C-SSAPRE: Eliminating redundancy over copies

Tom Murphy VII, Brendan McMahan
7 May 2003

1 Introduction

Partial Redundancy Elimination (PRE) is an optimization that prevents, where possible,
the re-computation of an expression along some paths in a program. PRE is general enough
to automatically implement loop-invariant code hoisting and global common sub-expression
elimination. PRE appears to be especially beneficial for functional programs, where the class
of expressions that may be moved is much richer: in addition to arithmetic and memory loads,
we may also move and coalesce projections from tuples, calls to total functions, and even
allocations of persistent values.

The SSAPRE [5, 7] algorithm implements Partial Redundancy Elimination for programs
in a static single assignment (SSA) intermediate representation (IR). However, the algorithms
makes several assumptions about the intermediate representation that do not hold in all
cases. In particular, they do not hold for the SSA IR of MLton [2], a high performance
whole-program compiler for Standard ML [8]. We introduce a new PRE algorithm, C-
SSAPRE, which finds PRE optimization across copies, detecting redundencies not possible
with the original SSAPRE algorithm. Our algorithm can be applied directly to MLton’s IR,
which lacks explicit copies.

We begin by describing the MLton SSA IR and its differences from what we will call
“standard” SSA, as given by Cytron et al. [6]. This provides a concrete framework for
our discussion of our generalization of the SSAPRE algorithm. We then provide detailed
pseudocode for the pre-pass that we use before invoking a modified version of SSAPRE.
Finally, we discuss our conclusions, important open questions, and potential ideas for future
work. An appendix gives an improved pre-pass algorithm.

2 The MLton SSA IR

The MLton compiler performs a sophisticated transformation of the functional source lan-
guage into an efficient form with explicit loops (much like a C or Java compiler might
produce), but only a few simple optimizations are done on this representation. For instance,
loop-invariant expressions are only hoisted via common sub-expression elimination if they
happen to be computed in a block that dominates the loop header. Thus, MLton should
benefit significantly from a PRE pass, making it a good testbed for our algorithm.

MLton’s low-level intermediate representation is a Static Single Assignment Control Flow
Graph (CFG). The representation is similar to SSA-based IRs in some modern SSA-based
C compilers, but has some differences that will impact the way that we implement PRE.
Figure (2) provides a concrete example.

The most obvious differences between the MLton IR and standard SSA is that MLton
uses labeled GOTOs instead of ¢ functions, and that MLton does not keep track of variable
versions. In this discussion and in the sequel unless otherwise stated we assume we are
optimizing an arbitrary operator op that takes a single argument. The extension to operators
on multiple operands is straightforward.

e Lack of Variable Versions In traditional SSA, different definitions of the same vari-
able become “versions” of the variable (ag, aq,...). In MLton they are simply different
variables. This decouples the IR variables from their source language identities, which
has important repercussions for our PRE pass.

e Labeled GOTOs instead of ¢-functions. Blocks in the MLton IR may take argu-
ments. Any jump to such a block must pass along arguments, which are then assigned
into the formal parameter(s) of the block. Though this makes a procedure look like a
series of mutually-recursive functions, the scope of these variables extends to the entire
procedure. Each formal parameter of a block label corresponds to the left-hand-side
of a ¢ function. Each ¢ argument appears in the appropriate position in call to the
label in the corresponding predecessor block. Thus, labeled GOTOs are really just an
alternate notation for ¢-functions; one can translate between this representation and
standard SSA without any loss of information.

Standard SSA form has the additional assumption that ¢-functions only have different
versions of the same variable as operands, and then assign to a new version of this
variable. It may be necessary to insert additional copies to maintain this property.
MLton does not enforce this assumption.

In Figure (2), the left CFG diagram shows code in the MLton IR form. Instead of
having a ¢-function for block L3, the block takes an argument a, with ¢-operands z
and y for blocks L1 and L2, respectively. The right diagram shows the corresponding
code in standard SSA form. Note that an extra copy has been inserted and variable
renaming performed so that the ¢ function in block B3 contains only different versions
of a and also assigns to a version of a.

While the MLton IR is different than the standard SSA formulation, it is still a true
SSA representation in that each variable has exactly one definition point, and this
point dominates all of its uses.

e Higher-level expression constructs. SML does not offer primitive pointer op-
erations; instead programmers have primitives for creating algebraic data types and
records. Thus, the MLton IR has expression forms for allocating and selecting from
records, building and case-analyzing data structures, and other high-level operations.
Because these are effect-free (but expensive) operations, the potential benefit from
PRE on these operations is large.

