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Abstract 

In this paper we describe a novel methodology for retrieving and combining information from 

multiple ontologies. In the last decades the number and diversity of available ontologies has 

grown considerably. There may be a variety of such resources available, but the cost to integrate 

them into an application is incremental, and often prohibitive for exploratory prototyping and 

discouraging for larger-scale integration. However, a unified cross-ontology query interface 

provides the capability for searching them independently and combining results. Beyond a 

common interface we further explore combining ontological graph search across knowledge 

bases and demonstrate superior results in the context of type-checking for automated Q&A 

systems. The paper presents the method and our initial promising results. 

 
 

1 Introduction 

 
In the last decades the number of available ontologies has grown considerably. Several proprietary and 

open-domain efforts such as Cyc [1], SUMO [2], Omega [3], Scone [4], ThoughtTreasure [5], have 

become available. . Swoogle [6] has now indexed more than 10 000 ontologies.  These resources offer 

the promise of easily-accessible, open-domain ontological information, but the existence of such diverse 

ontologies raises the issue of information merging and reuse. A comparison of the ontologies reveals 

both redundant and complementary coverage, but the variety of frameworks and languages used for 

ontology development makes it a challenge to merge query results from different ontologies. The 

number of available languages for ontological knowledge engineering such as RDF, OWL, DAML+OIL 

and CYCL, combined with the existence of independent interfaces aggravates the issue. The lack of a 

formal way to access and combine the knowledge from different ontologies is an obstacle to more 

effective re-use and combination of these resources. 

 

One approach to the multi-ontology issue is to absorb all the knowledge into a common ontology ahead 

of time. However this approach as several drawbacks, as defined in [7; 8], such as (i) non-scabality, (ii) 

losing language and reasoning specificity of distinct ontologies, (iii) losing privacy and autonomy of 

ontological knowledge (iv) language level mismatches such as syntax mismatches, differences in logical 

representation and different semantic primitives and (v) Ontology level mismatches, such as difference 

in scope, coverage and granularity, making this challenge thus far too daunting in practice. Another 

approach is to punt on the merging problem and simply query more than one ontology via different 

interfaces, and interpret the results of each ontology individually, essentially moving the entire challenge 

from the ontology provider to the application builder. A third approach is to build an ontological 

middleware level for only small fragments of ontologies in an on-demand basis, that is: 



• Query multiple ontologies and then merge the query results from multiple knowledge base 

systems, much like Federated Search in information retrieval [9]. 

• Follow ontological chains and inferences across ontologies, using partial query results from one 

ontology to query another.  This is a more complex version of cross-data-base joins, where the 

data schemas are sufficiently compatible.  

 

Currently, the main approaches to a solution for these problems focus on ontology integration, by 

creating a mapping between the concepts and relations of different ontologies.  In some cases, such as 

the Semantic Web project [10] primarily rely on merging two ontologies by establishing a full mapping 

between them. Some efforts have tried to produce a merged ontology automatically using a bottom-up 

approach such as FCA-Merge [11]; most involve some degree of semi-supervised mapping. Other 

approaches, such as the one taken by CYC, try to absorb other ontologies into a single main ontology 

while maintaining coherence [12]. One disadvantage of these approaches is the prohibitive cost of 

producing a mapping or absorbing an ontology, given their increasing scale and rate of availability. 

Another disadvantage is that it’s not always possible to establish a one-to-one mapping between the 

concepts and relations in one ontology and the concepts and relations in another. Furthermore, there is 

the problem of keeping the mappings updated as the original ontologies evolve. A large number of 

available ontologies are considered works in progress and are updated frequently, which implies a 

constant updating of any mappings associated with those resources.  

