
Formalizing ‘Traceability’ for Architectural Evolutions

Liang-Jie Zhang, Vishal Dwivedi
*
, and Nianjun Zhou

*
Institute for Software Research, Carnegie Mellon University, USA

Email: vdwivedi@cs.cmu.edu

IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA

E-mail: {zhanglj, jzhou}@us.ibm.com

Abstract

Software architectures evolve over time, and so do the

models that represent them. For a domain like Service

Oriented Architecture (SOA) this is particularly true

because most SOA solution designs are based on

modification of existing assets that change over time.

However, today there exists only limited work that

reasons about this evolution. In this work we present our

framework for traceability of evolving architectures that

we apply for SOA solution design. Our design approach

is based on an iterative process that utilizes a set of

solution patterns to guide architects in the SOA solution

design. Our approach utilizes historical data about

pattern enablement and uses that to guide architects in

selecting the right patterns. To ensure that the right

patterns are used, we use a template matching approach

that enforces conformance by allowing only the right set

of artifacts to be composed together. We demonstrate how

our framework can be applied to compose and trace

evolving SOA solutions based on three views – the artifact

view, profile view and compliance view.

1. Introduction

Software Architectures have evolved over time as a

meaningful way of abstracting system properties, and thus

reasoning about prospective quality attributes, design

alternatives and their documentation. However, today’s

architectures must be planned with their evolution in

consideration – a process that requires objective analysis

and skilled design by architects, who have to ensure

business and quality goals over the lifetime [1] of the

systems they design. Planning and engineering such

evolutions is not only necessary, but almost critical for

domains like Service Oriented Architectures (SOAs)

where the architectural elements have high dependency on

external elements. In this work, we outline our approach

towards a planned and traceable evolution in the services

domain.

 Service Oriented Architectures have been widely

adopted as an architectural framework for creating

reusable components. However, the design of SOAs

differs from other traditional architectures in many ways.

These systems tend to be large, and hence the design

activity usually tends to be collaborative, based on multi-

phase process-based approaches such as SOMA [2] or

INSOAP [3]. Apart from composing services, architects

need to take care of various design aspects of service

oriented architectures. For instance, most SOA design

approaches in practice need to consider domain specific

design features like granularity of services [4], goal-

satisfaction [2], quality attributes and other design

elements. All this ensures that the SOA design is never a

one shot process. The architecture evolves over time, and

the evolution is not only in terms of completeness, but

also maturity and design quality. Architects need an

approach to trace such evolutions, but current engineering

methods and tools provide limited support for such

planning and reasoning.

 In this paper we propose a framework for modeling and

planning traceability of evolving SOA based architectures.

We provide a set of SOA solution patterns to guide

architects through the process of consuming and

configuring SOA elements for the design of SOA

solutions. We leveraged three views – the artifact view,

profile view and compliance view [8], to illustrate

artifact’s design history, its composition, and the

adherence to guidelines respectively. Not only these views

provide support for design, but architects can also trace

the evolution of design through these views.

 Kindly note, that unlike traditional component-oriented

software architecture descriptions that use components

and connectors as key design elements, we primarily use

artifacts and relationships to design SOAs. We do so,

because the granularity of our designs are somewhere

between business-architectures and IT architectures – a

relation described by Martin Assmann et al [5] in his

work. In our SOMA-ME [6] based SOA modeling we deal

with a wide variety of design elements ranging from

business functions to web-services that are critical to SOA

design.

2. Problem Statement

As software’s evolve, the best way to plan their evolution

is through the evolution of their architecture. However,

planning for such architectural evolutions is done in an ad

hoc manner today, with almost no tooling support and

very limited theoretical foundation.

Figure 1: Tracing the evolution of Solution Architecture Figure 2: Evolutions in SOMA-ME based models

We have been exploring ways to streamline such adhoc

evolutions through guided processes, and pre-existing

solution patterns that provide design decisions made

earlier in the same scenario. A more principled approach

to design such evolutions can not only ensure traceability,

but also allow better reasoning about design quality.

In particular, this paper addresses the following questions:

- How do we enable such an architectural evolution

through well defined repeatable patterns?

- How do we trace an architectural evolution to provide

guarantees about design quality?

- Can we provide a theoretical framework that can be

used for tool support for designing such evolving

architectures?

The goal of this paper is to provide a theoretical

framework for modeling and planning traceability of

evolving SOA based architectures. We primarily rely on

SOMA based solution design, but we adopt an abstraction

based approach to simplify our modeling and

formalization. Towards the end, we describe the tool-

support for validating our approach.

