-side delay sensitive gradient aggrega-
tion that combines the benefits of the adaptive revision
framework [12] with our delayed gradient methods is
an important future direction. Extension of our anal-
ysis to handle constrained convex optimization prob-
lems without projection oracles is an important part
of future work. Finally, how to apply our techniques
to large-scale nonconvex problems such as matrix fac-
torization and deep neural networks is an important
direction worth studying.
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A Technical details of the convergence analysis

We collect below some basic tools and definitions from convex analysis.

Definition A.1 (Bregman divergence). Let h : X × X → [0,∞] be differentiable strictly convex function. The
Bregman divergence generated by h is

Dh(x, y) := h(x)− h(y)− 〈∇h(y), x− y〉, x, y ∈ X . (A.1)

– Fenchel conjugate:

f∗(y) = sup
x∈X
〈x, y〉 − f(x) (A.2)

– Prox operator:

proxf (x) = argmin
y∈X

f(y) +
1

2
‖x− y‖22, ∀ x ∈ X (A.3)

– Moreau decomposition:

x = proxf (x) + proxf∗(x), ∀ x ∈ X (A.4)

– Fenchel-Young inequality:

〈x, y〉 ≤ f(x) + f∗(y) (A.5)

– Projection lemma:

〈y −ΠX (y), x−ΠX (y)〉 ≤ 0, ∀ x ∈ X . (A.6)

– Descent lemma:

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L
2 ‖y − x‖

2. (A.7)

– Four-point identity: Bregman divergences satisfy the following four point identity :

〈∇h(a)−∇h(b), c− d〉 = Dh(d, a)−Dh(d, b)−Dh(c, a) +Dh(c, b). (A.8)

A special case of (A.8) is the “three-point” identity

〈∇h(a)−∇h(b), b− c〉 = Dh(c, a)−Dh(c, b)−Dh(b, a). (A.9)

A.1 Bounding the change f(xt+1)− f(x∗)

We start the analysis by bounding the gap f(xt+1) − f(x∗). The lemma below is just a combination of several
results of [1]. We present the details below in one place for easy reference. The impact of our delay sensitive
step sizes shows up in subsequent lemmas, where we bound the individual terms that arise from Lemma A.2.

Lemma A.2. At any time-point t, let the gradient error due to delays be

et := ∇f(xt)− g(t− τt). (A.10)

Then, we have the following (deterministic) bound:

f(xt+1)− f(x∗)

=
1

2α(t, τt)

[
‖x∗ − xt‖2 − ‖x∗ − xt+1‖2

]
+ 〈et, xt+1 − x∗〉+ L−1/α(t,τt)

2 ‖xt − xt+1‖2,

≤ 1

2α(t, τt)

[
‖x∗ − xt‖2 − ‖x∗ − xt+1‖2

]
+ 〈∇f(xt)−∇f(x(t− τt)), xt+1 − x∗〉

+ 〈∇f(x(t− τt))− g(t− τt), xt − x∗〉+ 1
2η(t,τt)

‖∇f(x(t− τt))− g(t− τt)‖2. (A.11)
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Proof. Using convexity of f we have

f(xt)− f(x∗) ≤ 〈∇f(xt), xt+1 − x∗〉+ 〈∇f(xt), xt − xt+1〉. (A.12)

Now apply Lipschitz continuity of ∇f to the second term to obtain

f(xt)− f(x∗) ≤ 〈∇f(xt), xt+1 − x∗〉+ f(xt)− f(xt+1) + L
2 ‖xt − xt+1‖2,

=⇒ f(xt+1)− f(x∗) ≤ 〈∇f(xt), xt+1 − x∗〉+ L
2 ‖xt − xt+1‖2.

(A.13)

Using the definition (A.10) of the gradient error et, we can rewrite (A.13) as

f(xt+1)− f(x∗) ≤ 〈g(t− τt), xt+1 − x∗〉︸ ︷︷ ︸
T1

+ 〈et, xt+1 − x∗〉︸ ︷︷ ︸
T2

+L
2 ‖xt − xt+1‖2.

To complete the proof, we bound the terms T1 and T2 separately below.

