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What’s the research problem?

We don’t know how to
reason with information
that comes from many
different, autonomous
sources. Site1

Site2 Site3

KB

KB1 KB3

KB2

World Wide Web

2



all mallards duck.jpg is duck.jpg is

are waterfowl + a picture of = a picture of

a mallard a waterfowl

Taxonomy

Order Species

waterfowl mallard

waterfowl bufflehead

raptor osprey

raptor bald eagle

. . . . . .

+

Images

Species File

robin robin.jpg

mallard duck.jpg

osprey hawk.jpg

penguin tweety.jpg

. . . . . .

=

Order Species File

waterfowl mallard duck.jpg

raptor osprey hawk.jpg

. . . . . . . . .
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mallards are duck.jpg is duck.jpg is a

found in + a picture of = picture of something

New Jersey a mallard found in New Jersey

NJ Birds

Species

robin

mallard

osprey

. . .

+

Images

Species File

robin robin.jpg

mallard duck.jpg

penguin tweety.jpg

. . . . . .

Deduction enables

modularity.

=

Species File

robin robin.jpg

mallard duck.jpg

. . . . . .
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Why deduction requires co-operation

-? nj bird(X),image(X,File).
nj bird(mallard). nj bird(robin). . . .
image(mallard,’duck.jpg’). image(american robin,’robin.jpg’). . . .

The providers of the nj bird and image facts have to agree on:

• predicate names and argument positions (schema);

• taxonomic information;

• formal names (OIDs) for every entity they describe;

• . . .
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Deduction without co-operation

If information providers
don’t co-operate, then a
“mediator” program must
translate:

’robin’→ ’american robin’

How hard is it to
determine if two names
refer to the same thing?

KB3

KB2

Site1
Site2 Site3

KB1

World Wide Web

MEDIATOR

User
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Humongous Humongous

Entertainment

Headbone Headbone

Interactive

The Lion King: Lion King

Storybook Animated

StoryBook

Disney’s Activity The Lion King

Center, The Activity Center

Lion King

Microsoft Microsoft Kids

Microsoft/Scholastic

American Kestrel

Kestrel Eurasian Kestrel

Canada Goose Goose,

Aleutian Canada

Mallard Mallard, Mariana
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Bell Labs AT&T Bell Labs

AT&T Research AT&T Labs

Bell Telephone Labs AT&T Labs—Research

AT&T Labs–Research, Lucent Innovations

Shannon Laboratory Bell Labs Technology

Conclusion: name-coreference is an AI-complete problem.

8



What’s the research problem?

We need a general means
for integrating formally
unconnected knowledge
bases.

We must exploit these
facts: the individual KB’s
model the same real world,
and communicate with the
same users.

KB1
KB2 KB3

Human Users

The Real World
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The WHIRL approach

Key points:

• Use informal names and descriptions as object identifiers.

• Use techniques from information retrieval (IR) to guess if two
descriptions refer to the same object.

• Use soft (≈ probabilistic) reasoning for deduction.

Formal reasoning methods over informally identified objects.
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Overview of WHIRL

• WHIRL (Word-based Heterogeneous Information
Representation Language) is somewhere between IR systems
(document delivery) and KR systems (deduction).

• Outline:

– Data model: how information is stored.

– WHIRL query language

– Accuracy results

– Key ideas for implementation

– Efficiency results

– More results and conclusions
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Background: Information retrieval

Ranked retrieval: (e.g., Altavista, Infoseek, . . . ) given a query Q,
find the documents d1, . . . , dr that are most similar to Q.

Similarity of di and dj is measured using set of terms Tij common
to di and dj :

SIM (di, dj) =
∑

t∈Tij
weight(t, di) · weight(t, dj)

• A term is a single word (modulo stemming, . . . )

• Heuristic: make weight(t, d) large if t is frequent in d, or if t is
rare in the corpus of which d is an element.
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Background: Information retrieval

Similarity of di and dj is measured using set of terms Tij common
to di and dj :

SIM (di, dj) =
∑

t∈Tij
weight(t, di) · weight(t, dj)

• Heuristic: make weight(t, d) large if t is frequent in d (TF), or
if t is rare in the corpus of which d is an element (IDF).

• Example: if the corpus is a list of company names:

– Low weight: “Inc”, “Corp”, . . .

– High weight: “Microsoft”, “Lucent”, . . .