3. Preliminaries

The domain-specific meta-model and the model elements

of our SOA model are detailed in the SOMA-ME article

[6]. However, in this section we would formalize the

descriptions by abstract representations. A formal

definition of the component system provides a foundation

for further extension and analysis. We would extend this

model by refinement to demonstrate our modeling

approach.

Our SOA solution model consists of various Artifacts,

each of which has unique properties. These artifacts are

connected together via Relationships that describe the

relationship between the artifacts. Designers combine

these artifacts to form Solution-models. In this section we

formalize these elements.

3.1 Artifacts

Artifacts are defined as architectural building blocks for

service oriented architecture. They may be computational

or functional entities, or they may describe certain

architecturally relevant metrics. Each of these artifacts has

a collection of attributes, whose value is instantiated by

designers while composing a solution.

[ArtifactName, AttributeName]

 Artifact

name: ArtifactName

attributes: AttributeName

At any point the Solution model has a set of uniquely

named Artifacts defined above, and at any instance an

AbstractSyntax defines an assembly of some unique

artifacts, where uniqueness is interpreted as artifacts

having unique names and values for their attributes.

 Abstract Syntax

artifacts: Artifact

∀ c1, c2 : artifacts | c1 ≠ c2 ⦁ c1. name ≠ c2.name

∧ c1. attributeValues ≠ c2. attributeValues

3.2 Relationships

Relationships define the interaction between artifacts. The

types of relationships vary with respect to the kinds of

interactions between the artifacts. The relationship types

include basic types such as Association, Generalization,

Implementation, Composition, Support and temporal

orderings such as pre and post processing. These

relationships define the semantic ties that exist between

the artifacts.

3.3 The SOA Solution model
The SOA Solution model is a collection of architectural

elements. Each such element is an instance of the type

“Artifact” that can be used by a designer to model SOA

solutions.

[AttributeValue, SOA-Element]

 SOA−Element

type: ArtifactName

name: ElementName

attributes: AttributeName⇻ AttributeValue

The designers combine a finite set of SOA-Elements to

form a SOA solution model. Each of these SOA-Elements

is a unique instance of an Artifact type.

 SOA−Solution−Model

elements: SOA−Element

∀ e1, e2 : elements | e1 ≠ e2 ⦁ e1. name ≠ e2.name

∧ e1. attributeValues ≠ e2. attributeValues

The above description of artifacts and their composition is

purely syntactic in nature. One of the reasons for this is

that UML is mostly free form and any semantic restriction

has to be enforced via constraints. For the sake of

simplicity, we model an “Oracle” that maps the syntactic

descriptions of the solution model to their semantic

meaning. We assume that this Oracle provides a relation

that maps the possible values of attributes to their values.

We assume that there is a relation valueOf () that provides

this value by mapping the types to the possible allowed

values:

valueof(): AttributeType⇸ AttributeValue

The Oracle provides a function that can check if the

attributes of the SOA-Element have values that are

permitted by the ArtifactType.

Martifact : Artifact ⇸ℙ SOA−Element

∀ c: Artifact ⦁ Martifact(c) ⊆ {e: SOA−Element

 | e. type = c.name ∧

e.attributes = {a: c.attributes; v: AttributeValues

 | valueOfRelationship (v) = a} }

The Oracle provides another function that describes how

an AbstractSyntax can be defined as a set of possible

system models derived from the meaning of the abstract

model.

Msyntax : AbstractSyntax ⇸ℙ SOA−Solution−Model

∀ a: AbstractSyntax ⦁ Msyntax (a) =

{soaModel : SOA−Solution−Model

| soaModel. elements = ⋃ {c: a.artifacts⦁ Martifact (c)} }

This Oracle is implemented in SOMA-ME through

various configuration files that automatically define the

values for artifact compositions and its properties that are

type-checked for correctness. Since the SOMA-ME uses

a UML meta-model with a weekly typed artifact

relationships based composition, such a type-checking

enforces the correctness of the models.

4. Traceable Architecture Evolution

Designing SOA solutions involves multiple phases such as

shown in Figure 3. Our SOA modeling approach is based

on a generic SOA design approach [18], which is a multi-

step design process. Throughout the design phase, the

architects are guided by multiple domain-specific patterns,

transformations and other previously used design

decisions. The architects can trace these decisions and the

evolution of the architecture through multiple views that

describe this historical information.

