
Model-based Assistance for Making Time/Fidelity
Trade-offs in Component Compositions

Vishal Dwivedi, David Garlan, Jürgen Pfeffer and Bradley Schmerl
Institute for Software Research

Carnegie Mellon University, Pittsburgh, PA
{vdwivedi, garlan, jpfeffer, schmerl}@cs.cmu.edu

Abstract—In many scientific fields, simulations and analyses
require compositions of computational entities such as web-
services, programs, and applications. In such fields, users may
want various trade-offs between different qualities. Examples
include: (i) performing a quick approximation vs. an accurate, but
slower, experiment, (ii) using local slower execution environments
vs. remote, but advanced, computing facilities, (iii) using quicker
approximation algorithms vs. computationally expensive algo-
rithms with smaller data. However, such trade-offs are difficult
to make as many such decisions today are either (a) wired into
a fixed configuration and cannot be changed, or (b) require
detailed systems knowledge and experimentation to determine
what configuration to use. In this paper we propose an approach
that uses architectural models coupled with automated design
space generation for making fidelity and timeliness trade-offs. We
illustrate this approach through an example in the intelligence
analysis domain.

I. INTRODUCTION

When software engineers compose existing components
into larger systems, they have to make decisions about compo-
nent selection from component repositories. These decisions
are often based on a fixed set of quality trade-offs, where
engineers aim for an optimal choice in some trade-off space for
some particular context. However, increasingly, compositions
may be reused in different contexts where the original trade-off
decisions may not make sense, and other choices of compo-
nents may in fact be more suitable. This problem manifests
itself most particularly in domains where compositions are
shared with a large community of users, such as in intelligence
analysis, medical informatics, or scientific computing.

As an example, consider an intelligence analysis composi-
tion that analyzes social-network data for interesting patterns.
An analyst who is more concerned about accuracy than time
may choose components that use complete information and use
complex algorithms to get a nuanced and accurate analysis of
the data being examined. Such a complete analysis may take on
the order of days or weeks, but can lead to information about
the roles, knowledge, locations, and relationships of important
actors in that set of data.

Another analyst may want to perform a similar analysis in a
situation where information is changing rapidly and timeliness
of an answer is important. While the steps to perform the
analysis might be the same, the choice of components to
perform them in this case will likely differ from those that
the first analyst chose. For example, the second analyst may
favor quick, less detailed (or low fidelity) analyses over a long
and complete (or high fidelity) response. Rather than reuse the
original workflow, they are forced to create a new composition

specifically for their context, even though the steps are similar.
Ideally, the second analyst should be able to reuse the original
composition but indicate his trade-off decisions to quickly
tailor the composition to his context.

In fact, in domains where composition reuse is common,
there may exist multiple (versions of) components with differ-
ent fidelities or components may be have configuration options
to provide different levels of response. Navigating this trade-
off space and choosing components to use in a particular
context is a complex problem with which software engineers
have some difficulty. For domains such as life-sciences and
bioinformatics — where composition is usually performed by
“professional end-user developers” [23] — making such trade-
offs is understandably even harder as the process involves
significant analysis and coding skills.

In this paper we explore how architecture models can be
used to automate the appropriate configuration of compositions
to support trade-offs between different levels of fidelities.
The approach takes advantage of the fact that in a given
composition, there can be many component realizations having
different fidelity and time properties that can be used to realize
alternative compositions. We call these compositions abstract
compositions. Together with component repositories and fideli-
ty/time information we use the Alloy model generator [1] to
explore concrete realizations of these abstract compositions
that take into consideration a user’s fidelity compromises, and
then estimate the time it will take to execute the compositon.
The user can then explore the compromises on fidelity, see the
corresponding time estimates, and make appropriate choices
for the given circumstance.

The main contributions of this paper are: (i) a composition
approach that enables trade-offs between fidelity choices and
execution time, (ii) estimation of time and fidelity using
order information, and iii) using model checking to generate
compositions that optimize the trade-offs.

The rest of the paper is organized as follows. In Section II,
we expand on the problem and introduce the requirements for
providing automated fidelity/time trade-off compositions. In
Section III, we describe our approach, which involves passing
architectural descriptions of abstract workflows to Alloy that
generates concrete workflows matching the desired fidelity
points. Section IV gives related work, and Section V provides
some discussion and future work.

