
An Information Repository Model for Advanced Question Answering Systems

Vasco Calais Pedro, Jeongwoo Ko, Eric Nyberg, Teruko Mitamura

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave. Pittsburgh PA 15213
vasco@cs.cmu.edu

Abstract
This paper presents the design and implementation of the information repository which is the central core of the JAVELIN open-
domain question answering system. JAVELIN is comprised of several modules that perform a wide variety of question answering
(QA) tasks, such as question analysis, document and passage retrieval, answer candidate extraction, answer selection, answer
justification, and planning. The architecture is designed to support comparative component-level evaluation, so that different strategies
for each module can be integrated and tested in a straightforward way. Each time a module uses a particular piece of information to
produce an output, a dependency is created. To support answer justification and introspective learning, the system can use this long-
term memory to trace the origin of each answer it produces for a particular question. The JAVELIN Repository implements a
complete, consistent relational model for all of the information associated with a question answering scenario.

1. Introduction
Question Answering (QA) systems attempt to

provide the user with one or more possible answers to a
question posed in natural language, using available
corpora and a variety of language processing techniques.
For efficient and transparent operation, a QA system must
store its input, outputs, and intermediate results in a form
that can be reused or inspected by the user as part of
answer verification. The data model which is chosen for
internal storage must be easily extensible as the
algorithms used for QA increase in complexity and new
processing steps are added. The interface to the stored
data must provide straightforward, seamless integration
with a variety of other components in the system. In this
paper, we describe the design and implementation of the
Repository component in the JAVELIN, a QA system that
has been evaluated in the TREC 2002 and 2003 QA Track
evaluations (Nyberg et al, 2002; Nyberg et al, 2002).

Figure 1 –The JAVELIN architecture and
Information Repository

The basic structure of the system is illustrated in Figure 1.
The graphical user interface (GUI) accepts a question
from the user, and the Planner component interacts with
the individual question processing components (Question

Analyzer, Retrieval Strategist, Request Filler, Answer
Generator) via the Execution Manager component. The
Execution Manager provides an abstraction layer for the
Data Repository; objects which are stored in static form in
a relational database are made available to individual
component processors as XML elements.
 In Section 2, we summarize the design of the
Data Repository. In Section 3, we discuss the
implementation. Future work is summarized in Section 4.

2. Repository Design
In this section we discuss the design rationale for the
JAVELIN Data Repository, and motivate the use of a
relational database for static storage and XML for run-
time object manipulation.

2.1. Non-Linear Question Answering
 Traditional QA systems followed a pipelined
architectural pattern – the question was piped through a
succession of modules in a strictly linear fashion, and the
final answer(s) produced as the output. Intermediate data
structures were not stored in a reusable fashion. More
recently, there has been a focus on multi-strategy
approaches, where the linear pipeline is replaced with a
more flexible control structure that can try several
strategies in parallel, or backtrack to an alternate strategy
if an answer isn’t found (Prager et al., 2003; Harabagiu et
al., 2003). JAVELIN takes a non-linear approach to QA;
the Planner module decides the next course of action after
each processing step is completed. This allows the Planner
to adjust when the system reaches a processing state with
low estimated utility, without waiting until the final
answer set is produced (Nyberg et al., 2003). For example,
the Retrieval Strategist may not find a sufficient set of
relevant documents for the query that was formulated
from the user’s question, which might prompt a query
refinement dialog. A pipelined approach does not support
this type of flexible control. In particular, the intermediate
results produced by the modules must be held in a
separate data store, and not just passed as arguments to the
next module in a pipeline. Furthermore we must store this
information in a coherent way that when seen a posteriori

Information Repository
Javelin

GUI

Answer
Justification Repository

Browser

Data

Repository

Question
Analyzer

Answer
Generator

Retrieval
Strategist

Execution
Manager

Domain
Model

Planner

Information
Extractor

 ...

search engines &
document collections

JAVELIN Architecture

represents a consistent chain of reasoning and
computation. In addition to the planning steps (strategic
decisions) produced by the Planner, the following types
of information are produced by the independent JAVELIN
modules:

• Syntactic Analysis. The Question Analyzer
module. This module uses several external tools
in order to process open domain text (Nyberg et
al., 2003). The resulting syntactic information
includes a grammatical feature-structure (f-
structure) representation of the question, along
with sets of keywords which are later used for
document retrieval. The information produced by
the Question Analyzer is encapsulated in a
Request Object, which is provided as input to
other modules in the system.

• Semantic Analysis. The Question Analyzer
module also produces the expected answer type
and a logical representation of the expected
answer, based on the f-structure for the question.
This information is used by the Information
Extractor modules when selecting candidate
answers.