L1: L2: B1:

B2:
= op X =opy
L3(x) L3(y) ;102 i =opa2
\ L3(a): / \ B3: /
=opa a3 = phi(al, a2)
=opa3

L4: — B4: /
=opx = opx

Figure 1: MLton SSA IR vs. Standard SSA

e Overflow checking on integer computations. SML provides overflow-checking for
integer arithmetic. This means that these operations will be essentially immovable by
PRE, since they are effectful'. On the other hand, word types and infinite-precision
integers do not have overflow checking, and MLton provides a flag to disable overflow
checking. In these cases we will be able to move arithmetic operations in addition to
the functional expressions mentioned earlier.

3 Relaxing Assumptions on ¢-functions

In [7], the authors make the assumption that “each ¢ assignment has the property that its
left-hand side and all of its operands are versions of the same original program variable”
and that “the live ranges of different versions of the same original program variable do not
overlap.” That is, they assume the IR is in standard SSA form, as is that generate by the
algorithms in [6].

The SSA representation of MLton does not enforce these requirements, and so to perform
useful optimization the SSAPRE algorithm must be modified. We refer to SSA represen-
tations that allow ¢-functions on arbitrary variables, such as MLton’s IR, as unrestricted-¢
SSA representations. If we performed the naive code transformation outlined in the last
section then our ¢-functions would have the proper form, but almost no optimizations would
be found across ¢ boundaries. Better performance could be achieved by using the fast copy
coalescing algorithm [4].

We also note that the reverse transformation can be performed. First, observe that
copy operations will never be necessary in a program in unrestricted-¢ SSA form. If we
are given a program in standard SSA form, we can perform copy folding to eliminate all

'Being anticipated is not good enough, since we need to avoid moving such effects over the boundaries of
different effects—SML has a precise definition of how a program evaluates.

copies. This may make some of the ¢-functions violate the single-variable assumption, and
so we now have a program without copies in unrestricted-¢ form. C-SSAPRE can be applied
directly to the resulting copy-free SSA form. This transformation allows the discovery of
redundancies that were previously masked by the copy. As an example, in Figure (2),
our algorithm will detect that op a in block L3(a) is fully redundant (with op x in L1
and op y in L2), and it will find the partial redundancy between the opz occurrences in
blocks L1 and L4. Standard SSAPRE, however, would only detect partial redundancy in the
first case, because the additional redundancy is masked by the copy in block B1. Thus, by
designing an algorithm to perform SSAPRE on the MLton IR we are equivalently developing
a generalization of SSAPRE that will find additional redundancies. We now address the
question of designing such an algorithm.

The SSAPRE algorithm optimizes all occurrences of some expression at once. For ex-
ample, all occurrences of the expression a + b (ignoring version numbers on a and b) are
analyzed simultaneously. Thus, we are immediately at a loss for how to apply the algorithm
to MLton; we will need an alternative method of constructing a set E of related expression
occurrences to optimize.

To find suitable sets F, it appears promising to precisely define the properties these sets
of expression occurrences must have for SSAPRE to work correctly. For example, all the
expressions in E must involve the same operator (and hence the same number of operands).
Informally, we might guess it must also be possible to use a single temporary variable to
track the value of all expressions in the set F.

However, the idea of simply defining a property that all “acceptable” sets of expressions
FE must have is inadequate; a richer framework is needed. To see this, consider the following
example:

L(a,b): [1]
... =opa [2]
GOTO L(b,a) [3]

This snippet of MLton IR code repeatedly computes opa, opb, opa, etc. Certainly it
should be possible to consider removing an expression from a loop, so we should consider
lifting op a from the loop. And, in a only slightly modified loop, such as:

L(a,b): [1]
... =opa [2]
GOTO L(a,b) [3]

this hoisting would be perfectly valid. However, in the swapping example, we cannot lift
the operation. The key is to realize that the call L(b,a) assigns to the operand of [2], and
hence prevents any partial redundancy. Our algorithm must detect this situation in the first
example, while still allowing code hoisting in the second example. Thus, one cannot consider
only a set of expressions and properties of those expressions. The program must be analyzed
in a way that takes assignments to operands (including implicit ones in labeled block calls)
into account. We now describe a framework for doing this kind of analysis.

PRE can be though of as answering the following question: given a single temporary
variable, how can it be used to remove partial redundancy in a program? We turn our

4

attention away from the set of expressions E to be optimized, and focus on the behavior of
this temporary. Recall we have fixed a the operator op for consideration. We now imagine
“coloring” the CFG, where a color corresponds to an ordered list of variable arguments to
op. For example, (a) and (z) are colors in Figure (2). We wish to maintain the property that
our single temporary variable always tracks the value of op on the variables given by the
color of the current program point. In order to insure that the temporary holds the correct
value, computations must be inserted at certain program points.