– Medium weight: “Acme”, “American”, . . .
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Background: Information retrieval

It’s notationally convenient to think of a document di as a long,
sparse vector, vi.

If ~vi = 〈vi,1, . . . , vi,|T |〉, vi,t = weight(t, di), and ||vi|| = 1:

SIM (di, dj) =
∑

t∈T
weight(t, di) · weight(t, dj)

= ~vi · ~vj
Also, 0 ≤ SIM (di, dj) ≤ 1.
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Effectiveness of the TF-IDF “vector space” representation
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Cinema Movie Show Times

Roberts Brassed 7:15 - 9:10

Theaters Off

Chatham

Berkeley Hercules 4:15 - 7:30

Cinema

Sony Men In 7:40 - 8:40 -

Mountainside Black 9:30 - 10:10

Theater

listing(~vRTC , ~vBO, ~vT79), 1.

listing(~vBC , ~vH , ~vT47), 1.

listing(~vSMT , ~vMIB , ~vT789), 1.

review(~wMIB97, ~wR1), 1.

review(~wFO, ~wR2), 1.

review(~wSB , ~wR3), 1.

Each ~vi, ~wi is a document vector.

Each fact has a score s ∈ [0, 1].

Movie Review

Men in Black, 1997 (∗ ∗ ∗) One of the biggest hits of . . .

Face/Off, 1997 (∗ ∗ 1
2 ) After a slow start, . . .

Space Balls, 1987 (∗ 1
2 ) Not one of Mel Brooks’

best efforts, this spoof . . .

~vMIB = 〈. . . , vblack, . . . , vin, . . . , vmen, . . .〉
~wMIB97 =〈. . . , wblack, . . . , win, . . . , wmen, . . . , w1997, . . .〉

w1997 ≈ 0 =⇒ sim(~vMIB , ~wMIB97) ≈ 1
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Queries in WHIRL

• Syntax: WHIRL = (similarity)
Prolog − function symbols − recursion − negation + X∼Y

• Semantics (details in Cohen, SIGMOD98):

– A ground formula gets a score s ∈ [0, 1]

– Score(p(a1, . . . , ak)) = s for DB literals.

– Score(a ∼ b) = SIM (a, b) for similarity literals.

– Score(φ ∧ ψ) = Score(φ) · Score(ψ).

– Score(φ ∨ ψ) = 1− (1− Score(φ))(1− Score(ψ))

– Answer to a query Q is an ordered list of the r substitutions
θ1, . . . , θr that give Qθi the highest scores.
(User provides r).
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Sample WHIRL queries

Standard ranked retrieval:

“find reviews of sci-fi comedies”.

?- review(Title,Rev) ∧ Rev∼“sci-fi comedy”

(score 0.22): θ1 = {Title/~wMIB97,Rev/~wR1}
(score 0.19): θ2 = {Title/~wSB ,Rev/~wR4}
(score 0.13): θ2 = . . .
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Sample WHIRL queries

Standard DB queries: “find reviews for movies playing in
Mountainside” (assume single-term “movie IDs” in DB)

?- review(Id1,T1,Rev) ∧ listing(C,Id2,T2,Time)
∧ Id1∼Id2 ∧ C∼“Sony Mountainside Theater”

(score 1.00): θ1 = {Id1/~v93, Id2/~w93,Rev/~wR1, . . .}
(score 1.00): θ2 = . . .

Cinema Id Movie Time

. . . 21 Brassed Off . . .

Sony . . . 93 Men In Black . . .

Id Movie Review

93 Men in Black, 1997 . . .

44 Face/Off, 1997 . . .
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Sample WHIRL queries

Mixed queries: “where is [Men in Black] playing?”

?- review(Id1,T1,Rev) ∧ listing(C,Id2,T2,Time)
∧ Id1∼Id2 ∧ Rev∼“sci-fi comedy with Will Smith”

(score 0.22): θ1 = {Id1/~v93, Id2/~w93,Rev/~wR1, . . .}
(score 0.13): θ2 = . . .

Cinema Id Movie Time

. . . 21 Brassed Off . . .

Sony . . . 93 Men In Black . . .

Id Movie Review

93 Men in Black, 1997 . . .

44 Face/Off, 1997 . . .
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A realistic situation

Cinema Movie Show Times

Roberts Brassed 7:15 - 9:10

Theaters Off

Chatham

Berkeley Hercules 4:15 - 7:30

Cinema

Sony Men In 7:40 - 8:40 -

Mountainside Black 9:30 - 10:10

Theater

With real Web data, there

will be no common ID fields,

only informal names.