Bounding T1: Since xt+1 is a minimizer in (2.1), from the projection inequality (A.6) we have

〈xt − α(t, τt)g(t− τt)− xt+1, x− xt+1〉 ≤ 0, ∀x ∈ X .

Choose x = x∗; then rewrite the above inequality and identity (A.9) with h(x) = 1
2‖x‖

2 to get

α(t, τt)〈g(t− τt), xt+1 − x∗〉 ≤ 〈xt − xt+1, xt+1 − x∗〉
= 1

2‖x
∗ − xt‖2 − 1

2‖x
∗ − xt+1‖2 − 1

2‖xt+1 − xt‖2;

Plugging in this bound for T1 and collecting the ‖xt+1 − xt‖2 terms we obtain

f(xt+1)− f(x∗)

≤ 1
2α(t,τt)

[
‖x∗ − xt‖2 − ‖x∗ − xt+1‖2 − ‖xt+1 − xt‖2

]
+ 〈et, xt+1 − x∗〉+ L

2 ‖xt − xt+1‖2

= 1
2α(t,τt)

[
‖x∗ − xt‖2 − ‖x∗ − xt+1‖2

]
+ 〈et, xt+1 − x∗〉+ L−1/α(t,τt)

2 ‖xt − xt+1‖2. (A.14)

Bounding T2: Adding and subtracting ∇f(x(t− τt)) we obtain

〈et, xt+1 − x∗〉 = 〈∇f(xt)− g(t− τt), xt+1 − x∗〉
= 〈∇f(xt)−∇f(x(t− τt)), xt+1 − x∗〉+ 〈∇f(x(t− τt))− g(t− τt), xt+1 − x∗〉
= 〈∇f(xt)−∇f(x(t− τt)), xt+1 − x∗〉+ 〈∇f(x(t− τt))− g(t− τt), xt − x∗〉

+ 〈∇f(x(t− τt))− g(t− τt), xt+1 − xt〉
≤ 〈∇f(xt)−∇f(x(t− τt)), xt+1 − x∗〉+ 〈∇f(x(t− τt))− g(t− τt), xt − x∗〉

+ 1
2η(t,τt)

‖∇f(x(t− τt))− g(t− τt)‖2 + η(t,τt)
2 ‖xt+1 − xt‖2,

where the last inequality is an application of (A.5). Adding this inequality to (A.14) and using 1/α(t, τt) =
L+ η(t, τt), we obtain (A.11).

The next step is to take expectations over (A.11) and then further bound the resulting terms separately. Note
that ∇f(x(t− τt))− g(t− τt) is independent of xt given g(1), . . . , g(t− τt− 1) (since xt is a function of gradients
up to time t− τt − 1). Thus, the third term in (A.11) has zero expectation. It remains to consider expectations
over the following three quantities:

∆(t) :=
1

2α(t, τt)

[
‖x∗ − xt‖2 − ‖x∗ − xt+1‖2

]
; (A.15)

Γ(t) := 〈∇f(xt)−∇f(x(t− τt)), xt+1 − x∗〉; (A.16)

Σ(t) := 1
2η(t,τt)

‖∇f(x(t− τt))− g(t− τt)‖2. (A.17)

Lemma A.3 bounds (A.15) under Assumption 2.5(A), while Lemma A.4 provides a bound under the Assump-
tion 2.5(B). Similarly, Lemmas A.5 and A.6 bound (A.16), while Lemmas A.7 bounds (A.17). Combining these
bounds we obtain the theorem.
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A.2 Bounding ∆, Γ, and Σ

Lemma A.3. Let ∆(t) be given by (A.15), and let Assumption 2.5 (A) hold. Then,

T∑
t=1

E[∆(t)] =
1

2

T∑
t=1

E
[ 1

α(t, τt)

(
‖x∗ − xt‖2 − ‖x∗ − xt+1‖2

)]
≤ 1

2 (L+ c)R2 +
√

2cR2τ̄
√
T .

Proof. Unlike the delay independent step sizes treated in [1], bounding ∆(t) requires some more work because
α(t, τt) depends on τt, which in turn breaks the monotonically decreasing nature of α(t, τt) (we wish to avoid
using a fixed worst case bound on the steps, to gain more precise insight into the impacts of being sensitive to
delays), necessitating a more intricate analysis.