Figure 3: Phases of SOA solution design

This section provides a formal description of our

approach that we utilize for tool support.

4.1. Formalizing traceability

We model the evolution of the solution architecture as a

forest of version trees. Here each node is a graph

representing the solution architecture at a particular time

point. We formally define it as:

 VForest [Type]

nodes: ℙ VLabel

dref: VLabel ⇸Type

parent: VLabel ⇸VLabel

roots: ℙ VLabel

In the above, VLabel represents version labels, the

mapping dref dereferences version labels, and the

mapping parent returns the parent of non-root nodes in the

forest. We formalize the SOA solution as a collection of

architectural artifacts. Each artifact is identified by a label

of type AId. A specific solution artifact can be identified

by its version label,

AVersion AId × VLabel

A collection of specific artifact versions is thus modeled

by the type Aid ⇸ VLabel

The collection of changes to an artifact is modeled as

follows:

AChange ::=

add⟪AVersion⟫

delete⟪AVersion⟫

modify ⟪ AId × VLabel × VLabel ⟫

combine⟪Aversion × AVersion+⟫

replace⟪ Aversion+ × AVersion⟫

The following defines a predicate for checking whether a

change affects a given artifact version:

isChangedBy : Aversion ↔AChange

∼isChangedBy(av′, add(av))

isChangedBy(av′, delete (av)) ⇔ av′ = av

isChangedBy(av′, modify (a, u, v)) ⇔ av′ = (a,u)

isChangedBy(av′, combine (avs, av)) ⇔ av′ ∈ ran avs

isChangedBy(av′, replace (avs , av)) ⇔ av′ ∈ ran avs

The Abstract SOA Solution

A SOA solution is modeled as a collection of architectural

artifacts. In the temporal space, the version of the Solution

is modeled as a collection of artifact versions along with

the delta set of changes since the last version.

 Abstract Solution

artifacts: Aid ⇸VLabel

delta: ℙ AChange

We model the history of the solution composition as a pair

consisting of the collection of artifacts and a collection of

versions of the solution at different time points. This

historical information is stored in the database for future

reference.

 ModelHistory

artifacts: Aid ⇻VForest [Artifacts]

solutionModels : VForest [SOA solution models]

4.2 Tracing the evolution of the SOA Solution

Architecture

In this section we formally traceability in terms of the

evolution of artifacts for the composition of the SOA

solution. The following function defines the set of artifacts

that result from a change in a particular artifact:

directChange: Aversion ×AChange ⇸ ℙ AVersion

dom directChange = isChangedBy

directChange(av, delete(av)) = Ø

i∈ 1..n ⇒ directChange(avs, combine (avs, av)) = {av}

i∈ 1..n ⇒ directChange(avs, replace (avs, av)) = {av}

directChange((a,u), modify(a,u,v))= {(a,v)}

The function forwardTrace defines the indirect change,

i.e., that change downstream in the solution model.

forwardTrace: Aversion × ModelHistory ⇸ ℙ AChange

forwardTrace (av, solutionModels) =

if ∃ V ∈ solutionModels.nodes;

c ∈ solutionModels.dref(V).delta ⦁ isChangedBy (av,c)

 then {c} ∪ ∪

{av′ : directChange(av,c) ⦁ forwardTrace(av′, solutionModels)}

 else Ø

(a) Domain decomposition pattern

(b) Goal-to-service modeling pattern

(c) Service Allocation pattern

(d) Message and event specification pattern

(e) Service flow specification pattern

(f) Component flow specification pattern

Figure 4: Design Patterns used in our SOA solution model

5. SOA Solution Composition using Patterns

Our solution design utilizes many domain specific SOA

patterns that are applied by architects to refine an existing

model. Table 1 lists the solution patterns that we use in

SOMA-ME. These patterns act as reusable templates that

implement the relationships between SOA artifacts and

they enforce pre-defined specifications and rules.

Pattern Type Pattern Name

Identification

Patterns

 Goal-to-service modeling pattern

 Domain decomposition pattern

 Existing asset analysis pattern

Specifications

patterns

 Component flow specification pattern

 Service flow specification pattern

 Message and event specification

pattern

Realization

patterns

 Service allocation pattern

 Service layers pattern

Table1: Solution Patterns

An example of a pattern is the “message specification

pattern”, that provides a template for defining the

message types, sources, and message formats. The

message types include input and output message types and

sources are files (e.g. XML schema files) or URLs. The

message formats could be string, integer, or complex type.