Movie Review

Men in Black, 1997 (∗ ∗ ∗) One of the biggest hits of . . .

Face/Off, 1997 (∗ ∗ 1
2 ) After a slow start, . . .

Space Balls, 1987 (∗ 1
2 ) Not one of Mel Brooks’

best efforts, this spoof . . .
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Sample WHIRL queries

“Similarity” joins: “find reviews of movies currently playing”

?- review(Title1,Rev) ∧ listing( ,Title2,Time) ∧ Title1∼Title2

(score 0.97): θ1 = { Title1/~vMIB , Title2/~wMIB97, . . .}
(Men in Black) (Men in Black, 1997)

. . .
(score 0.41): θ2 = { Title1/~vBO, Title2/~wFO, . . .}

(Brassed Off) (Face/Off)

. . .
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How well do similarity joins work?

?- top500(X), hiTech(Y), X∼Y

top500:

Abbott Laboratories

Able Telcom Holding Corp.

Access Health, Inc.

Acclaim Entertainment, Inc.

Ace Hardware Corporation

ACS Communications, Inc.

ACT Manufacturing, Inc.

Active Voice Corporation

Adams Media Corporation

Adolph Coors Company

. . .

hiTech:

ACC CORP

ADC TELECOMMUNICATION INC

ADELPHIA COMMUNICATIONS CORP

ADT LTD

ADTRAN INC

AIRTOUCH COMMUNICATIONS

AMATI COMMUNICATIONS CORP

AMERITECH CORP

APERTUS TECHNOLOGIES INC

APPLIED DIGITAL ACCESS INC

APPLIED INNOVATION INC

. . .
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Sample company-name pairings

WHIRL output on business.html
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Evaluating similarity joins

• Input: query

• Output: ordered list of documents

1
√

a1 b1

2
√

a2 b2 Precision at K: GK/K

3 × a3 b3 Recall at K: GK/G

4
√

a4 b4

5
√

a5 b5

6
√

a6 b6

7 × a7 b7

8
√

a8 b8 G: # good pairings

9
√

a9 b9 GK : # good pairings in first K

10 × a10 b10

11 × a11 b11

12
√

a12 b12
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Evaluating similarity joins

• Pick relations p, q with > 2 plausible keys

• Perform “similarity join” using first key field

• Mark a pairing correct (“relevant”) if secondary key matches

• Compute precision and recall over first 1000 rankings

• Examples

– Business: company name, web site

– Animals: common name, scientific name

– etc
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Evaluating similarity joins

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Business
Animals

27



Evaluating WHIRL queries

Additional experiments:

• Repeat with more datasets from more domains.
– Average precision (≈ area under precision-recall curve) ranges from

85% to 100% over 13 joins in 6 domains.

• Repeat for more complex join queries.
– Average precision drops from 94% for 2-way joins to 90% for 5-way

joins (averaged over many queries in one domain).

• Evaluate other things to do with WHIRL.

• How can you implement WHIRL efficiently?
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An efficient implementation

Key ideas for current implementation:

• Central problem: given Q, find best substitution.

– Currently, using A∗ search.

• Search space: partial substitutions.

e.g., for “?- r(X),s(Y),X∼Y”, possible state is {X = ~x}.
• Key operator: when Q contains “~x∼Y”, find good candidate

bindings for Y quickly.

– Use inverted indices.
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An efficient implementation

• Key step: state is a substitution θ, Qθ contains “s(Y),~x∼Y”.
Need to find good candidate bindings for Y quickly.

1. Pick some term t with large weight in ~x.

2. Use inverted index to get

It,s,1 = {~y : s(~y) ∈ DB and yt > 0}

• To compute heuristic value of state, use fact that

score(~x ∼ Y ) ≤ max
~z∈It,s,1

(
∑
t

xt · zt) ≤
∑
t

xt · ( max
~z∈It,s,1

zt)

• Indexing and bounds well-known in IR
(Buckley-Lewitt, Turtle-Flood’s maxscore alg)
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An efficient implementation

• For instance: I used WHIRL as the DBMS for two real-life
integration systems:

– Birds of North America: ≈ 35 sites

– Computer Games for Kids: ≈ 15 sites

• Both were made available on the Web, and queries were logged.
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Results on real-world queries