Our prepass algorithm assigns such a coloring, and determines program points where
computations would have to be inserted if we wished to insure the temporary always tracks
the value of the expression on the color. The back edge in the argument-swapping example
is such a location. The idea is to pick a coloring of the control flow graph so that at many
occurrences of op, the expression is colored with the actual operands to op. In these cases,
op is added to the set E of expressions we will optimize. Occurrences of the wrong color are
ignored.

4 Formalizing the CFG Coloring Pre-pass

We now formalize the CFG coloring notion and show that any coloring immediately yields a
set of expressions that can be optimized by SSAPRE safely. In the next section we present an
algorithm for finding good colorings that yields strictly stronger optimization than standard
SSAPRE.

Definition 1. A Color for an operator op of arity k is a vector of variables of length k. A
color is valid at a program point p if the definitions of all variables in its vector reach p. If
r is a color for an operator of arity k, then ry,...,r, denote the variables assignd to each
operand of op by r.

For the following definition, we assume a CFG where each instruction has its own basic
block. This is without loss of generality, as a CFG can easily be put in this form and then
restored to its original basic block form. We use the terms block and node interchangeably
in the following discussion.

Definition 2. CFG Coloring for op: A CFG coloring for an operator op is a mapping
from instructions to wvalid colors, or to the special color uncolored. A CFG coloring is
contiguous if all the program points in each basic block are colored with at most 2 colors,
one of which starts at the top and applies to all instructions in order down the block until the
second color is reached, and the second color then colors the remainder of the instructions.

Note that even though we consider colorings as mappings from instructions, contiguous
colorings can be represented by storing only two colors per block, one at the top of the block
and one at the bottom, and an integer indicating at which instructions the color changes.
While this discussion applies to arbitrary colorings, our algorithms only consider the easier
to manipulate contiguous colorings.

Since we assume that all instructions have their own basic block, it suffices to insert
computations for the temporary on edges. We now define a class of edges where such
computations will be necessary.?

Definition 3. Let B be a block with color r, and S be a successor of B of color g. Suppose
op is of arity k. Consider each pair of operand variables (r;,g;), for 1 < i < k. We say
the pair is compatible with respect to the edge (B, P) if r; equals g;, or if g; is defined by a
¢-function in P, and the argument to the ¢-function in B is r;. We say the edge (B, P) (or
the pair of colors) is compatible with respect to the coloring if each pair of operands (r;, g;)
is compatible with the edge. If an edge is not compatiable with the coloring, then we call it a
1 -edge.

Definition 4. An expression e is accepted by a coloring C' if e is an occurrence of operator
op and e’s arguments match the color assigned to e by C.

With this definition we can now state a theorem that relates a coloring for op to an
SSAPRE optimization.

Theorem 1. Let C' be a CFG coloring for operator op, and let E be the set of expressions
accepted by C. Then, C specifies a program transformation that allows SSAPRE to be run
safely on the expressions in E.

Sketch of Proof: We sketch a proof of the theorem by outlining the imagined transfor-
mation for the unary operator case. Consider introducing a new variable named a into the
program. For every edge (B, P) in the CFG marked with bottom, insert a new assignment to
a of value of the variable corresponding to the color of B. Run the standard SSA ¢-insertion
and rename steps; once these are complete only one definition of a will reach each e € F.
It can be shown that this instance of a will always be equal to e’s current operand variable.
Thus, for each e € E we can safely replace e with the instruction op a; for the appropriate
version of a. Now, all the expressions in E operate on different versions of the same variable,
and all the ¢ functions for the variable a have as operands different versions of the variable
a. This transformation preserves program behavior, and now the set of expressions in E can
be optimized by SSAPRE. The case for multiple operands is similar. O

We call the algorithm that first finds a coloring and then applies SSAPRE to the implied
transformation the C-SSAPRE algorithm. The C is for copyless.

The optimization of the expressions in £ can be performed without actually implement-
ing the full code transformation. Rather, the standard SSAPRE algorithm is run on the
expressions of E, with the modification that its Rename step respects the |-edges already
inserted. The ®-insertion step is also slightly different, because some of the insertions are
done ahead of time during the construction of the coloring. The details of these changes for
our implementation are given in Sections (5) and (6).

The following theorem indicates that by finding a good coloring we can do at least as
well as standard PRE:

2These computations are necessary if the invariant that the temporary tracks the appropriate value at
all colored program points. This tracking property will actually only be needed at expressions we wish to
remove via PRE, so not all these computations will actually be inserted. These edges correspond directly to
a certain class of ®-operands that are set to L in the SSAPRE algorithm.

Theorem 2. Consider optimizing a program in standard SSA form for the operator op of
arity k on variables a*,a?,...,a". For any program in standard SSA form, if the variable
versions are “forgotten” by arbitrarily renaming each versioned variable aé-, then there is a
coloring that induces a transformation that allows the same optimizations to take place as if

SSAPRE had been run on the program before variable versions were lost.