Let rt = ‖xt − x∗‖2. Observe that although rt ⊥⊥ τt, it is not independent of τ(t− 1). Thus, with

zt =
1

α(t, τt)
− 1

α(t− 1, τt−1)
= c(
√
t+ τt −

√
t− 1 + τt−1),

we have

T∑
t=1

E[∆(t)] =
1

2
E
[ r1

α(1, τ(1))
+

T∑
t=2

ztrt

]
≤ 1

2
(L+ c)R2 +

1

2
E
[ T∑
t=2

ztrt

]
. (A.18)

Since α(t, τt) is not monotonically decreasing with t, while upper-bounding E[∆(t)] we cannot simply discard
the final term in (A.18).

When τ(t− 1) ∼ U({0, 2τ̄}), rt uniformly takes on at most 2τ̄ + 1 values

rt,s := ‖xt,s − x∗‖2, s ∈ [2τ̄ ],

where xt,s = ΠX [xt−1 − α(t− 1, τ(t− 1) = s)g(t− 1, τ(t− 1))]. Given a delay τ(t− 1) = s, rt is just rt,s. Using
zt = α(t)−1 − α(t− 1)−1 = c

√
t+ τt − c

√
t− 1 + τt−1, we have

zt,s = c
(√
t+ τt −

√
t− 1 + s

)
, s ∈ [2τ̄ ].

Using nested expectations E[ztrt] = Eτt [E[ztrt|τt]] we then see that

E[ztrt] =
1

2τ̄ + 1

2τ̄∑
l=0

(
2τ̄∑
s=0

(2τ̄ + 1)−1rt,sc
(√

t+ l −
√
t− 1 + s

))

≤ 1

2τ̄ + 1

2τ̄∑
l=0

(
l−1∑
s=0

(2τ̄ + 1)−1rt,sc
(√

t+ l −
√
t− 1 + s

))
,

where we dropped the terms with s ≥ l as they are non-positive.

Consider now the inner summation above. We have

c

2τ̄ + 1

l−1∑
s=0

rt,s

(√
t+ l −

√
t− 1 + s

)
≤ cR2

2τ̄ + 1

l−1∑
s=0

(√
t+ l −

√
t− 1 + s

)
=

cR2

2τ̄ + 1

l−1∑
s=0

l − s+ 1√
t+ l +

√
t− 1 + s

≤ cR2

2τ̄ + 1

1√
2t− 1

l−1∑
s=0

(l − s+ 1)

=
cR2

2τ̄ + 1

1√
2t− 1

3l + l2

2
.
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Thus, we now consider

E[ztrt] ≤
1

2τ̄ + 1

2τ̄∑
l=0

cR2

2τ̄ + 1

1√
2t− 1

3l + l2

2

=
cR2

(2τ̄ + 1)2
√

2t− 1
(2τ̄ + 1)(4τ̄ + 2.5)τ̄

<
2cR2τ̄√
2t− 1

.

Summing over t = 2 to T , we finally obtain the upper bound

T∑
t=2

E[ztrt] ≤ cR2τ̄

T∑
t=2

1√
2t− 1

≤ 2cR2τ̄
√

2T .

Lemma A.4. Let Assumption (2.5) (B) hold. Then

T∑
t=1

E[∆(t)] ≤ 1

2
R2(L+ c) +

1

2
cR2

T∑
t=2

τ̄t + 1√
2t− 1

.

Proof. Proceeding as for Lemma A.3, according to (A.18), the task reduces to bounding E[ztrt]. Consider thus,

E[ztrt] ≤ E[z+
t rt] ≤ R2E[z+

t ],

where we use z+
t to denote max(zt, 0). Let us now control the last expectation. Let Pt(l) = P(τ(t) = l), then

E[z+
t ] =

∑
τt,τt−1

P (τt, τt−1) max(0, zt)

= c

t−1∑
l=0

t−2∑
s=0

Pt(l)Pt−1(s)[
√
t+ l −

√
t− 1 + s]+

= c

t−1∑
l=0

l∑
s=0

Pt(l)Pt−1(s)
l + 1− s√

t+ l +
√
t− 1 + s

≤ c
t−1∑
l=0

l∑
s=0

Pt(l)Pt−1(s)
l + 1√

2t+ l − 1

≤ c
t−1∑
l=0

Pt(l)
l + 1√

2t+ l − 1

≤ c
t−1∑
l=0

Pt(l)
l + 1√
2t− 1

= c
τ̄t + 1√
2t− 1

.

