Edmund Clarke, Daniel Kroening

* High Confidence Embedded Systems
Formal VerificaticC

Hunting Down the Bugs-

MAY 2003

Sriefeyiney GaplbeWeEEN

-) T oAl e
ARRER L o :
¥ ey r;' B : g "
T = N B e _—
o) P -
&3 s 0 Sl . -
. <t y e T I
il T
= - - =S
- s
-5 ‘
= -
- a 1
-
.) 'y
J‘ il L
e s z r
- sam v ¥ 4 iy
! | |
L} a = - 3 ®
c. = 45

MOTIVATION

® Software most complex part of today's safety critical
embedded systems

® Most embedded systems are legacy designs

® Written in a low level language such as
ANSI-C or even assembly language

® Bigger problem than new, high level designs
® EXxisting tools do not address the verification problem

® Goal: Verify legacy code with respect to
® A formal specification
® A high level design
® Safety properties

* Most embedded systems are legacy designs,
l.e., written in a low level language such as
ANS -C or even assembly language. These
systems are a bigger problem than the new,

high level designs, but the existing tools do not
address the verification problem.”

TOOL OVERVIEW

SCREENSHOT

B CBMC-GUI

Eile Tooks Qptons [nfo

fotrd.log lest_pointerc | fptrd.c | loop2¢ | bound.c

int main{) {
int k;
int sum;
unsigned char x[10];

for(k = 0; k <= 10: k++)
sum=x[k]1;

| Output | Emors | Watch | Debug

Hame Value

Bug Hunting for Functional
Security & Safety Verification
® Safety problems High Level

because of pointers

Language
and arrays @ (Statecharts,...)
® Run time guarantees
(WCET) f

® Program bugs Other Design
(exceptions) (Verilog, ...)

DONE

® |Implemented tool that automatically detects
® Buffer overruns
® Pointer bugs
® Worst Case Execution time
® No false positives, no false negatives!

® Tool takes ANSI-C as input
® Support for all integer operators

® Support for complex language features such as side
effects

® GUI for easy use by developer
® Looks and feels like debugger

CURRENT PROJECT

® Verify Safety Properties of a part of a train
controller provided by GE

® Termination / WCET
® Correctness of pointer constructs

® The code uses two channels for redundancy:
Check that they compute the same result

® Arithmetic consistency checks, involving
multiplication and division

® The code contains x86 assembly language

ANSI-C BMC

® Problem: Fixpoint computation is too expensive for
software

® [dea:
® Unwind program into equation
® Check equation using SAT

® Advantages:
® Completely automated

® Allows full set of ANSI-C, including full treatment of
pointers and dynamic memory

® Properties:
® Simple assertions
® Security (Pointers/Arrays)
® Run time guarantees (WECT)

PVS Properties

® Motivation:
®assertions often not expressive enough
®E.g.: complex computations
® One wants specification that can be inspected
= We use PVS language

® Problems:

® Basically everything about PVS language is
undecidable, including type consistency

® PVS language highly compact due to overloading
® Requires complex resolver and type checker

® Good news: both resolver and type checker
Implemented (first time outside of PVS!)

FUTURE WORK

® Interval abstraction for floating point
aritmetic

® Concurrent ANSI-C programs (SpecC)
® Object oriented languages (C++, Java)

® Statechart-like specification language