• Document Retrieval. The Retrieval Strategist
uses the keywords produced by the Question
Analyzer to create appropriate queries and
retrieve relevant documents. The document
retrieval information stored in the Repository
includes the corpus searched, the ranked list of
document IDs returned, and the offsets of the
individual keywords in the retrieved documents.

• Answer Candidates. The Information Extractors
use the retrieved documents and the question
analysis to produce a set of candidate answers
and supporting passages, as well as a confidence
measure for each candidate answer. The
Repository design must be flexible enough to
capture supporting evidence from multiple
extractors for a single answer, as well as multiple
sets of answer candidates from a single extractor.
Multiple Information Extractor modules may be
called by the Planner at different times, yet all
the data produced must be related to the same
original question.

2.2. Scalability and Flexibility
The scalability of the Repository was a concern

for the initial design. We expected that the diversity of
information types would increase as new algorithms were
researched. We also wanted to support the reuse of
information, both for unit-testing individual components,
and to tune the system’s performance using machine
learning approaches. Some of the measures that were
taken in order to avoid future bottlenecks included:

• Detailed planning of expected information
growth for the first two years.

• Creation of a unique identifier, independent of
the object type, for each object in the Repository;
this assures the independence between relations
and their objects, and supports straightforward
insertion of new information types.

• Independent, modular representation of the
information produced by the different
components, to support non-linear QA scenarios

where different components are called at
different times.

2.3. Information Storage for Multilingual QA
 The JAVELIN project has explored question
answering of English questions from multi-lingual texts
(specifically, Chinese and Japanese). This placed an
additional requirement on the Repository design, namely
that it be able to support multiple data sources in multiple
languages. For Chinese and Japanese, we adopted the
UTF-8 or Unicode approach in order to store multilingual
data. Our implementation chose Microsoft SQL Server
2000 for relational storage and XML DTDs for object
representation; both support Unicode characters with little
additional effort. The data model was also extended to
support additional keywords sets (in multiple languages)
produced by the Question Analyzer.

2.4. The Repository as an Independent Language
Resource
 The information stored in the Repository should
be available for introspection and re-use once a question-
answering session has ended. The Repository was
designed to allow creation of separate web-based
applications for browsing the data; this is important both
for debugging purposes and for end-user transparency (the
user may wish to inspect the intermediate results that led
to a particular answer, as part of validating that answer).
Since the basic communication with the repository is via
XML, it is also straightforward to create new modules that
gather and use the existing information as XML objects
through communication with the Execution Manager.

3. Repository Implementation
The Repository design was realized in an implementation
comprised of a relational database, a set of XML
document type definitions (DTDs), and a web-based
browsing tool. These elements of the implementation are
described below.

3.1. Relational database
The database is the core of the Repository, and is

stored in relational format for efficient, secure data access.
The relational data model incorporates entities and
relations that are general to all question-answering
systems, and also includes some entities particular to the
JAVELIN system. The Repository stores static
information, such as the available set of question types or
answer types, as well as dynamic data, such as the
passages retrieved for a particular question and the
candidate answers extracted from relevant passages. The
table in Figure 2 lists some of the most important tables in
the database. Figure 3 shows the current sizes of the some
of the tables in the Repository, to give an idea of the
current scale of the implementation.1

1 The current contents of the Repository result from
several separate batch runs of the question sets from the
TREC QA track test data.

Table Name Description
Planning Planning information. Goal and

ID of the first planning state
chain.

Question Question string and the date of
the question

RequestObject Generated by the analysis of the
question. Contains keyword sets
and a logical representation of the
question.

QuestionType The set of possible question types
(location, date, etc.). This is a
static information type, since the
types are part of a fixed (but
extensible) hierarchy.

AnswerType The set of possible answer types.
This is a static information type,
since the types are part of a fixed
(but extensible) hierarchy.

Document The documents retrieved by the
retrieval engine that were
considered to be relevant to the
question

RequestFill The candidate answers and
passages produced by the
information extractors. Contains a
passage, a candidate answer, and
a confidence measure.

Answer The answers generated by the
Answer Generator, based on a set
of Request Fills.

AnswerEvidence The evidence that supports the
answers. This table establishes a
relation between answer
candidates and answers; there can
be multiple pieces of evidence for
each answer, or one piece of
evidence for multiple answers.

AnswerJustification A summary of the processing
steps taken to achieve an answer

Figure 2 – Description of core Repository tables

Object Type Total
Questions 6497
Answer Types 17
Documents 52740
Answer Candidates 168908
Answer 80574
Planning Steps 5358

Figure 3 – Current Repository table sizes

3.2. XML elements (DTDs)
Each of the information objects stored in the

Repository is also associated with an XML element
(DTD), which is used to pass information objects between
JAVELIN modules that run as separate, distributed
processes in a networked environment. The interface to

each module is defined as an XML input / output pair; the
modules themselves are freed from the responsibility of
directly accessing the Repository. This simplification
makes it possible to integrate processing modules
implemented in a wide variety of programming
environments, without the use of database connectivity
middleware (such as JDBC or ODBC).