So
T∑
t=2

R2E[z+
t ] ≤ cR2

T∑
t=2

τ̄t + 1√
2t− 1

.

Lemma A.5.

T∑
t=1

E[Γ(t)] =

T∑
t=1

E [〈∇f(xt)−∇f(x(t− τt)), xt+1 − x∗〉]

≤ τ̄GR+
LC1

2
+
LC2

2
log T

where

C1 =
G2τ̄(τ̄ + 1)(2τ̄ + 1)2

3(L2 + c2)
and C2 =

G2(4τ̄ + 3)(τ̄ + 1)

3c2
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Proof. This proof is an adaptation of Lemma 4 and Corollary 1 of Agarwal and Duchi [1]. First, we exploit
convexity of f to help analyze the gradient differences using the four-point identity (A.8):

〈∇f(xt)−∇f(x(t− τt)), xt+1 − x∗〉
= Df (x∗, xt)−Df (x∗, x(t− τt))−Df (xt+1, xt) +Df (xt+1, x(t− τt)).

(A.19)

Since ∇f is L-Lipschitz, we further have

f(xt+1) ≤ f(x(t− τt)) + 〈∇f(x(t− τt)), xt+1 − x(t− τt)〉+ L
2 ‖x(t− τt)− xt+1‖2.

By definition of a Bregman divergence, we also have

Df (xt+1, x(t− τt)) = f(xt+1)− f(x(t− τt))− 〈∇f(x(t− τt)), xt+1 − x(t− τt)〉,

which, upon using using A.7, immediately yields the bound

Df (xt+1, x(t− τt)) ≤ L
2 ‖x(t− τt)− xt+1‖2.

Dropping the negative term Df (xt+1, xt) from (A.19) and summing over t, we then obtain

T∑
t=1

〈∇f(xt)−∇f(x(t− τt)), xt+1 − x∗〉

≤
T∑
t=1

[Df (x∗, xt)−Df (x∗, x(t− τt))] +
L

2

T∑
t=1

‖xt+1 − x(t− τt)‖2.

Notice that the first sum partially telescopes, leaving only the terms not received by the server within the first
T iterations. Thus, we obtain the bound

∑
t:t+τt>T

Df (x∗, xt) +
L

2

T∑
t=1

‖xt+1 − x(t− τt)‖2. (A.20)

We bound both each of the terms in (A.20) in turn below.

To bound the contribution of the first term in expectation, compute the expected cardinality

E[|{t : t+ τt > T}|] =

T∑
t=1

Pr(τt > T − t), (A.21)

Assuming delays uniform on {0, 2τ̄} bounding this cardinality is easy, since

Pr(τt > T − t) =

{
0 T − t > 2τ̄ ,
2τ̄−T+t

2τ̄+1 otherwise.

Assuming that 2τ̄ + 1 < T , (A.21) becomes (unsurprisingly)

2τ̄∑
s=1

2τ̄ − s
2τ̄ + 1

=
(4τ̄ − 2τ̄)(2τ̄ + 1)

2(2τ̄ + 1)
= τ̄ .

From definition of a Bregman divergence we immediately see that

0 ≤ Df (x∗, xt) ≤ −〈∇f(xt), x
∗ − xt〉 ≤ ‖∇f(xt)‖‖x∗ − xt‖ ≤ GR.