Domain

Games Birds

# sites indexed 15 34

# facts stored in DB 23,435 143,666

# queries in sample 100 91

avg time/query (sec) 0.3 0.2

max time/query (sec) 5.2 5.4

32



Domain k # k-way Avg #Sim Average

Joins Literals Time

Birds ≤2 47 2.0 0.02

3 22 3.3 0.03

4 14 3.8 0.35

5 4 3.8 1.90

6 4 5.0 0.22

Games ≤2 35 1.4 0.06

3 20 3.9 0.08

4 16 4.1 0.50

5 23 5.3 0.26

6 6 6.0 1.61
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The extraction problem

Sometimes it’s difficult to extract even an informal name from its
context:

• Fox Interactive has a fully working demo version of the Simpsons

Cartoon Studio. (Win and Mac)

• Vividus Software has a free 30 day demo of Web Workshop (web

authoring package for kids!) Win 95 and Mac

• Scarlet Tanager (58kB) Piranga olivacea. New Paltz, June 1997.

“...Robin-like but hoarse (suggesting a Robin with a sore throat).”

(Peterson) “..a double-tone which can only be imitated by strongly

humming and whistling at the same time.” (Mathews)
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The extraction problem

Idea: use text without trying to extract names.
?- paragraph(X),name(Y),X∼Y

80.26 Ubi Software has a demo of Amazing

Learning Games with Rayman.

Amazing Learning

Games with Rayman

√

78.25 Interplay has a demo of Mario

Teaches Typing. (PC)

Mario Teaches Typing
√

75.91 Warner Active has a small interactive

demo for Where’s Waldo at the

Circus and Where’s Waldo?

Exploring Geography (Mac and Win)

Where’s Waldo?

Exploring Geography

√

74.94 MacPlay has demos of Marios Game

Gallery and Mario Teaches Typing.

(Mac)

Mario Teaches Typing
√

71.56 Interplay has a demo of Mario

Teaches Typing. (PC)

Mario Teaches Typing 2 ×
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Deduction without extraction
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Deduction without extraction
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Movie 1: full review (no extraction).

Movie 2: movie name, cinema name & address, showtimes.
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More uses of WHIRL: Classification?

review(“Putt-Putt Travels Through Time”, url1).
category(“Putt-Putt’s Fun Pack”, “adventure”).
category(“Time Traveler CD”, “history”).
. . .
“find me reviews of adventure games”
v(Url) ←

review(Game1,Url) ∧ category(Game2,Cat)
∧ Game1∼Game2 ∧ Cat∼“adventure”

To answer this query, WHIRL guesses the class “adventure” based
on similarities between names.
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More uses of WHIRL: Classification

category(Cat) ← test(X) ∧ train(Y,Cat) ∧ X∼Y

• Here train contains a single unclassified example, and test
contains a set of training examples with known categories.
(from Cohen&Hirsh, KDD-98)

• WHIRL here performs a sort of K-NN classification.

1. Find r best bindings for X,Y,Cat

2. Combine evidence using noisy-or:

Score(φ ∧ ψ) = Score(φ) · Score(ψ)
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Using WHIRL for Classification

• Created nine representative datasets using data from Web.

• All instances were short “names”

– book title: inst=“The Humbugs of the World by P. T.
Barnum (page images at MOA)”, class=“General Works”

– company name: inst=“National City Corporation”,
class=“Banks–Midwest”

– Also bird names, Web page titles, . . .

• # classes ranged from 6 to 228, #instances ranged from ≈ 300
to ≈ 3000.
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Benchmark classification problems

problem #train/ #classes/ text-valued field/label

#test #terms

memos 334/10cv 11/1014 document title/category

cdroms 798/10cv 6/1133 CDRom game name/category

birdcom 914/10cv 22/674 common name of bird/phylogenic order

birdsci 914/10cv 22/1738 common+sci name/phylogenic order

hcoarse 1875/600 126/2098 company name/industry (coarse grain)

hfine 1875/600 228/2098 company name/industry (fine grain)

books 3501/1800 63/7019 book title/subject heading

species 3119/1600 6/7231 animal name/phylum

netvet 3596/2000 14/5460 URL title/category
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Using WHIRL for Classification
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Using WHIRL for Classification

Later work by Zelikovitz & Hirsh:

• Slightly more complex WHIRL queries (2-way chain join)

• Linked test and train documents via a set of “similar”
unlabeled documents

• Showed improved classification performance for short examples
or small training sets.
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Classification with “side information”

Consider classification. . .