II. PROBLEM

In many scientific fields, simulations and analyses require
computations with varying fidelity expectations. For example,

scientists may perform a quick approximation using lesser
data, or perform computations with various fidelity trade-offs.
In many such domains, composing heterogeneous computa-
tional entities, usually in the form of workflows or component
assemblies, allows scientists to execute their analyses. In these
scenarios, often the fidelity selection of datasets, components,
and their configurations determines the timeliness of queries
(and vice-versa).

However, such component compositions are difficult to
specify. There are often inter-component constraints that may
lead to mismatches [15]. There may also exist multiple alterna-
tive configurations, with a different set of parameters that may
provide results with different execution times and fidelities.
It is even more difficult when a user has to make trade-offs
between fidelity and timeliness choices to select a component
configuration that meets expectations since the number of
possible configurations grows combinatorially. Furthermore,
user’s fidelity selection may not directly match a configuration
and the nearest approximation may be required. Existing
composition approaches do not provide a good mechanism to
support such fidelity and timeliness trade-offs [8].

As an illustration, consider an example in the field of
military intelligence (also called edge analytics) where soldiers
rely on analysis and simulations to guide their operations.
Today, such analytic capabilities are provided by tools and
mechanisms that can transform information sources captured
as unstructured input (e.g., incident reports, news sources,
miscellaneous geo-spatial data) into complex network models
that aid sophisticated analysis such as situational awareness,
key entities, fact identification, and what-if exploration [5].

A common querying scenario is when a soldier observes
suspicious activity and sends an incident report (see example
below) to an operating base, where analysts and other experts
can analyze the incident and respond back with a report.

Incident Report: Lt. Col. Liz Abreams
(Date: 2/16/2011) Set up sensor alert
at checkpoint zulu-1, border crossing
between Talodi and Malakal. Position
sensor picked up 15 vehicles. Darfur
escapees. Overcast. Positive ID on LP
6VES512. Orange. Passengers were Hasim
Makul, Hassan Sayid Deng, Jon Deng, and
Mary Okulo. Visible knifes. Possible
narcotics.”
Query: Should we detain? Will maintain
position till 1800.

In order to assess the situation and to answer the soldier’s
question, an analyst in a forward operating base must decide
whether the new information leads to any significant changes
in the existing network structures in that geographical area.
An illustrative computational workflow (shown in Figure 1)
for this query involves: (i) processing this incident report
along with the network data, (ii) converting it into a graph-
based model and (iii) using network algorithms to create and
visualize the impact of the new event.

In this domain, a typical network contains millions of nodes
with information about people, events, and locations. There-
fore, it may save significant time to pre-process and cache

this data at the expense of using potentially stale information.
Other fidelity variations include: (a) reducing the quantity of
data based on dimensions such as time (e.g., only consider
this year, vs. consider all years), (b) space (e.g., only consider
sources associated with Darfur and Sudan), (c) source (e.g.,
only consider sources from local reports), and (d) using faster
approximations vs. slower but accurate algorithms. These,
and other fidelity choices, may lead to different component
assemblies with different execution times.

Control Parameters Expected TimeSoldier identifies

suspicious acticity

and prepares and

incident report.

Report send to

forward operating base.

Query
Does observed information change importance of entiies?

Network Data

......................

.....................

....................

.....................

Incident Report

Large size network

Data2Model Find Key

Entities
Visualize

Multiple variations of this workflow

Time range: ~2 mins to over 5 hrs

(depending on fidelity choices)

Fig. 1: Querying based on fidelity vs. timeliness.

A variation of the workflow from Figure 1 is illustrated in
Figure 2 that has fidelity reductions in terms of using cached
data with a faster approximation algorithm for computing key-
entities. The end user (here, an analyst) provides the control
parameters or fidelity expectations that can inform him about
the expected execution time and help in the generation of
the right computation assembly that serves his operational
needs. While the workflow in Figure 1 takes more than 5
hours to execute, the one in Figure 2 takes about 2 minutes.
This dramatic time saving is achieved by approximating the
results by using a slightly older, cached network and a faster
algorithm that uses a subset of the networks that deals with
relationships between people from the Sudan network data
(instead of using a collection of other relationships such as
knowledge, resources, geospatial or temporal information, etc.
that can provide a detailed, but slower, analysis).