Thus, the contribution of the first term in (A.20) is bounded in expectation by by τ̄GR.
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To bound the contribution of the second term, use convexity of ‖·‖2 to obtain

‖xt+1 − x(t− τt)‖
=‖xt+1 − xt + xt − x(t− 1) + · · ·+ x(t− τt + 1)− x(t− τt)‖2

≤(τt + 1)2
τt∑
s=0

1
τt+1‖xt+1−s − xt−s‖2

=(τt + 1)

τt∑
s=0

‖ΠX
(
x(t− s)− α(t− s, τt−s)g(t− s, τt−s)

)
−ΠX (x(t− s))‖2

≤(τt + 1)G2
τt∑
s=0

α(t− s, τt−s)2.

Conditioned on the delay τt we have

E[‖xt+1 − x(t− τt)‖2|τt] ≤ (τt + 1)G2
∑τt

s=0
E[α(t− s, τt−s)2].

Under the uniform or scaled assumptions on delays, we obtain similar bounds on the above quantity.

Consider now the expectation

E[α(t− s, τ(t− s))2] = E[
1

L2 + c2((t− s) + τ(t− s)) + 2Lc
√
t− s+ τ(t− s)

] ≤ 1

L2 + c2(t− s)

=⇒ if τt = l,

τt∑
s=0

E[α(t− s, τt−s)2] ≤
l∑

s=0

1

L2 + c2(t− l)
=

l + 1

L2 + c2(t− l)
.

Thus, for t > 2τ̄ , we have the following bound

E[‖xt+1 − x(t− τt)‖2] ≤ G2
2τ̄∑
l=0

1

2τ̄ + 1

(l + 1)2

L2 + c2(t− l)

≤ G2

(2τ̄ + 1)(L2 + c2(t− 2τ̄))

2τ̄∑
l=0

(l + 1)2

=
G2(4τ̄ + 3)(τ̄ + 1)

3(L2 + c2(t− 2τ̄))
.

and for t ≤ 2τ̄ , we have

E[‖xt+1 − x(t− τt)‖2] ≤ G2
t−1∑
l=0

Pt(l)
(l + 1)2

L2 + c2(t− l)

≤ G2
t−1∑
l=0

(l + 1)2

L2 + c2

=
G2t(t+ 1)(2t+ 1)

6(L2 + c2)
.

Now adding up over t = 1 to T , we have

T∑
t=1

E[‖xt+1 − x(t− τt)‖2] ≤ C1 + C2 log T

Lemma A.6. Assuming scaled delays, we have the bound

T∑
t=1

E[Γ(t)] =

T∑
t=1

E [〈∇f(xt)−∇f(x(t− τt)), xt+1 − x∗〉]

≤ GR

(
1 +

T−1∑
t=1

B2
t

(T − t)2

)
+ LG2

T∑
t=1

B2
t + 1 + τ̄t

L2 + c2(1− θt)t
.
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Proof. We build on Corollary 1 of [1], and proceed as in Lemma A.5 to bound the terms in (A.20) separately.
For the first term, we bound the expected cardinality using Chebyshev’s inequality and Assumption 2.5 (B):

E[|{t : t+ τt > T}|] =

T∑
t=1

Pr(τt > T − t) ≤ 1 +

T−1∑
t=1

E[τ2
t ]

(T − t)2
= 1 +

T−1∑
t=1

B2
t

(T − t)2

To bound the second term, we again follow Lemma A.5 to obtain

E[‖xt+1 − x(t− τt)‖2|τt] ≤ (τt + 1)G2
∑τt

s=0
E[α(t− s, τt−s)2].

E[α(t− s, τ(t− s))2] = E[
1

L2 + c2((t− s) + τ(t− s)) + 2Lc
√
t− s+ τ(t− s)

]

≤ 1

L2 + c2(t− s)
,

which yields the bound (since 0 ≤ s ≤ τt)

E[‖xt+1 − x(t− τt)‖2|τt] ≤
G2(τt + 1)2

L2 + c2(t− τt)
Now adding up over t = 1 to T consider

G2
∑T

t=1

(τt + 1)2

L2 + c2(t− τt)
,

so that taking expectation (over τt) we then obtain

T∑
t=1

E[‖xt+1 − x(t− τt)‖2] ≤ G2
T∑
t=1

E
[

(τt + 1)2

L2 + c2(t− τt)

]
.

