
The Role of Service Granularity in
A Successful SOA Realization – A Case Study

Naveen Kulkarni, Vishal Dwivedi

SETLabs, Infosys Technologies Ltd
{ Naveen_Kulkarni, Vishal_Dwivedi}@infosys.com

Abstract

This paper presents the case study of a leading US
financial institution International Financial and
Brokerage Services (IFBS),* which faced SOA
realization issues while it followed an in-appropriate
SOA design strategy. While riding on the SOA hype
wave, it implemented thousands of fine grained web-
services without paying much heed to issues like
governance, and usage within its business processes.
IFBS’s service portfolio comprises of a gamut of services
which although on paper looked good, but presented a
lot of challenges in their usage and maintenance. We
address some of these issues in this paper and present
our framework for SOA adoption (called INSOAP) which
can be effective in a similar end- to-end SOA adoption
exercise in an enterprise.

1. Introduction

SOA has been increasingly viewed as an architectural
strategy rather than a development approach. The notion
of services being a first class objects has sometimes led
SOA developers into a trap of realizing web-services
without paying a lot of heed to SOA design principles.
Although starting from the four tenets of service design
by Don Box [9] it has been a much debated issue, the
design principles have been at an abstract phase. Aspects
such as web-services having autonomous nature and
explicit boundaries do not really help a lot in deriving a
correct service granularity.

The problem of determining the optimal service
granularity has become further important as increasingly
applications are being built by assembling internal and
external services at a coarser-grain level for both
Enterprise Application Integration (EAI) and B2B
integration. Since most organizations have overlapping
and redundant business functionality and data (e.g.,
Accounts Management) across different Lines of
Business (LOBs), it is essential to have a portfolio of
business services which could be reused across multiple
places. We take an example of IFBS to show their

* Not the real name (used for reference purpose only)

attempt of such a portfolio design and what typically goes
wrong with such an exercise.

1.1. IFBS’s business context

IFBS which is one of the world’s largest discount brokers
serves more than a million clients. Additionally it also
offers a range of services likes investment research,
mutual funds, annuities, bond trading, and mortgage etc.
IFBS has acquired quite a few companies in recent past
and their systems have been integrated with its own.
IFBS’s enterprise architecture (as shown in Figure1) is
typical of any large enterprise firm, save the fact that
there is a large amount of redundancy in its IT systems,
where many systems do the same job with small
differences on aspects such as input data etc.

Figure1: IFBS’s SOA reference model

Overtime the number of transactions processed by IFBS
has increased to hundreds of thousands every day. IFBS
proceeds with an exhaustive SOA realization exercise
and identifies services for most of its day to day
operations. It comes up with a service portfolio (see
Figure2) which consists of a large number of services.

2008 IEEE Congress on Services 2008 - Part I

978-0-7695-3286-8/08 $25.00 © 2008 IEEE

DOI 10.1109/SERVICES-1.2008.86

423

Figure2: A snapshot showing representative services in the IFBS’s large service portfolio

Although on paper IFBS’s SOA adoption picture looked
rosy, but this whole process made things messy for IFBS.
Management of such a huge number of services turned
out to be a nightmare, and in-spite of putting a
governance framework it was difficult to integrate its
services with its business processes. IFBS soon realized
that instead of proceeding with a big bang approach of
legacy migration to web-services by putting up rappers
and partial re-implementation, it required an
architectural approach to address the whole issue.

In this work we use the business case of IFBS to drive
home the point that mere web-service implementation is
not SOA realization. We support our arguments by
presenting InSOAP [1] (Infosys Service Oriented
Analysis /Adoption Process) and explain how it could be
utilized to address the pain points of SOA realization.

The key contribution of this paper is a set of engineering
processes and guidelines to address the following key
challenges:

 Identify candidate services and their relationships
 Decide the optimal granularity for services
 Decide proper layering and services location within

the enterprise

3. Background work
There has been quite a lot of work recently in academia
and industry for SOA migration. At Infosys we have been
using InSOAP [1] (Infosys Service Oriented Analysis
/Adoption Process), an architecture-centric framework, to
ease the definition, the design and the realization of
SOA. One of the closest works to our approach is IBM’s
Service-Oriented Modeling and Architecture (SOMA)
[2]. SOMA is a methodology for the identification,
modeling and design of business aligned services at a
proper level of granularity while leveraging existing
systems. It helps in the determination of services, flows,
and components that realize the services.

