
M
A

Y
 2

0
0

3

Formal Verification
Hunting Down the Bug

Edmund Clarke, Daniel Kroening

Bridging the Gap betweenBridging the Gap between

LEGACY

 CODE

LEGACY

CODE andand
FORMAL

SPECIFICATION

FORMAL

SPECIFICATION

TOOL OVERVIEWTOOL OVERVIEW

MOTIVATIONMOTIVATION

SCREENSHOTSCREENSHOT

ANSI-C BMCANSI-C BMC

FUTURE WORKFUTURE WORK

PVS PropertiesPVS Properties

CURRENT PROJECTCURRENT PROJECTD O N ED O N E
l Implemented tool that automatically detects

¤Buffer overruns

¤Pointer bugs

¤Worst Case Execution time

¤No false positives, no false negatives!

l Tool takes ANSI -C as input

¤Support for all integer operators

¤Support for complex language features such as side
effects

l GUI for easy use by developer

¤ Looks and feels like debugger

l Safety problems
because of pointers
and arrays

l Run time guarantees
(WCET)

l Program bugs
(exceptions)

ANSI-C
Source

=?

=?

Bug Hunting for
Security & Safety

Functional
Verification

High Level
Language

(Statecharts,…)

Other Design
(Verilog, …)

U.S.ARMYU.S.ARMY

High ConfidenceEmbedded Systems
High Confidence Embedded Systems

l Software most complex part of today's safety critical
embedded systems

l Most embedded systems are legacy designs

l Written in a low level language such as
ANSI-C or even assembly language

l Bigger problem than new, high level designs

l Existing tools do not address the verification problem

l Goal: Verify legacy code with respect to

¤ A formal specification

¤ A high level design

¤ Safety properties

“

”

Most embedded systems are legacy designs,
i.e., written in a low level language such as
ANSI-C or even assembly language. These
systems are a bigger problem than the new,

high level designs, but the existing tools do not
address the verification problem.

l Problem: Fixpoint computation is too expensive for
software

l Idea:

¤Unwind program into equation

¤Check equation using SAT

l Advantages:

¤Completely automated

¤Allows full set of ANSI-C, including full treatment of
pointers and dynamic memory

l Properties:

¤Simple assertions

¤Security (Pointers/Arrays)

¤Run time guarantees (WECT)

l Verify Safety Properties of a part of a train
controller provided by GE

¤ Termination / WCET

¤ Correctness of pointer constructs

¤ The code uses two channels for redundancy:
Check that they compute the same result

¤ Arithmetic consistency checks, involving
multiplication and division

l The code contains x86 assembly language

l Interval abstraction for floating point
aritmetic

l Concurrent ANSI-C programs (SpecC)

l Object oriented languages (C++, Java)

l Statechart-like specification language

l Motivation:

¤assertions often not expressive enough

¤E.g.: complex computations

¤One wants specification that can be inspected

ðWe use PVS language

l Problems:

¤Basically everything about PVS language is
undecidable, including type consistency

¤PVS language highly compact due to overloading

¤Requires complex resolver and type checker

l Good news: both resolver and type checker
implemented (first time outside of PVS!)