The message specification in this case is done by applying

a solution pattern that provides a predefined template for a

service that architects use to automatically create

placeholders in the solution model with the required

attributes provided by the pattern.

In the next section we would formalize the representation

of the SOA patterns for a clear representation.

5.1 Formalizing patterns

We define pattern as a graph that is:

 Directed, i.e. for each edge one has a start vertex and an

end vertex,

 Typed, i.e. vertices and edges are grouped into several

distinct classes,

 Attributed, i.e. vertices and edges have associated

attribute-value pairs to describe additional information

about the pattern, and

 Ordered, i.e. the edges incident with a particular vertex

have a persistent ordering.

The pattern has nodes of types Artifact and edges of type

EDGE.

ELEMENT::= vertex <<ℕ>> | edge <<ℕ>> [ID, LABEL]

VERTEX == ran vertex ARTIFACT−ID == ID

EDGE == ran edge

EDGE-ID == ID

EDGE: ℙ RELATIONSHIP

Implementation

Generalization

RELATIONSHIP = {Association, Generalization,

Implementation, Composition, Support}

AttributeInstanceSet == ARTIFACT−ID ⇻ ATTR-

VALUE

EdgeInstanceSet == EDGE-ID⇻EDGE-LABLE-

VALUE

The vertexLabel represents labels assigned to the artifacts

through the AttributeInstanceSet. The edgeLabel

represents labels assigned to the edges through the

EdgeInstanceSet. The relation Λ maps the directionality of

the pattern edges.

 Pattern

V: vertex ⇸ Artifact

E: EDGE

Λ: VERTEX ⇻ seq(EDGE × DIR)

vertexType: vertex⇻ ARTIFACT−ID

vertexLabel: vertex ⇻ AttributeInstanceSet

edgeType: EDGE⇻ EDGE-ID

edgeLabel: vertex ⇻ EdgeInstanceSet

description: DESCRIPTION

Λ ∈ V → iseq(E × DIR)

∀ e ∈ E ⦁ ∃1 v, w : V ⦁ (e,in) ∈ ran (Λ(v))

∧ (e, out) ∈ ran (Λ(w))

5.1 Creating solution models using patterns

The architects use the solution patterns to model the SOA

solution. They begin with an empty solution model, and

the application of these patterns refines the model to add

details, eventually leading to a complete SOA solution.

The process of creating a SOA solution model is

summarized in the following steps:

(a) The first step is to capture business requirements,

where they define the environment within which the

solution patterns are created.

(b) The second step is to identify SOA artifacts. The

SOA artifacts are computational or functional entities

that are combined together to design SOA solutions.

(c) The third step is to identify attributes and constraints

for SOA artifacts. The attributes and constraints are

associated with specific SOA artifacts to describe the

unique features of that artifact. Additional artifacts

might be derived and vice versa.

(d) The next step is to derive solution pattern rules. The

solution pattern rules are identified to realize the

relationships between artifacts and capture the

attributes/constraints of specific artifacts.

(e) The architects are guided by the pattern application

history to choose appropriate patterns. They can then

apply a pattern to the solution model, which refines

the solution with additional details. Every legitimate

pattern application is also recorded in the database.

Not all patterns can be applied to every architectural

artifact, and therefore, we need to select the patterns that

are applicable for a given set of artifacts. We check this

pattern applicability by a template matching approach, as

provided by J. Dong et al [7]. Our template match logic is

based on the fact that a template graph f can be matched

with another graph g by computing the cross-correlation

between them and computing the degree of match. The

formula, Cross-Correlation (u) = Σ f(x-u) •g(x) (where

f(x) and g(x) are two vectors, x = 1…n, and u is an offset),

shows how to calculate such a cross correlation. The

larger is this value, the higher is the potential they match.

This is further normalized to accommodate large values.

We model the pattern graphs and solution models as

attribute vectors and compute the normalized cross

correlation values.

Cross-Correlationnormalized = Σf(x).g(x)

 |f(x)|.|g(x)|
Our earlier work [8] describes our approach for creating

such attribute vectors and using similarity scores for the

pattern match. We store these normalized Cross-

Correlation values as historical data-points for individual

artifact nodes of the evolution forest. We model such

intermediate configurations as a relation that records

which versions make legitimate configurations.