Business Applications to Legacy Systems (BALES)
methodology as proposed in [4, 5] has been another
reverse-engineering based approach to support Web-
Services development using “objectified" legacy data and
functionality to build business applications. Further there
have been other works like by Dabous in [3] who in his
work has identified a set of patterns for the architectural
design of e-business applications while leveraging
functionality or business logic that is embedded in legacy
systems. He also proposed quantitative models which can
aid in the systematic selection/ranking of patterns in
accordance with their appropriateness for a given
problem context. Apart from this there has been a lot of
work on the SOA realization aspect not all of which are

424

referred in this paper. The focus here is to look at service
granularity as a issue and how it can be best resolved.
Zhuopeng Zhang et al in [7] provide an overview of
service granularity optimization particularly in scenarios
dealing with legacy migration.

While most academic works on SOA stress on UDDI
based registries, in practice the large scale industrial
projects hardly use UDDI’s; it has been partly due to
their bulk and also the cost of their management. It has
been an industrial practice to use governance frameworks
which at minimum could comprise of portals for service
management. Service granularity thus becomes a key to
most of these exercises.

4. Preliminaries
4.1. Defining service hierarchy

The different levels of service granularities in realizing
an SCSS are typically process service, business service,
Composite Service, Informational service, Data Service,
Utility Service, Infrastructure Service and Partner
Service. We define these services in Table1. While a
business service realizes the requirements of the business
process where it participates, and is hence IT
independent, a data service is the finest grained service
which provides operation at implementation level. For an
effective SOA realization it is important that the service
portfolio takes into account the correct service
granularity. Not only it helps in easier maintainability,
but it also helps in effective governance of the service
portfolios. Figure3 presents a service hierarchy meta-
model which is used in some of the heuristic based
conversions later in Section 6.

Figure3: Service Hierarchy meta-model

The above service hierarchy normally corresponds to the
multi-level process hierarchy as mentioned in [6].
Different levels of services (as in Figure4) can be utilized

by different people. For example a business service or an
application service can be used effectively by a designer
but the corresponding data, utility and infrastructure
services have much more importance in application
development. An optimal portfolio must hence account
for both to promote reusability and ease of maintenance.

Service

Type
Details

Process
Service

A service whose operations are guided by the
process definition. These are reactive services
which need business events that would trigger
various activities that would be using business and
information services.

Business
Service

A service encapsulating transactional nature of
functionalities that would build business context
over other informational service.

Composite
Service

A service with either composition or aggregation of
multiple other services. The internal invocations are
abstracted from the consumer providing a unified
view. An orchestration would help composite
service to be synchronous in nature and
choreography would help composite service to be
asynchronous.

Informatio
nal service

Services that focusing on providing processed data
and whose operations are atomic, executed and
realized by one provider on a particular type of
runtime environment/platform.

Data
Service

Services that provide normalized and aggregated
view of critical data entities (or master data) such as
Customer, Order, Claim and so on. These services
are often realized along with Master Data
Management strategies.

Utility
Service

A service, whose operations are, shared among
various services due to the commonly accepted
practices or standardization such as payments,
credit card transactions etc. Due to the utility or
commodity nature of these services, business might
often like to use the best possible provider may be
from external sources too.

Infrastruct
ure

Service

A specialized technical automation service that
provide essential infrastructural capabilities to other
services

Partner†
Service

A manifestation of Business, Informational or Data
Service offered to external business partners based
on agreed terms.
Table1: Description of service types

† Partner service here is treated separately from the other
service hierarchy as its granularity can vary from fine grained
(as in some external data/function invocation) to course grained
(as in external business service usage) depending on the
scenario.

425

Figure4: Service Types in a multi-tiered process map (Illustrative)

4.2 Service granularity

Services are offered at different layers with a definitive
degree of granularity. Service granularity refers to the
service size and the scope of functionality a service
exposes. The service granularity can be quantified as a
combination of the number of components/services
composed through a given operation on a service
interface as well as the number of resources’ state
changes. The service should have the right granularity
to accomplish a business unit of work in a single
interaction.