 

Most applications that use ontological information would benefit from an approach that models the 

information need, queries the relevant ontologies and retrieves the best result while providing a single 

unified interface to the client application. If we look to other domains for inspiration on how to proceed, 

we can find a similar problem in the field of Federated Search [13; 14]. Information Retrieval is usually 

based on a single database model of text retrieval. But to cope with proprietary information spread 

around the world in separate databases, distributed information retrieval explicitly models multiple 

databases for text retrieval. Each database is queried independently, the results are merged when 

possible and a new global ranking is established. In the same fashion, we can model our ontologies as 

individual sources, construct a query that describes the information need, query each ontology 

independently and merge the results into one ranked list. 

 

Using Federated Ontology Search we can parallelize query execution while respecting the structure of 

the individual ontologies, taking advantage of both redundant and complementary knowledge in the 

available ontologies to improve the overall performance of the system. 

 

2 Ontological Search 
 

The success of the proposed approach hinges on the definition of a search method that is independent of 

any ontology. For this purpose we introduce the concept of operator and a concept of query based on 

operators. The main purpose of an operator is to decouple the search process from the information need. 

Instead of describing a complete semantic framework, the goal is to describe the information request in 

terms of a decomposable query that can be transformed into a set of operators. This would provide an 

elegant abstraction from the formal representations implemented by our ontological sources, allowing 

each operator to be an independent request. 

  



As an example, Figure 1 shows the execution of the query children(car). This query uses the children 

operator to get all the children of the concept car. 

 

It is important to note that by defining a set of operators we are in fact delegating responsibility for their 

execution to the ontologies themselves, therefore making no restrictions on whatever processes are 

executed in order to obtain the necessary information. This means that operators can be implemented 

using extended features of ontologies (e.g. inference, grounding, restrictions and theorem-provers). The 

only constraint is that the output of each query execution is a Rooted Directed Acyclic Graph (RDAG). 

 

 
 

Figure 1 - Operators in Federated Ontology Search 

 

2.1 Operators 

 

We proceed to describe the set of operators that were used for our particular evaluation, as given by this 

simplified description for purposes of clarity; 

• rel(a,b,rels) The relation operator returns a graph containing a chain linking a and b using the 

relations contained in rels. 

• parents(a) Returns the graph containing the parents of a. 

• children(a) Returns the graph containing the children of a. 

 

All operators must have the property of compositionality in order to enable the constructions of complex 

operations based on simpler ones. The ideal operator set should contain the operations usually 

performed in ontologies. Providing the full set of operators is not the scope of this paper but rather 

future work. 
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There are three sub-problems described in the literature on Federated Search that also apply to this area:  

resource description, resource selection and results merging and scoring. In the ontological domain, 

resources are ontologies. 

 

3 Ontology Description and Selection 
 

The goal is to select a subset of the available ontologies based on some measure of appropriateness of an 

ontology given a query. This can be modeled as the probability p(O,q), where O is an ontology and q is 

a query. 

 

Distributed online efforts such as OpenMind result in ontologies that are constantly updated thus making 

the task of modeling them very difficult. We must also consider cases where the ontologies make use of 

inference engines and logic mechanisms. 

 

Therefore, a more general approach is to evaluate the relative utility of different ontologies by 

comparing the results they produce for a given input query. Although theoretically we could create a 

gold set of queries to perform on each ontology and use the results to create an ontology model, due to 

the diverse nature of ontologies this is in practice a very hard task. At this point we use a naïve approach 

where the query is executed in the subset of ontologies that contain the concepts in the query, but this 

can bring problems in both performance and accuracy. In order to mitigate this risk, we created a 

parameter that models the general accuracy for a given source. This parameter is a good candidate for 

the application of a learning algorithm such as some variation of the Expectation Maximization 

algorithm [15].We need to create gold standards to train and test such algorithms, which makes the 

process time consuming. 

 

4 Merging and Scoring 
 

One advantage of this approach is that rather than trying to merge two entire ontologies, we merge only 

the results. This significantly reduces the problem of merging ambiguous concepts given that queries are 

grounded in a query concept and therefore only relations that apply to the concept in the query are 

returned. Polysemic concepts will be explicitly modeled via separate results, with a variable confidence 

on the relations contained in each result. 