• Observation: Performance can often be improved by obtaining
additional features about the entities involved.

• Question: Can performance be improved using weaker “side
information”—like additional features that might or might not
be about the entities involved in the classification task?
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Instance Label

Itzak Perlman BMG classic

Billy Joel RCA pop

Metallica . . . pop

. . . . . . . . .

Guest Artists: Spring 2000

• Apr 9, Itzak Perlman

• May 3, Yo Yo Ma

• May 17, The Guanari Quartet

• . . .

Goal: from the data above, learn

to classify musical artists as classi-

cal vs. popular.

Basic ideas: introduce new features

for artist names that

• appear in certain lists or ta-

bles; (e.g., italicized names in

the ‘Guest Artist’ page)

• are modified by certain words

(e.g., “K∅∅L”)

Biff’s K∅∅L Band Links

• Nine Inch Nails (new!)

• Metallica!! Rockin’ ! Anyone

know where can I find some

MP3s?

• . . .

. . .
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The extraction algorithm

1. Parse the HTML markup

2. Associate each short marked-up section with its “tag-path
position” (x1,p1),(x2,p2), . . .

3. Find all triples (aj ,xi,pi) such that instance aj ’s name is highly
similar to x (with a WHIRL query.)

4. Define gp(a) = 1 iff ∃x : (a, x, p) is a triple.

5. Determine the “scope” of each HTML header (e.g., h1, h2, . . . )

6. Define gw(a) = 1 iff ∃x, h : (a, x, p) is a triple, h is a header, x is in

the scope of h, and w is a word h.
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Feature construction: an example

<html><head>Biff’s Home Page</head>
<body>
<h2>K∅∅L Band Links</h2>
<table> <tr>

<td>Metallica
<td>Nine Inch Nails (new!)

</tr><tr>
<td>Barry Manilow
. . .
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html(head(. . . ),
body(

h2(K∅∅L Band Links),
table(

tr(td(Metallica),
td(Nine Inch Nails (new!))),

tr(td(Barry Manilow),
. . .

Instances:
. . .

Metallica

Nine Inch Nails

Itzak Perlman

. . .

(“K∅∅L Band Links”, www.biff.com/html body h1)
(“Metallica”, www.biff.com/html body table tr td)
(“Nine Inch Nails (new!)”, www.biff.com/html body table tr td)
(“Barry Manilow”, www.biff.com/html body table tr td)
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html(head(. . . ),
body(

h2(K∅∅L Band Links),
table(

tr(td(Metallica),
td(Nine Inch Nails (new!))),

tr(td(Barry Manilow),
. . .

(instance-name, instance-mention, position)
(“Metallica”, “Metallica”, table tr td)
(“Nine Inch Nails”, “Nine Inch Nails (new!)”, table tr td)
(“Barry Manilow”, “Barry Manilow”, table tr td)
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html(head(. . . ),
body(

h2(K∅∅L Band Links),
| table(
| tr(td(Metallica),
| td(Nine Inch Nails (new!))),
| tr(td(Barry Manilow),
h1(. . . ),

. . .

gtable tr td(“Metallica”) = 1 gK∅∅L(“Metallica”) = 1

gtable tr td(“Nine Inch Nails”) = 1 gband(“Metallica”) = 1

gtable tr td(“Barry Manilow) = 1 glinks(“Metallica”) = 1
. . .
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Benchmark problems

#example #class #terms #pages #features

added

music 1010 20 1600 217 1890

games 791 6 1133 177 1169

birdcom 915 22 674 83 918

birdsci 915 22 1738 83 533

• original data: names as bag-of-words

• music: (Cohen&Fan,WWW00) others: (Cohen&Hirsh,KDD98)

• note: test data must be processed as well (transduction).
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Results (with RIPPER)
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Results
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Results
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Results
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• Motivation: why this is the big problem.

• Data model: how information is stored.

• WHIRL query language

• Efficient implementation of WHIRL

• Results & applications

– Queries without formal identifiers

– Performance of a real query-answering system

– Queries that generalize

– Queries that don’t require extraction

– Queries that suggest extraction rules

– Queries that automatically collect background knowledge
for learning
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