A service would be regarded too coarse-grain if the
size of exchanged messages grows and sometimes
might carry more data than needed, or presents a
complex interface which is prone for regular changes.
On the other hand if the service is too fine grained
multiple round trips may be required which would
introduce quality concerns and outflow of services. A
balance is hence required between level of
abstraction, likelihood of change, complexity of the
service, and the desired level of cohesion and
coupling. A tradeoff needs to be made while taking
into account non-functional requirements particularly
performance.

4.3 Key issues arising out of improper service
granularity

Some of the issues which can arise out of improper
service granularity are as follows:
 Service Duplication (Different services for similar

tasks)
Difficulty in maintenance

 Service Governance is extremely difficult when the
number of services is huge and the services are
merely fine grained interfaces

 Service reuse across applications suffers defeating
the basic fundamentals of SOA

 Business and technology alignment gets extremely
difficult leading to redundancy within enterprises

 It gets difficult to assign SLAs and KPIs for
individual services and thus audit operations become
almost impossible

5. Using INSOAP ADM approach

InSOAP provides a systematic approach and a well-
defined process to guide the design, evaluation and
development of a Service Oriented Enterprise
Architecture. InSOAP comprises of four phases as
depicted in Figure 5. The goal is to define and realize an
enterprise-wide SOA. We advocate this approach as it
yields more cohesive and uniform enterprise architecture,
and reduces redundancy, thereby lowering development

426

and maintenance costs. It also allows the business to
identify more reusable shared services and address issues
such as shared access to information such as a single
view of the customer.

IFBS choose to relook at their service portfolio as well
take up a strategic view by adopting InSOAP. The
systematic approach of InSOAP provided an opportunity
for clearly defining the goals for service enablement and
brought out a discipline within the organization on how
services are created or consumed.

Figure5: InSOAP phases mapped to key TOGAF deliverables

5.1 Reevaluation of IFBS’s service portfolio

The present architecture which was cluttered with many
rouge services was relooked during the ‘Technology
discovery and assessment’ phase. The primary objective
in this phase was discovering the usage of the current
services and mapping them to business processes as well
as existing IT systems. This process is referred to as
“Process-To-Application” (P2A) and “Application-To-
Services” (A2S) mapping. This mapping provided an
insight into the services which were catering to business
activities and operational applications. The result of such
mapping which was captured in a simple spread sheet
highlighted redundancies and overlaps in the current
service portfolio.

An analysis was conducted over the current service
portfolio to identify their suitability for layering and
categorization at a later stage. The analysis included the
following criteria:

 Business value a criterion which is associated with the
benefit that an organization as a whole realizes in
economic terms. This essential would involve cost

benefit analysis or in other words return on investment
(ROI). IFBS usually opted towards guess work for
realizing the value of building a service. Hence while
calculating the business value for services an ROI
analysis was resorted to that was based on simple
approach. ROI of services were calculated by
identifying various costs that were incurred in building
a services and the benefits that IFBS has seen since the
services were made available. The cost parameters
included resources allocated for services (inclusive of
new infrastructure and software/products) and effort
(inclusive of building, maintaining and governing). On
the other hand benefit parameters considered were
percentage reduction in - time taken to build new
applications, cost incurred on building applications,
time taken for integration, cost of integration effort,
cost of maintenance and percentage increase in –
number of new solutions/applications built, number of
services reused across multiple applications,
operational efficiency achieved and application of
compliance requirements. Based on these parameters
the ROI for each services were calculated. A fairly
simple summation of the costs and benefits was used
for calculating business value was used. It was also
considered that a higher value indicated the higher
risks involved with any realignment or transformation
attempt.

 Functional reusability was used to measure the ability
of the services to provide a generalized set of services,
compared to the development of a specific service for a
specific consumer application. As shown in Figure 2
that portfolio consisted of many granular services
which were result of immediate need. Such services
were inadvertently added into portfolio resulting in
duplication of functionalities amongst many services.
Increased reusability stems mainly from accurate,
complete and generalized service contract design
capturing all possible message variants. This allows
covering a larger number of usage scenarios through
altering the service behavior simply by supplying
varying message instances. A message instance will
confirm to a subset of a super-schema defined by the
service contract. So number of message instances that a
service can support was considered as a measure for
functional reusability.