 

The structured nature of the query results implies that the result merging problem in the ontology 

domain is very different from result merging in federated text search, where the results typically consist 

of unstructured data. In the case of Ontology Search the results are graphs, which allow us to treat 

merging as an instance of Inexact Graph Merging. While one of the goals of merging in Federated 

Search is to eliminate duplicates, the primary goal of merging in ontology search is to find 

complementary information. The goal of ranking in ontology search is to produce, at the top-ranked 

position, the most complete and accurate result. Generally speaking, we want to merge two results if 

they represent information about the same concepts, thus creating a more complete result.  

As an example, let us consider three distinct ontologies, O1, O2 and O3. Let us assume that we execute 

the query sim(bank), with the purposes of finding concepts similar to bank. Imagine that ontology O1 

and O2 both interpret bank as river_bank while ontology O3 interprets bank as money_bank. Given this 

scenario, we would like the result set to contain two results, one referring to the similar concepts of 

river_bank and the other to the similar concepts of money_bank. The results from O1 and O2 should be 



merged since that is likely to yield an increase in the quantity of information contained in the result, as 

well as the confidence in the concepts common to the two results.  

 

The problem can be formulated as follows. Given two RDAGs g1 and g2 we want to merge the two 

graphs if they are similar. Typically this is done by considering one of two options, either we measure 

the similarity between the graphs or measure the difference. But in our case we not only want to 

measure the similarity but also find the maximum common subgraph. We should look to the science of 

Inexact Graph Matching for guidance here. 

 

Inexact Graph Matching occurs when we do not expect to find an isomorphism between the two graphs 

to be merged. This is one of the most complex problems in computer vision [16] and is also an important 

part of chemical similarity searching [17]. More specifically, inexact graph matching is proven to be an 

NP-Complete problem [18]. 

In the next section we will discuss graph similarity. 

 

4.1 Graph Similarity 
 

Graph similarity Distance [19] is typically calculated in one of the following ways: Cost Based Distance, 

Feature Based Distance or Maximum Common Subgraph. 

 

Cost Based Distance is based on edit operations on the graph, typically add nodes or edges, remove 

nodes or edges and re-label nodes or edges, where each operation is associated with a cost. Given two 

graphs g1 and g2, the edit distance between g1 and g2 is the minimum number of edit operations 

necessary to transform g1 into g2. 

 

Feature based distances use a set of invariants established from the graph structural description, using 

these features in a vector representation to which we then apply distance or similarity measures. 

 

The goal of the Maximum Common Subgraph approach is to find the largest Subgraph common to both 

g1 and g2. To address this requirement, current approaches use the concept of maximum clique detection. 

The problem is then changed into finding the Maximum Common Edge Subgraph. In our case we use a 

variation of the overlapping coefficient  for graphs, a measure whereby if graph g contains g’ or the 

converse then the similarity coefficient is a full match. 

 

4.1.1 Localized Confidence Boosting Algorithm 
 

Given g1 and g2 as results of a query, the algorithm is as follows. After applying the screening 

procedure we are left with graphs where sim(g1,g2) > T. Given that we now basically have g1 ∩ g2 we 

will apply localized boosting and then add the nodes and edges that were previously discarded. 

 

The basic intuition behind the confidence boosting is that the confidence of the edges is boosted 

whenever two edges are merged. The boosting is determined through the use of the Soft Or, given by the 

formula: 
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In order to apply confidence boosting we apply the concept of tuples, where tx = (cx,cy,r) is a tuple, cx,cy  

are concepts and r is a relation.  First we split g1 and g2 into tuples tx = (cx,cy,r), cx,cy,r ∈ g, such that cx 

and cr are adjacent and r(cx,cy). We then compare the sets of tuples from g1 and g2 and if sim(tx,ty)>T 

then we boost the confidence of tx. 

 

4.1.2 Tuple Similarity 
 

Tuple similarity measures are based on the linear combination of the edge similarity and the concept 

similarity.  