Data to

Model

Key entity

(Fast-m, AxA)

Visualize

Report

Incident

Report

Cached

Network Union

Fig. 2: A variation of the workflow in Figure 1.
The above example highlights interesting challenges in

providing flexibility to the information analyst to process data
and provide answers to questions in a timely manner. These
challenges include:

1. Overwhelming component choice: How does the intel-
ligence analyst map the abstract steps that must be followed to
produce an answer to the actual program elements and services
that are available? As we have reported previously [10], many
domains including intelligence analysis have an abundance of
components to choose from that provide similar functionality,
and that can be parameterized for slightly different results. To
map the abstract steps of the workflow to concrete elements,
users in most cases resort to familiarity rather than applicability
in the face of a lot of options.

2

2. Multiple fidelity dimensions: Analysts may want
quick answers to questions, but they also need to understand
what they are giving up for speed. In fact, there are typically
multiple dimensions that need to be compromised for speed.
In the example above, an analyst can choose to filter the data
being used on several dimensions (time, geography), choose to
use network analyses that do not follow potential paths in the
network (and therefore cannot determine important attributes
like grouping or connectedness), or choose to use only certain
aspects of the networks (e.g., to focus on social networks and
ignore knowledge or belief networks).

3. Inter-component dependencies: Further complicating
the choice of components and fidelities is the fact that de-
pendencies exist between the options in the composition. For
example, choosing to use only the most recent data prohibits
the use of trend analysis later in the workflow. Choosing a
component that produces a certain restricted format of data
may constrain the choice of downstream components that can
be used.

III. APPROACH

An approach that helps to automate the above choices is
required to simplify the composition of components for end
users. In this section we describe an overview of our approach
for providing a system that allows end users to explore the
fidelity and time trade-offs in component compositions.

Fig. 3: A simple UI to perform fidelity time trade-offs.

A. Overview

To address the requirements above, we use an approach,
illustrated in Figure 4, that allows a user to choose the fidelity
options they are willing to make and receive information about
the estimated time that the composition will take to perform a
query. An expert analyst (who is a domain-expert) develops an
abstract component composition describing the steps that are
required to process a query. A component repository contains
the instantiations of all components that provide concrete
realizations of the steps in the composition, along with their
fidelities and timing profile. To perform a query, a user fills
in the fidelity options they are willing to compromise on. (See
Figure 3).

We model the user’s choices, the abstract compositions, and
the concrete components in the Alloy modeling language [19].

Time: 2hrs

Query

Fidelities

Alloy

Analysis

Abstract Composition

Concrete Composition

Component

Repository

Timing &

Complexity Info

Generate concrete instances

Resolve style constraints

Calculate approximate execution time

Fig. 4: Generating concrete workflow and timing.

An Alloy model is a collection of signatures and constraints
that describes a set of structures, for example: all the possible
configurations of a web application, or all the possible assem-
blies of a set of components that follow composition rules.
The Alloy Analyzer is a solver that takes the constraints of the
model and finds structures that satisfy them. It can be used both
to explore the model by generating sample structures and to
check properties of the model by generating counterexamples.
Specifically, for our problem, we use Alloy’s model-generation
capability to generate compositions required to answer queries
from analysts (described in more detail below).

In our approach, we consider two levels of compositions:
(i) abstract compositions that are defined by an assembly of
components that have some high-level properties, constraints
and functions, and (ii) concrete compositions that are an
assembly of computational elements that implement those
functions. The high-level choices made by the end-user help
in the selection of the abstract components. The Alloy model
generator generates concrete compositions that satisfy com-
position and fidelity constraints. This concrete composition is
then further analyzed (as explained later), using complexity
and timing information, to generate an approximate execution
time that can be given back to the analyst, who can then
either choose different fidelity options, or run the concrete
composition.

When the analyst chooses to execute a concrete compo-
sition, it is translated into a script that can be executed. In
our current prototype, we generate a BPEL script that uses
components derived from existing intelligence analysis tools
deployed on the SORASCS platform [9].

B. Architecture representation of compositions

In our earlier work, we proposed compositions as end-
user architectures [10] that can be explicitly represented as
architectural models defined in a domain-specific architectural
style. Such architecture models can be used not only for
various analyses, but they can also generate executables. Such
architectures form the basis of composition and fidelity anal-
ysis. For instance, here we represent end-user compositions in
SCORE [16] — a dataflow based style that is customized for
the intelligence analysis domain.