There are several DTDs, typically one per type of
object in the QA process. The XML objects are
interpreted by one general module, the Execution
Manager, which acts as the communication hub between
all the system components. The main advantage of this
approach is that it promotes independence of the system’s
modules, and enables straightforward, centralized
refinement of the communications protocol used for
system integration. Figure 4 includes an example of the
XML object produced by the Question Analyzer.

Figure 4 – Question Analyzer output (XML).

3.3. Browsing Tool
The web browsing tool provides a variable

degree of detail when browsing through the trace for a
specific question/answer pair. The user can view a
summary of the question-answering steps, or drill down
by expanding specific fields of interest to examine the
actual Repository contents. This browsing tool is the result
of our initial research efforts to create an effective, visual
answer justification. The browser is also an effective
debugging tool for system developers. Figure 5 shows the
browser’s information display in its initial (unexpanded
state).

Figure 5 – An example of the information display
available for each question. The user can drill down in the
tree of information to reveal additional detail.

4. Future Work
 A few issues concerning performance tuning and
portability must be addressed in the continued of the
development of the JAVELIN Repository:

• The current stored procedures and other access
methods used for populating the Repository and
accessing stored data during browsing were
designed for form and function, rather than
speed. Optimization techniques (such as stored
procedure tuning and data caching) should be
applied before the JAVELIN Repository could be
used in a production environment with millions
of users and millions of queries per day.

• The Repository is the only component in the
current JAVELIN system which runs on
Windows and requires a separate software
license. In the future, we would like to port the
Repository implementation to an open-source
database system so that JAVELIN can be freely
redistributed without additional cost.

5. Conclusion
In an advanced QA system, each interaction with

the user results in a large number of module interactions
and the creation of many pieces of related information.
This paper described the JAVELIN Repository, which
addresses two crucial requirements for advanced QA
systems:

• Module traceability and answer validation. The
utility of an answer produced by a QA system is
directly related to the user's confidence in the
sources of information that were searched, and
the correctness of the procedures that were used
to conduct the search. A system that can show
that it searched highly credible sources in a
thorough and appropriate manner will inspire
more confidence in the user. The Repository
provides crucial information for this type of
justification, because it stores the individual
planning decisions made by the system (what
sources to search, what modules to deploy, etc.)
as well as the data retrieved. This level of

traceability can also support supervised learning -
in the future, negative user feedback or
correction on a particular decision made by the
system can be used to support backtracking, plan
revision, etc.

• Consistency and reuse of information. The

answers produced by a QA system depend on a)
the corpus of documents searched, and b) the
algorithms used to conduct the search and
analysis of answer candidates. Since both of
these may change over time, it is essential that a
QA system maintain a traceable history of both
information sources and information processing
steps. Information produced by the system may
be accessed at a later time as part of answering a
related question, or it may be determined that
previous answers were based on information that
is now out of date or invalid.

As we move into more complex question answering and
scenario-based question answering, the QA process will
require larger amounts of data, bigger document source
pools and more complex algorithms. We believe that the
design of the JAVELIN Repository will support the
required growth and flexibility in the language resources
and intermediate results produced by such a system.

Acknowledgements

This work was supported in part by the Advanced
Research and Development Activity (ARDA) under
AQUAINT contract MDA904-01-C-0988.

References

(Harabagiu et. al, 2003). S. Harabagiu, D. Moldovan, C.

Clark, M. Bowden, J. Williams and J. Besley, “Answer
Mining by Combining Extraction Techniques with
Abductive Reasoning, Proceedings of TREC 2003.

(Nyberg et al, 2002) Nyberg, E., T. Mitamura, J.

Carbonell, J. Callan, K. Collins-Thompson, K. Czuba,
M. Duggan, L. Hiyakumoto, N. Hu, Y. Huang, J. Ko, L.
Lita, S. Murtagh, V. Pedro and D. Svoboda, “The
JAVELIN Question-Answering System at TREC
2002”, Proceedings of the TREC 2002.

(Nyberg et al, 2003) Nyberg, E., T. Mitamura, J. Callan, J.

Carbonell, R. Frederking, K. Collins-Thompson, L.
Hiyakumoto, Y. Huang, C. Huttenhower, S. Judy, J.
Ko, A. Kupse, L. Lita, V. Pedro, D. Svoboda and B.
Van Durme “The JAVELIN Question-Answering
System at TREC 2003: A Multi-Strategy Approach
with Dynamic Planning”, Proceedings of TREC 2003.

(Prager et al, 2003). J. Prager, J. Chu-Carroll, K. Czuba,

C. Welty, A. Ittycheriah and R. Mahindru, “IBM's
PIQUANT in TREC2003”, Proceedings of TREC 2003.