Another measure that was considered during
evaluation of reusability was the ability to be able to
compose or in other words design of service for
assembly. It is important that a service interface is
defined in a way that its encapsulated functionality can
be used and composed in different contexts with

427

minimal effort so as to increase the service reuse
potential. It was seen that IFBS services were directly
exposed out of existing systems. Hence most of the
services in the portfolio were non optimal and needed
substantial effort to aggregate. Direct exposing of
underlying components as services resulted in
complicated interface which were hard to comprehend.
So number of interfaces that a service supported and
the ability for users to understand the interface was a
measure which was considered.

It was found from IFBS case that since the use was
unplanned there was more dependency rather than
reuse. This introduced risk of breaking a service or
application during realignment.

 Technical health of services included evaluating
soundness of the approaches taken to realize service.
Various approaches can be taken to realize services.
This can be broken in two categories – strategic and
tactical. Strategic approaches include transformation
while enabling services. It involves a deep and
detailed analysis of the existing code base,
understanding the system functionality and data
architecture. Subsequently, it involves the extraction
and rationalization of data definitions, data and
business rules. This is followed by an iterative process
that involves refactoring, consolidation,
componentization and redesigning activities to make
the code more modular and ease the incremental
migration to a flexible architecture. Where as a tactical
approach will be wrapping of existing assets in a
standard format. This requires less up-front
architecture and design investigation. This can only
provide a tactical short term solution as it addresses the
integration and flexibility pain points without
impacting the source code significantly. Hence the
measure chosen to evaluate technical health was
approach (method and technologies) taken to enable
service from the existing assets.

 Technical flexibility measured the level of service
complexity and extensibility in terms of technologies
used and product dependencies. This essentially
indicates how easy it is to modify or extend the service
in the case of service reengineering. As the demand for
service enabling organizations are increasing so is the
infrastructure needed to support the services. Variety
of new technologies have emerged to support services
such as Enterprise Service Bus (ESB), Web Service
stacks, products that enable services from components
and legacy assets, Service Data Objects (SDO),
registries, etc. Amongst these new developments,

primary importance was given to the adoption of web
services standards both core and WS-*. Even the
various products used were evaluated against the web
services standards.

Hence the measure for evaluating technical flexibility
included the availability of human resources to manage
services, technology and standard adoption for
services, popularity of the products chosen for services.

5.2 Service architecture strategy for managing
services

A detailed architectural blueprint was defined for
managing service based on their SOA model (refer
Figure1). The previous phases provided the detailed
input for the definition of the architectural plan. The
inputs include pain points related to creating, developing
and consuming services, analysis of the current service
portfolio, and mapping from P2A and S2A. This
blueprint provided IFBS a well defined approach and
guide to the evaluating the need, designing, developing
and consuming of services in future. The architecture
was defined three levels of abstraction in conceptualizing
services – enterprise level, line of business level and
project level.
At enterprise level, some strategies included a light
weight governance model and service portfolio
management. Line of business level architectural
strategies included service value mapping, reuse
guidance, and defining the initiatives in accordance to
technology roadmap. The project level strategies included
usage guidance for technologies, products and standards.

5.3 Consolidating services through classification
and layering

Consolidation of services is an iterative process for
arriving at an optimal services composition. The aim is
to first establish clear and well-defined boundaries
between collaborating systems, followed by reduction of
interdependencies and limiting of interactions to well-
defined points. The key tasks in the process include
identification of services along with deciding service
granularity and appropriate layering of services.

The service identification process required domain
analysis and decomposition to identify valuable and
reusable business functions to be provided as services.
The identified services needed their relationships to be
rationalized and consolidated with existing set of
services. In order to do this the stakeholders were
involved to agree on the high level service definitions

428

that addressed business technology goals. It has been our
experience through the development of the case study
that the service as an architectural entity is subjected to
vary due to the various frames of thought. It was also
found that there could be multiple objectives for having
to realize the services such as making certain business
functions as commodities, integrating partners, bring
agility to embrace dynamic market conditions etc.