We adopt the architecture analysis approach from Kim
et al. [20] where architectural types are specified in Alloy
as signatures and constraints (based on fidelity and other
architectural properties). These are analyzed for type checking
and model generation. Compositions in SCORE are converted
to the Alloy specification language that is based on first-order

3

and relational calculus well suited for representing abstract
compositions.

While details about modeling architectures and their anal-
ysis in Alloy can be found in [20], we walk you through an
example modeling scenario in Alloy. Listing 1 shows a snippet
of the architecture model in Alloy (defined as a configuration
of components and connectors). We extend this specification
to define two types of components — abstract and concrete. A
snippet of mapping between abstract and concrete components
is shown in Listing 2.

Listing 1 : Architecture specification in Alloy.
. . .
a b s t r a c t s i g A r c h i t e c t u r e {

comps : s e t Component ,
conns : comps l o n e −> l o n e comps /∗ c o n n e c t o r s modeled as

a r e l a t i o n between components ∗ /
}{

no (i d e n & ˆ conns) /∗ no c y c l e s ∗ /
a l l c : comps | comps in c .∗ conns + c .∗ ˜ conns /∗ f u l l y

c o n n e c t e d ∗ /
}
/∗ Data d e p e n d e n c i e s a r e s a t i s f i e d ∗ /
p r ed WellFormedArch (a r c h : A r c h i t e c t u r e) {

a l l c1 , c2 : a r c h . comps | (c1 −> c2) in a r c h . conns => c1 .
o u t p u t . d a t a = c2 . i n p u t . d a t a

}
. . .

Listing 2 : A mapping between abstract and concrete architectures.
. . .
s i g R e a l i z a t i o n M a p {

absArc : one A b s t r a c t A r c h i t e c t u r e ,
concArc : one C o n c r e t e A r c h i t e c t u r e ,
i m p l s : ConcreteComp one −> one Abstrac tComp

}
{ a l l cc , ca : Component | (cc −> ca) in i m p l s => (cc in

concArc . comps) and (ca in absArc . comps) /∗Mapping on ly
e x i s t i n g components ∗ /

a l l ca : absArc . comps | some cc : concArc . comps | (cc−>ca)
in i m p l s /∗ each a b s t r a c t has a c o n c r e t e one ∗ /

a l l cc : concArc . comps | some ca : absArc . comps | (cc−>ca)
in i m p l s /∗ each c o n c r e t e has an a b s t r a c t one ∗ /

}
. . .

Concrete models are constrained to satisfy both the struc-
ture of the abstract model and the fidelity properties selected by
the end user, represented in Alloy as properties and predicates
to be satisfied in the model generation phase. A simple
example of fidelity properties is described in Listing 3.

Listing 3 : Specifying fidelities.

. . .
/∗Network t y p e s ∗ /
one s i g AxA, Al lNe tworks ex tends N e t w o r k T y p e F i d e l i t y{}
/∗Data S i z e ∗ /
one s i g ThisYear , A l lYea r ex tends D a t a S i z e F i d e l i t y {}
/∗ Speeds ∗ /
one s i g Fas tOnly , A l l S p e e d s ex tends S p e e d F i d e l i t y{}
/∗Data Regions ∗ /
one s i g Local , Reg iona l , G lo ba l ex tends D a t a R e g i o n F i d e l i t y{}
. . .
/∗ Pred t o check i f t y p e s a r e s a t s i f i e d ∗ /
p r ed s a t i s f i e s D i m e n s i o n T y p e () {

a l l f : F i d e l i t y | (f in Speed => s a t i s f i e s S p e e d T y p e [f])
and (f in NetworkType => s a t i s f i e s N e t w o r k T y p e [f])
and (f in D a t a S i z e => s a t i s f i e s D a t a S i z e [f]) and (f
in DataRegion => s a t i s f i e s D a t a R e g i o n [f])

}

C. Generate concrete compositions

As we discussed before, we use Alloy’s model generator
to create concrete models representing compositions. The
concrete assembly is constrained to follow data-mismatch [15]
and fidelity constraints. As an illustration, see Figure 5 where
a high level workflow is mapped to a concrete composition and
modeled using types (or signatures) comprising of components,
interfaces, their properties and the constraints. We do this by
representing the abstract and concrete component vocabulary,
along with a mapping function in Alloy and using its model
generation capability that generates concrete instances given a
set of high-level components and their properties.

Fig. 5: An illustration of a mapping between abstract and
concrete workflows in Alloy.

