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Formal Verification
Hunting Down the Bug

Edmund Clarke, Daniel Kroening
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l Implemented tool that automatically detects

¤Buffer overruns

¤Pointer bugs

¤Worst Case Execution time

¤No false positives, no false negatives!

l Tool takes ANSI -C as input

¤Support for all integer operators

¤Support for complex language features such as side 
effects

l GUI for easy use by developer

¤ Looks and feels like debugger

l Safety problems
because of pointers 
and arrays

l Run time guarantees 
(WCET)

l Program bugs 
(exceptions)
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l Software most complex part of today's safety critical 
embedded systems

l Most embedded systems are legacy designs

l Written in a low level language such as
ANSI-C or even assembly language 

l Bigger problem than new, high level designs

l Existing tools do not address the verification problem 

l Goal: Verify legacy code with respect to

¤ A formal specification

¤ A high level design

¤ Safety properties

“

”

Most embedded systems are legacy designs, 
i.e., written in a low level language such as 
ANSI-C or even assembly language. These 
systems are a bigger problem than the new, 

high level designs, but the existing tools do not 
address the verification problem.

l Problem: Fixpoint computation is too expensive for 
software

l Idea:

¤Unwind program into equation

¤Check equation using SAT

l Advantages:

¤Completely automated

¤Allows full set of ANSI-C, including full treatment of 
pointers and dynamic memory

l Properties:

¤Simple assertions

¤Security (Pointers/Arrays)

¤Run time guarantees (WECT)

l Verify Safety Properties of a part of a train 
controller provided by GE

¤ Termination / WCET

¤ Correctness of pointer constructs

¤ The code uses two channels for redundancy: 
Check that they compute the same result

¤ Arithmetic consistency checks, involving 
multiplication and division

l The code contains x86 assembly language

l Interval abstraction for floating point 
aritmetic

l Concurrent ANSI-C programs (SpecC)

l Object oriented languages (C++, Java)

l Statechart-like specification language

l Motivation:

¤assertions often not expressive enough

¤E.g.: complex computations

¤One wants specification that can be inspected

ðWe use PVS language

l Problems:

¤Basically everything about PVS language is 
undecidable, including type consistency

¤PVS language highly compact due to overloading

¤Requires complex resolver and type checker

l Good news: both resolver and type checker 
implemented (first time outside of PVS!)