Following identification, classification of services is an
important. Classification of services is essential in
understanding of granularity of services and hence their
compose-ability. New portfolio of services for IFBS was
classified both horizontally and vertically. Horizontally
services were classified based on the hierarchy as
described in Section 4.1. By classifying services
horizontally the principles of services interactions can be
enforced. Further, this type of classification helped in
arriving at the requirements for non-functional aspects of
services design, for example core and common services
need to be designed and deployed with more emphasis on
scalability and high availability. Vertically services were
classified following a taxonomy based on the business
domain such as investment management, brokerage,
retirement planning, taxation, annuities etc. This
classification assisted business to understand the
reusability while they explore the possibility of new
offerings.

As described in Section 4.2 granularity of services was
defined based on the assumption that different layers
would have different granularity. We employed model
based approach to solve the problem of achieving the
proper level of granularity of services. As
throughout the service identification the services
identified were in conformance with the model and
inherently enforced the relationships among services
as defined in the model. Figure6 shows a model which
is derived out of the service hierarchy meta-model as
described in Section 4.1.

Using the model based approach for arriving at
granularity we identified preconditions for each relation
within the model. Some of them are as follows:
 The aggregations defined a strict boundary between the
services.

 A composition indicated that services can be coarser
grained either through orchestration or choreography.

 Using Generalization tries tighter boundaries can be
defined

 A Usage relationship indicates that services are loosely
coupled and have least dependency.

 A Dependency relationship insists that there would be
a need to have a strict guidance on service usage.

Figure 6: Service model to derive granularity

Some of the results from the above exercise include
deriving hierarchical services from the existing service
portfolio. Using aggregation relationships we were able
to define process and composite services along with the
fine grained services.

6. Conclusions

It has been our experience that creation of web services
in itself doesn’t really help to deliver increased
reusability, flexibility and responsiveness to change. This
requires a strategic approach towards building a strong
service foundation as well as sound engineering
principles to realize it. An important advantage we
derived out of this approach was that the relationship
based granularity clearly endorsed the necessity of
coarser grained services to adhere to the single service
view point and fine grained services was optional.

8. References
[1] Abdelkarim Erradi, Sriram Anand, and Naveen N.

Kulkarni: SOAF: An Architectural Framework for Service
Definition and Realization. IEEE SCC 2006: 151-158

[2] Ali Arsanjani, Abdul Allam: “Service-Oriented Modeling
and Architecture for Realization of an SOA”. IEEE SCC
2006: 521

[3] Dabous, F. T. 2005, A Pattern Based Approach for the
Architectural Design of e-Business Applications. PhD
thesis, School of IS, UNSW, Sydney, Australia.

[4] Heuvel, W.-J. v. d. 2004, 'Matching and Adaptation: Core
Techniques for MDA-(ADM)-driven Integration of new
Business Applications with Wrapped Legacy Systems', in

429

Model-Driven Evolution of Legacy Systems (MELS’04),
Monterey, Canada

[5] Heuvel, W.-J. v. d., Hillegersberg, J. v. and Papazoglou,
M. P. 2002, 'A methodology to support web-services
development using legacy systems', in IFIP Working
Conference on Engineering Information Systems in the
Internet Context, Kanazawa, Japan, pp. 81-103.

[6] J. M. Bhat and N Deshmukh, “Methods for Modeling
Flexibility in Business Process”, BPMDS 05 Proceedings,
June 2005

[7] Zhuopeng Zhang, Ruimin Liu, Hongji Yang:, “Service
Identification and Packaging in Service Oriented
Reengineering” SEKE 2005: 620-625

[8] Abdelkarim Erradi, Naveen N. Kulkarni, Piyush
Maheshwari: Service Design Process for Reusable
Services: Financial Services Case Study. ICSOC 2007:
606-617

[9] Don Box, "Service Orientation and Its Role in Your
Connected Systems Strategy"
http://msdn2.microsoft.com/en-us/library/ms954826.aspx

Appendix

430