Using our assumption that τt < θtt for θt ∈ (0, 1), we have in particular that

G2
T∑
t=1

E
[

(τt + 1)2

L2 + c2(t− τt)

]

≤G2
T∑
t=1

1

L2 + c2(1− θt)t
E[(τt + 1)2]

≤G2
T∑
t=1

B2
t + 1 + τ̄t

L2 + c2(1− θt)t

Lemma A.7. Let the step-offsets be η(t, τt) = c
√
t+ τt. For any delay distribution we have

T∑
t=1

E[Σ(t)] ≤ σ2

c

√
T .

Proof. From Assumption 2.2 on the variance of stochastic gradients, it follows that

E[Σ(t)] = E
[

1
2η(t,τt)

‖∇f(x(t− τt))− g(t− τt)‖2
]
≤ σ2

2
E
[
η(t, τt)

−1
]
.

Plugging in η(t, τt) = c
√
t+ τt, clearly the bound

1

c
E[(t+ τt)

−1/2] =
1

c

t−1∑
s=0

P (s)
1√
t+ s

≤ 1

c
√
t
, (A.22)

holds for any delay distribution. Summing up over t, we then obtain

T∑
t=1

E[Σ(t)] ≤ σ2

2c

T∑
t=1

1√
t
≤ σ2

c

√
T .
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B More general step-sizes

If we use the offsets ηt = c(t + τt)
β , where 0 < β < 1, we obtain slightly more general step sizes that fit within

our framework. The only benefit of considering stepsizes other than β = 1/2 is because they allow us to tradeoff
the contributions of the various terms in the bounds, and for a larger value of β for instance, we will obtain
smaller step sizes, which can be beneficial in high noise regimes, at least in the initial iterations. The theoretical
sweet-spot (in terms of dependence on T ), is, however β = 1/2, the choice analyzed above. We summarize below
the impact of these steps sizes for non-uniform scaled delays; the uniform case is even simpler. For simplicity,
we do not bound the terms as tightly as for the special case β = 1/2.

Lemma B.1. Assume that τt satisfies Assumption 2.5 (B) and ηt = c(t+ τt)
β and 0 < β < 1. Then,

E[z+
t ] ≤ cR2β(τ̄t + 1)

(t− 1)1−β (B.1)

E[‖xt+1 − x(t− τt)‖2] ≤ G2(τt + 1)2

L2 + c2(t− τt)2β
(B.2)

E[η(t, τt)
−1] ≤ 1

ctβ
. (B.3)

Proof. Proceeding as in Lemma A.4 we bound

E[z+
t ] = c

t−1∑
l=0

l∑
s=0

Pt(l)Pt−1(s)
(
(t+ l)β − (t− 1 + s)β

)
≤ c

t−1∑
l=0

l∑
s=0

Pt(l)Pt−1(s)β
l + 1− s

(t− 1 + s)1−β

≤ cβ
t−1∑
l=0

l∑
s=0

Pt(l)Pt−1(s)
l + 1

(t− 1)1−β

≤ cβ
t−1∑
l=0

Pt(l)
l + 1

(t− 1)1−β =
cβ(τ̄t + 1)

(t− 1)1−β .

where the first inequality follows from concavity if tβ , the second one since l+1−s
(t−1+s)1−β

is decreasing in s, while

the third is clear as Pt−1 is a probability.

Next, we bound (B.2). Proceeding as in Lemma A.6, we obtain the bounds

E[α(t− s, τt−s)2] ≤ 1

L2 + c2(t− s)2β

=⇒ E[‖xt+1 − x(t− τt)‖2|τt] ≤
G2(τt + 1)2

L2 + c2(t− τt)2β

Finally, the bound on (B.3) is trivial; since η−1
t = c−1(t+ τt)

−β , we have

1

c
E[(t+ τt)

−β ] =
1

c

t−1∑
s=0

Pt(s)
1

(t+ s)β
≤ 1

ctβ
.

Using these key bounds, we can defined full versions of Lemmas A.4, A.6, and A.7, where we finally we will need
a bound of the form

T∑
t=1

1

tβ
≤ 1 +

∫ T

0

t−βdt = 1 +

(
T 1−β − 1

)
1− β

≤ 1

1− β
T 1−β .
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