The abstract workflow in Figure 5 comprises three func-
tions with varying input and output data requirements and
fidelity constraints. This is mapped into a concrete workflow
that includes services for individual functions and additional
components for data translation and data fetching to generate
a sound composition. The Alloy snippet in Listing 4 shows the
function that is run by Alloy to create instances of concrete
models given an abstract model within a specified scope of
number of objects per signature (e.g., by using the “run for 15”
command). A simplified concrete model is shown in Figure 5
(with additional details such as ports, properties and mappings
turned off).

Listing 4 : Generating model instances in Alloy.
. . .
p r ed showConc re t eF romAbs t r ac t{

one R e a l i z a t i o n M a p
one A b s t r a c t A r c h

A b s t r a c t A r c h in R e a l i z a t i o n M a p . absArc
one C o n c A r c h i t e c t u r e
C o n c A r c h i t e c t u r e in R e a l i z a t i o n M a p . concArc
Component in (C o n c A r c h i t e c t u r e . comps + A b s A r c h i t e c t u r e .

comps)
S a t i s f i e s F i d e l i t i e s [C o n c A r c h i t e c t u r e , f a s t , AxA,

ThisYear , Loca l]
}
. . .
run showConc re t eF romAbs t r ac t f o r 15 b u t 1

A b s t r a c t A r c h i t e c t u r e ,
1 C o n c r e t e A r c h i t e c t u r e

D. Performance Analysis

Next, we perform an analysis that computes the execution
time for the concrete compositions. We use properties of the
networks and the complexity of the algorithms to approxi-
mate the execution times for components in the workflow,
and aggregate them into the overall execution time. These
approximations of execution time help end users to make an

4

TABLE I: A selection of centrality metrics

Metrics Description Reference Complexity Class
Degree
Centrality

Number of neighbors [25] O(m) fast

Hubs and
Authorities

Power centers and
connectors

[21] O(m) fast

Eigenvector
Centrality

Power centers [3] ∼O(n2) medium

Clique Count Part of dense groups [4] ∼O(nm) medium
Cognitive
Demand

Involvement in many
activities

[6] O(nm) medium

Situation
Awareness

Overview of activities [18] O(nm) medium

Betweenness
Centrality

Control communication
flow

[17] O(nm+
n2log n)

slow

informed choice about the timeliness of compositions based
on selected fidelities.

To illustrate the approach, consider “Generate Key En-
tities.” Key entities refer to important agents in a network.
Social network analysis has developed a wide array of metrics
to describe the position of individuals within a graph-like
structure consisting of nodes and edges [25]. As different
metrics focus on different aspects of network importance
(e.g., centrality), analysts often calculate a set of centrality
metrics for identifying and ranking the important nodes in a
network. Calculating these metrics and comparing the results
with previous results can help the analyst to assess whether
the newly observed situation creates significant change in the
network.

Table I shows a selection of these metrics with their
computational complexity. This enumeration is a selection to
illustrate our approach; an actual application scenario consists
of many more metrics.

The right column of Table I shows the complexity class
that we use to filter the algorithms — n refers to the number
of nodes and m to the number of edges. For estimating the
calculation time, we first summarize the metrics complexities
grouped by complexity class:

tfast = O(m)....................................(1)

tmedium = O(nm+ n2)..........................(2)

tslow = O(nm+ n2logn)...................(3)

Based on a user’s explicit or implicit (by timeliness/fidelity
options) selection of metrics we can determine the aggregated
calculation complexity of all metrics that are included in the
calculation. For instance, in order to calculate all metrics, the
accumulated calculation complexity is:

tall = tfast + tmedium + tslow................(4)

= O(m+ nm+ n2 + n2logn)..........(5)

As we know n and m (the number of nodes and edges in
the network), we can estimate the actual calculation time in
seconds of any combinatorial set of metrics after an initial
“calibration” procedure for which we calculate a selected
(small) set of metrics on a given network with a given machine,
and measure the time in seconds needed for the calculations.
It is to be noted that we ignored effects such as paging that
may be evaluated for further optimization.

Using a small-world network [26] with 10,000 nodes and
50,000 edges we calculate betweenness centrality. This takes
80 seconds on a regular laptop computer. With this number
we can estimate the timeliness of all combinations of metrics.

0

1

2

3

4

5

6

7

0 50 100 150 200 250

N
um

be
r o

f M
et

ric
s I

nc
lu

de
d

(F
id

el
ity

)

Time in Seconds

Fig. 6: Timeliness/Fidelity option space.