CMatrix Aid ↔Aid

 Valid ArtifactConfigurations

SolutionHistoryA, SolutionHistoryB

conformanceMatrix : VForest [CMatrix]

correlation: ℙ (VLabel × Vlabel × Vlabel)

Thus Patterns in our approach not only help to compose

SOA solutions but they also ensure repeatability of the

designs by allowing architects to check the historical

decisions, based on which they can change their designs.

Although, unlike most common SOA patterns, such as the

ones defined by Erl et al [9], our patterns are domain-

specific and tied to our SOA modeling approach.

Figure 5: Views for traceability

6. Views to support traceability and tooling

We leveraged three views [8] to allow the architects to

trace the evolution of SOA solution design. These views

allow the architects to trace the individual artifacts, their

composition, their development and if they are used as per

the guidelines.

6.1. Views to support traceability

This section describes the three views.

Artifact view

The artifact view provides details of the individual

artifacts to the designer. The key details include the status

of their development, their creation history that describes

the trace of their development. For every architectural

artifact, its creation status is recorded as percentage and

displayed when a specific artifact is selected. The

combination of individual artifact status and creation

history view provides a reference for SOA designer to

estimate the workload of the remaining design process.

Also, an analysis or change propagation path can be

traced to reveal to what extent a change affects an artifact

under investigation.

Profile view

The profile view provides the details of the artifact’s

composition and its creation history. This view is mainly

utilized to view the composition of processes that displays

the corresponding architectural artifacts used to compose

it. Along with the information about composition, this

view also provides the types of composition, such as

whether it is created by (i) applying patterns ii) import

other business processes, or (iii) from an existing asset.

The cascading profile view provides a traceable path of

artifact creation from source to end-product, thus allowing

for validation.

Compliance view

The compliance view describes the compliance of SOA

solution to a set of guidelines. The compliance of the

solution is traced as a checklist based table listing whether

an artifact meets the guideline. The guidelines vary from

constraints related to usage of artifacts, their dependencies

and other project management related constraints. A

listing of these constraints enables the designers to avoid

mismatches and built correct assemblies.

In summary, these multi-dimensional views provide

capability of visualizing detailed information regarding

historical usage and constraints for individual artifacts,

and thus facilitating the traceability of the evolution path.

6.2. Tooling support

A part of our approach is implemented by the SOMA-ME

tool. This tool provides the architects to create SOA

solution-models using domain specific patterns. The SOA

solution design activity itself comprises of three main

steps of Service Identification, Service Specification, and

Service Realization, each of which is aided by the patterns

described in Table 1. The tooling provides context-aware

menus to SOMA patterns, transformations and other

analysis with traceability as one of them. Details about the

tool are available in [6].

7. Comparison with related work

Our approach can be characterized as model-driven

design of Service Oriented Architectures (SOAs) using

domain-specific patterns, where the designs evolve over

time. This paper formalizes this notion of evolution that

we later implement using tool support. The ideas

presented in this paper are closely related to three other

areas of research: pattern-based SOA design, formal

representations of architecture and architecture

evolutions.

Pattern based SOA design: Our approach for model-

driven SOA design is based on using domain specific

patterns for designing SOAs. The modeling elements for

our design utilize a meta-model that is instantiated to

define concrete solution models. The patterns in this

domain encode reusable design solutions that architects

can use to model SOAs. A similar approach was earlier

demonstrated by Zdun and Dustdar [10], who used pattern

primitives as an intermediate abstraction to formally

model the solutions. Likewise, other researchers have used

patterns for composing enterprise architectures [11], and

pattern detection using similarity scoring [12] to model

architectures.

Formalizing Architecture representations: We used Z-

notation to formalize the SOA-solution design process.

Our formal modeling utilizes the graph based formulation

of Zhou et al [15] that they used for modeling SOA

solutions. In many ways, this step of the formal design is

similar to the formal software engineering technique

developed by Garlan et al [13], Booch and Rumbaugh

[14] and others. This level of formalization helps to

simplify the complex domain-specific meta-models such

as the one used in SOMA-ME, and thus allowing for a

clear definition of the problems, goals and solutions. The

representation in Z-notation also enables us to check for

the syntactic correctness and can be used for further

verification.

Architecture Evolution: Our model for SOA design is

formalized as a continuous evolutionary process that can

be traced and utilized for making future design decisions.