 

When comparing concepts or relations, we use the Q-Gram distance [20] on the strings that represent 

them. The intuition behind the use of q-grams as a foundation for distance metric is that when two 

strings s1 and s2 are within a small edit distance of each other, they share a large number of q-grams in 

common. This metric is fairly robust to orthographic errors, morphological errors and compound words, 

which makes it suitable for our purposes. The similarity between two tuples is given by the minimum 

similarity of the concepts and relations contained in the tuples. Formally  

 

 

 

 

 

4.2 Scoring Results 

 

A result is scored in a compositional manner, by scoring the outcome of each operator used in a query 

individually before calculating the final score. A ranking will be computed from the scores of the results 

thus making the computation of the ranking score a key issue, much like in traditional Information 

Retrieval. 

Each operator focuses on either recall or precision. Operators that focus on recall will typically return 

results with as much information as possible. The similarity operator, for example, returns all the 

synonyms associated with a concept, the more synonyms the better the result should be, all else being 

equal. Operators that focus on precision will usually return chains of associations. They focus on 

precision of the relations. As an example, the relation operator finds the relation between two concepts. 

All else being equal, a direct relation would be better than a long chain of relations. 

When a result is merged from two other results, the confidence in the sources from were the results 

where extracted is combined using the soft or rule, as described before. We now present two scoring 

metrics, to be used by precision type operators and recall type operators respectively. 

 

Precision scoring metric The goal of this scoring metric is to give preference to shorter graph lengths. 

Given that this metric is used for precision type operators, it is desirable to have results with short 

chains. 

 

 

 

 

 

Where cs is the confidence of the source, ce is the confidence on the edge and avg_length is the average 

distance of the paths contained in the graph, from root to leaf node.  
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Recall scoring metric The recall scoring metric gives preference to graphs with large node degrees. 

Given that this metric is used by recall type operators, we want the score to increase with the quantity of 

diverse information contained in the graph. Thus 

 

 

 

 

 

Where avg_degree is the average degree of the nodes contained in the result. 

 

5 Preliminary Results 
 

In this section we present some retrieval experiments using the federated approach to ontologies. One 

possible evaluation of the proposed approach requires a task centered evaluation process. For our 

experiments we selected the task of type checking, described below. 

 

5.1  Type Checking 
 

Type checking using federated ontology search can be viewed as the task of finding an is-a based path 

between two concepts. Our approach has the advantage of using indirect paths when no direct path is 

found. An indirect path consists of partial ordered sub paths that exist in separate ontologies but form 

one path when combined. Finding an indirect path is possible by simply applying either the parents 

operator or the children operator to the source node in one ontology and using the resulting nodes to 

query for a direct path in another ontology. The resulting path is the combination of these partial paths. 

Using indirect paths provides a promising way of combining information that by itself would be 

incomplete and enabling the deduction of previously inexistent paths. 

 

5.2 Experimental Setup 
 

A total of 9558 pairs were extracted from results of the Javelin question answering system in TREC QA 

2003 [21]. Each pair consists of the expected answer type or subtype and the candidate answer.  For the 

purposes of our evaluation we used two of the currently available ontologies, Wordnet and 

ThoughtTreasure. The purpose of this preliminary evaluation is to contrast the performance of each of 

the ontologies individually, which would be a typical scenario for a project using one ontology as a 

knowledge base, with the performance of the set of ontologies using a federated approach.We have 

evaluated the recall and precision of the retrieved results. 

 

5.3 Results and Analysis 

 Figure 1 shows the recall after running the test set with different configurations. 