Even though our example consists of just seven metrics, there
are 127 combinatorial options (27-1). The complete option
space is visualized in Figure 6; some dots represent more than
one metrics combination. In case we have no constraints or
preferences on metrics this figure tells us that, for example,
we can execute up to 5 metrics within 100 seconds.

E. Orchestration Generation

The concrete workflows generated by Alloy provide valid
component compositions that obey configuration and respect
fidelity preferences. They define a sequence of web-services
provided by the SORASCS platform [9]. These concrete
compositions are compiled into orchestration scripts and ex-
ecuted using a standard SOA infrastructure. The final result
is the output of executing the service-composition. For the
composition scenario discussed in the paper, it is a key-entity
report that executes a set of centrality metrics (based on user
selection) for the analysis query.

F. Implementation

To demonstrate our approach we implemented a proto-
type web-application (using the example scenario described
in Section II) where users can specify their fidelity choices
based on expected execution times. These fidelity choices are
incorporated in an Alloy model that helps us to generate
executable compositions. Our goal was to demonstrate (a) that
the approach is feasible, and (b) it can scale to implement
fidelity-timeliness trade-offs in realistic time.

For our prototype, we used data about terrorist activities
in Sudan, consisting of about 10 years of news reports and
incidents. Our data repository consists of about 300Mb-400Mb
of plain text reports for each year, which when processed,
consists of networks with 379,638 nodes and 15,373,115 edges
(with information about people, events, and locations). The
fidelity choices (such as caching, reduction in scope, etc.)
therefore have a major impact on the processing time of the
compositions.

We ran our prototype on a 3 GHz Intel Core 5 machine
with 4GB RAM. Even for a simple composition scenario, our
approach allows fidelity variations that lead to execution times
ranging between 2 mins 23 secs to more than 5 hours. The
total execution time for Alloy model-generation varies between
1600 milliseconds and 2400 milliseconds, which is almost

5

TABLE II: Fidelity vs. Timeliness results

Fidelity Choices Execution TimeData Meta-networks Algorithm
Current year Agent-Agent

only
Fast metrics
only

0 hrs: 2 min: 23 secs

Current year Agent-Agent
only

All metrics 0 hrs: 3 min: 54 secs

Current year All relationships All metrics 0 hrs: 4 min: 14 secs
All year Agent-Agent

only
Fast metrics
only

2 hrs: 26 min: 49 secs

All year All relationships All metrics 5 hrs: 46 min: 39 secs

negligible given the much larger execution time for the entire
composition. Table II shows the common variation points and
their impact on execution times.

IV. RELATED WORK

There has been some significant work towards analysis
of compositions. Examples include: QoS (Quality of Service)
based analysis for service compositions [12], analysis of time
constraints based on Petri Nets [24] and soundness checks [22]
for BPEL orchestrations. Furthermore, tools such eflow [11]
by Fabio Casati have addressed issues with dynamic service
compositions. However, most of these analytic approaches are
geared towards static design choices where there is limited
support for trade-offs in the fidelity and timeliness space.

A related domain where such trade-offs have been relevant
is product-line engineering. There has been some work towards
automatic prediction of execution time based on feature com-
position by Siegmund et al. [14]. Another related work in the
product-line compositions has been the Clafer tool [13] that
extends Alloy-based simulations with multi-objective calcula-
tions to determine the best set of features in a product line.
In our work we have addressed trade-offs between (various
dimensions of) fidelity and timeliness and have automated it to
be able to synthesize executable code. Similar to Bagheri and
Sullivan [2], we use architecture as a basis for such reasoning
and code-generation.

V. CONCLUSION AND FUTURE WORK

We demonstrated an architecture-based approach to make
fidelity vs. timeliness trade-offs in a realistic domain. As a
first step, we presented a simple scenario where we generate
compositions based on performance profiles of components. In
this case study we used a small number of metrics resulting
significant, but relatively small option space. However, we are
confident that more complex trade-offs can be handled by
this model generation technique. As a future step, we plan to
expand this to other domains and other dimensions of fidelity
trade-offs.

A more complicated problem, and a possible future work,
is to do the reverse i.e., calculating the fidelity options given
the execution time requirements, which is similar to solving
multi-objective problems [7]. Also, for this prototype we have
not considered all possible model instances generated by Alloy,
which may be evaluated for more optimal solutions.