There has been similar work in the academia towards

formalization and tooling of planned architecture

evolution. Garlan and colleagues at Carnegie Mellon have

created Ævol [16] that helps architects to represent, plan,

and analyze software evolutions from an architectural

perspective. Medvidovic et al in their work [17] provided

an approach for runtime modification of software

architectures. In this paper, we do not model runtime

evolutions. Instead, our model is based on creation of a

repository of historical design decisions and architectural

changes that can be traced in future and applied in similar

scenarios. Patterns in our world capture the reusable

design decisions that can be applied based matching

criteria.

8. Conclusions

In this work we presented our pattern based SOA design

approach that supports traceability of evolving

architectures. The SOA solution design activity itself

comprises of three main phases of Service Identification,

Service Specification, and Service Realization, each of

which is aided by the patterns. Our approach utilizes

historical data about pattern enablement and uses that to

guide architects in selecting the right patterns. We believe

that planning and tracing evolution of architectures can

not only help in creating better designs but can also ensure

repeatability via tracing historical decisions.

9. References
[1] M. Jazayeri. On Architectural Stability and Evolution. In

Proc. of Ada-Europe’02, 2002

[2] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S.

Ganapathy, and K. Holley. SOMA: A method for

developing service-oriented solutions. IBM Systems

Journal, 47(3):377-396, 2008

[3] Abdelkarim Erradi, Sriram Anand, and Naveen N.Kulkarni:

SOAF: An Architectural Framework for Service Definition

and Realization. IEEE SCC 2006: 151-158

[4] Naveen N. Kulkarni, Vishal Dwivedi: The Role of Service

Granularity in a Successful SOA Realization - A Case

Study. SERVICES I 2008: 423-430

[5] Martin Assmann, Gregor Engels: Transition to Service-

Oriented Enterprise Architecture. ECSA 2008: 346-349

[6] L.-J. Zhang, N. Zhou, Y.-M. Chee, A. Jalaldeen, K.

Ponnalagu, R. R. Sindhgatta, A. Arsanjani, and F.

Bernardini, “SOMA-ME: A Platform for the Model-Driven

Design of SOA Solutions,” IBM Systems Journal, vol. 47,

no. 3, pp. 397-413, 2008.

[7] Jing Dong, Yongtao Sun, Yajing Zhao: Design pattern

detection by template matching. SAC 2008: 765-769

[8] Liang-Jie Zhang, Zhi-Hong Mao, Nianjun Zhou: Design

Quality Analytics of Traceability Enablement in Service-

Oriented Solution Design Environment. ICWS 2009: 944-

951

[9] Thomas Erl, “SOA Patterns”, Prentice Hall Publications,

2009.

[10] Uwe Zdun and Schahram Dustdar, "Model-driven and

pattern-based integration of process-driven SOA models",

Int. J. Business Process Integration and Management, Vol.

2, No. 2, 2007

[11] Sabine Buckl, Alexander M. Ernst, Josef Lankes, Kathrin

Schneider, Christian M. Schweda: A Pattern based

Approach for constructing Enterprise Architecture

Management Information Models. Wirtschaftsinformatik

(2) 2007: 145-162

[12] Nikolaos Tsantalis, Alexander Chatzigeorgiou, George

Stephanides, Spyros T. Halkidis: Design Pattern Detection

Using Similarity Scoring. IEEE Trans. Software Eng.

32(11): 896-909 (2006)

[13] Robert Allen, David Garlan: A Formal Basis for

Architectural Connection. ACM Trans. Softw. Eng.

Methodol. 6(3): 213-249 (1997)

[14] Grady Booch, Ivar Jacobson and James Rumbaugh, “The

Unified Software Development Process”. Prentice Hall.

ISBN 978-0-201-57169-1.

[15] Nianjun Zhou, Liang-Jie Zhang: A Graph Theory Based

Impact and Completion Analysis Framework and

Applications for Modeling SOA Solution Components.

IEEE SCC (1) 2008: 145-154

[16] David Garlan, Bradley R. Schmerl: Ævol: A tool for

defining and planning architecture evolution. ICSE 2009:

591-594

[17] Roshanak Roshandel, André van der Hoek, Marija Mikic-

Rakic, Nenad Medvidovic: Mae - a system model and

environment for managing architectural evolution. ACM

Trans. Softw. Eng. Methodol. 13(2): 240-276 (2004)

[18] Liang-Jie Zhang, Ali Arsanjani, Abdul Allam, Dingding

Lu, Yi-Min Chee, Variation-Oriented Analysis for SOA

Solution Design, IEEE SCC 2007: 560-568