 

Configuration Recall 

Wordnet 4278 

(44.7%) 

ThoughtTreasure 730 (7.6%) 

Combined 4686 (49%) 

Merge 4686 (49%) 
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Merging + 

Indirect 

6870 

(71.8%) 

Test size 9558 
Table 1: Recall using different configurations with the full set of pairs 

Wordnet and ThoughtTreasure were experiments where Wordnet and ThoughtTreasure were used 

individually. The Combined experiment queried each of the ontologies individually, picking only the top 

ranked result. The recall is lower than the direct sum of the individual results due to knowledge overlap 

in the ontologies. The Merge experiment queries both ontologies but merges the results using the 

merging algorithm described previously. Finally we use merging as well as indirect path query to 

perform the last experiment  Although the recall remained the same when applying the merging 

procedure, the average confidence of the top result, in cases where there was more than one result, 

increased significantly (28%), as shown in Table 2. 

 

 avg. 

confidence 

Without 

merging 

0.72 

With merging 0.93 

increase 28.7% 
Table 2 – The Increase in the average confidence of the top ranked result due to the merging algorithm. 

 

In order to test the accuracy of the federated approach, we created a gold standard for a subset of the full 

set of pairs. Using random sampling, we selected 1300 pairs, which we then proceeded to judge them 

manually. For each pair in the gold standard subset we generated a tuple of the form (type, concept, 

judgment), where judgment reflects if the concept is of the type type. We compared the answers of the 

Federated Search with the gold standard by applying a variation on the result score threshold. If a score 

is below the threshold then the concept is considered not to be of the type type.  We obtained a 

significant increase in performance when using the federated search approach. The optimal threshold for 

this experiment is T=0.1 with a precision of P = 0.676. The recall was very close to the one obtained in 

the full set with a recall of 0.71 (71%). Below we can see the F-Measure of the system. 

 

Precision and Recall 

gold standard set 

Precision 0.71 

Recall 0.67 

F1 Measure 0.69 

Baseline F1 measure 0.53 

Increase 30.18% 
Table 3 – Precision and recall of the Federated System using Wordnet and ThoughtTreasure 

 

6 Related Work 
 

Many approaches deal with the same issues as our work. The FCA-Merge algorithm [11] relies on the 

existence of a common corpus and is not a fully automatic procedure. The IF-Map method [22], the 

PROMPT system [23] have the goal of creating an alignment between ontologies, thus facing the 



drawbacks mentioned before. SWOOGLE [6] allows for the retrieval of ontologies, but it does not 

merge the information contained in them. The most similar work to our knowledge is DRAGO [7], 

which uses the peer-to-peer paradigm with Distributed Description Logics to supply distributed 

reasoning services in multiple ontologies. This approach, although very promising, does not permit a 

centralized merging procedure stemming from one centralized query. This makes it hard to use for tasks 

that rely on the knowledge contained in the ontologies. 

 

7 Challenges and Future Work 
 

Concept and edge similarity is currently calculated via string matching. This assumes that the different 

ontologies are using a similar namespace, were every ontology will have similar names for similar 

concepts. The current method is not robust when the relations used in different ontologies are extremely 

different or with ontologies using different languages.  Although this is currently an open ended 

problem, a possible solution is to compare the structures in which the two concepts occur to determine 

similarity as a back off strategy. Ontology description in dynamic ontologies also presents a challenge. 

In the future we expect to model and ontology based on the use of random queries to determine the 

domain area of a given ontology. 

 

8  Conclusions 
 

In this paper we describe a novel methodology for retrieving and combining information from diverse 

ontologies. This methodology presents several benefits over full merging procedures such as the FCA-

Merge method by reducing the potential for ambiguity by merging only local results which are grounded 

in query terms. This method addresses the issue of dynamic ontologies, in which the continuous update 

to the ontology makes it costly to adopt a merge approach. We establish a parallel to federated search in 

information retrieval and proceed to describe the algorithms for merging and scoring the results from 

multiple ontologies and we introduce a preliminary set of operators, currently implemented in a set of 

ontologies. We perform an evaluation for federated ontology search within the task of type checking and 

show that this method outperforms individual ontologies both in precision and recall. Although there are 

many challenges to be solved, this is a promising approach that brings closer the goal of easier 

integration of information from different ontological sources. 
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