ACKNOWLEDGMENT

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development

center. Further support for this work came from Army Research
Office under Award No. W911NF1310155. The authors would like
to thank Ed Morris, Soumya Simanta, Kathleen Carley, Troy Mattern
and Jeff Boelng for their valuable contributions. References herein to
any specific commercial product, process, or service by trade name,
trade mark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by Carnegie
Mellon University or its Software Engineering Institute. This material
has been approved for public release and unlimited distribution. DM-
0000706

REFERENCES

[1] Alloy analyzer. http://alloy.mit.edu/alloy4/.
[2] H. Bagheri and K. J. Sullivan. Pol: specification-driven synthesis

of architectural code frameworks for platform-based applications. In
GPCE, pages 93–102, 2012.

[3] P. Bonacich. Factoring and weighting approaches to status scores and
clique identification. Jour. of Math. Sociology, pages 113–120, 1972.

[4] C. Bron and J. Kerbosch. Finding all cliques of an undirected graph
(algorithm 457). Commun. ACM, 16(9):575–576, 1973.

[5] K. M. Carley and J. Pfeffer. Dynamic Network Analysis (DNA) and
ORA. Advances in Design for Cross-Cultural Activities (Part 2), D. D.
Schmorrow, D.M. Nicholson (eds), CRC Press, 2012.

[6] K. M. Carley, J. Pfeffer, J. Reminga, J. Storrick, and D. Columbus. Ora
users guide 2013, 2013.

[7] K. Deb. Multi-objective optimization. Multi-objective optimization
using evolutionary algorithms, pages 13–46, 2001.

[8] E. Deelman, D. Gannon, M. Shields, and I. Taylor. Workflows and
e-science: An overview of workflow system features and capabilities.
Future Generation Computer Systems, 25(5):528 – 540, 2009.

[9] B.R. Schmerl et al. SORASCS: a case study in SOA-based platform
design for socio-cultural analysis. In ICSE, pages 643–652. ACM, 2011.

[10] D. Garlan et al. Foundations and tools for end-user architecting. In
Monterey Workshop 2012, LNCS, pages 157–182. Springer, 2012.

[11] F. Casati et al. Adaptive and dynamic service composition in eflow. In
Seminal Contr. to Inf. Systems Eng., pages 215–233. 2013.

[12] J. Cardoso et al. Quality of service for workflows and web service
processes. J. Web Sem., 1(3):281–308, 2004.

[13] M. Antkiewicz et al. Clafer tools for product line engineering. In SPLC
Workshops, pages 130–135, 2013.

[14] N. Siegmund et al. Predicting performance via automated feature-
interaction detection. In ICSE, pages 167–177, 2012.

[15] P.V. Elizondo et al. Resolving data mismatches in end-user composi-
tions. In IS-EUD, pages 120–136, 2013.

[16] V. Dwivedi et al. An architectural approach to end user orchestrations.
In ECSA, pages 370–378. Springer-Verlag, 2011.

[17] L. C. Freeman. A Set of Measures of Centrality Based on Betweenness.
Sociometry, 40:35–41, 1977.

[18] J.M. Graham, M. Schneider, and C. Gonzalez. Report social network
analysis of unit of action battle laboratory simulations (cmu-sds-ddml-
04-01). carnegie mellon university, social and decision sciences., 2004.

[19] D. Jackson. Software Abstractions: Logic, Language, and Analysis.
MIT Press, 2012.

[20] J.S. Kim and D. Garlan. Analyzing architectural styles. Journal of
Systems and Software, 83:1216–235, July 2010.

[21] J. M. Kleinberg. Authoritative sources in a hyperlinked environment.
J. ACM, 46(5):604–632, 1999.

[22] F. Puhlmann and M. Weske. Interaction soundness for service orches-
trations. In ICSOC, pages 302–313, 2006.

[23] J. Segal. Some problems of professional end user developers. In
VL/HCC, pages 111–118, 2007.

[24] W. M. P. van der Aalst. Workflow verification: Finding control-flow
errors using petri-net-based techniques. In BPM, pages 161–183, 2000.

[25] S. Wasserman and K. Faust. Social network analysis: Methods and
applications, volume 8. Cambridge university press, 1994.

[26] D. J. Watts and S. H. Strogatz. Collective dynamics of’small-
world’networks. Nature, 393(6684):409–10, 1998.

6