Sketch of Proof: The coloring is the one that assigns to program point p a color ¢ where
¢; is the new variable name associated with the version of a’ that was active at p before
renaming occured. All edges between different colors in this coloring will be compatible, and
so no edges are marked 1. Thus, the SSAPRE algorithm will proceed exactly as it would
on the original program before renaming. O

Definition 5. A coloring is minimal if every instruction that it colors is on some path P
through colored instructions between expressions in E that does not cross a L edge, where P
has the property that the direction of its arcs change at most once.

The above definition is an attempt to define a property of colorings that do not color any
“extra” instructions. That is, we would like colorings where instructions are only colored
if they either improve availability or downsafety for expressions in E. We have not yet
convinced ourselves that the above definition is the correct one, but it appears to be a good
heuristic at least. Building up colorings so that they are minimal should help construct
good colorings because it leaves maximum freedom to color nodes in other ways to obtain
additional redundancies or downsafety. The algorithm in Appendix (9) tries to build such
colorings, while the algorithm in the next section may color many blocks to no effect.

5 A Simple, Fast CFG Coloring Algorithm

This section describes a simple coloring algorithm that leads to a C-SSAPRE implemen-
tation at least as good as SSAPRE. This algorithm works on blocks containing multiple
instructions, as opposed to the previous section where we assumed one instruction per block
for convienence. Our simple algorithm for coloring starts from a single seed expression. It
then greedily scans up the control flow graph, marking all instructions it reaches so that
they track the color of the seed expression (variables of the seed expression). If a ¢-function
definining one of the variables in the color is reached, coloring proceeds to the predessors
of the ¢-function(s) with new colors chosen to make the edges compatible. The algorithm
continues upwards until a real (non-¢) definition is reached for some variable of the color on
each path up from the seed’s block,® or until all blocks that can be colored have been. The
algorithm marks edges with 1 when appropriate as it proceeds.

Then, for every block we scanned in this first pass up (fromBottomScan in the pseudocode
below), we try to scan down through blocks that have not yet been scanned (fromTopScan).
The goal is to add more expressions in order to increase down-safety. Once this step is
complete, some new blocks may have been colored that were not colored before. These
blocks are now scanned in the upwards direction, looking for more partial redundencies.

3Tt can be shown that there can only be one such blocking definition

These steps alternate until no more blocks are added. It is also possible to run the algorithm
so that only two scans are made, one initial set of fromBottomScan scans, and one set of
fromTopScan scans to increase downsaftey. Only expressions added in the fromBottomScans
are considered to have been optimized.

The driver function given below alternates between the upward scans and the downward
scans, until the queues for both scan types are empty:

simpleColor (Expr seed)
UpScanQueue.add(seed.block, seed.opnds, true)
while (!upScanQueue.empty())
while ('upScanQueue.empty())
(B, S, color) = upScanBlock.pop()
fromBottomScan(B, S, color)
end while
while(!downScanQueue.empty())
(B, P, color) = upScanBlock.pop()
fromTopScan(B, P, color)
end while
end while
end driver

The code for fromBottomScan and fromTopScan are similar. Both methods first check
if their color has already been set; if it has, they only check the edge that caused them to
be scanned to see if it needs to be marked with L. The method isCompatibleEdge(B,S)
compares the bottom color of B to the top color of S, and returns true if and only if they
are compatible according to the definition of given in the previous section.

fromBottomScan(Block B, Succ S, Color color)
if (B.botColor == SET)
// no work to do, just test the edge
if (isCompatibleEdge (B, S))
// edge is 0K

else
// edge has hallucinated assignment
S.addPhi ()
S.phi.setPhiArg(B, Bottom)
end if
return
end if

B.botColor = color
enqueueSuccs (B, color)
// scan the relevant instructions
instrList = instrListFromBottom(B, color)
for each e in instrlist
if (isExpression(e) AND (e.opnds == color))
add e to E
else if (e is definition of some opnd in color)
B.splitPoint = e
return
end if
end
// if we reach this point we didn’t split,
// so continue scanning up our predecessors
enqueuePreds (B, color)
B.topColor = color
end fromBottomScan

fromTopScan(Block B, Pred P, Color color)
if (B.topColor == SET)
if (! isCompatibleEdge (P, B))
B.addPhi ()
B.phi.setPhiArg(P, Bottom)
end if
return
end if
B.topColor = color
enqueuePreds (B, color)
instrList = instrListFromTop(B, color)
for each e in instrlist
if (isExpression(e) AND (e.opnds == color))
add e to E
else if (e == B.splitPoint)
return
end if
end
enqueueSuccs (B, color)
end

Two methods handle the enqueuing of predecessors and successors to the queues that
manage the traversal of the algorithm and expansion of the coloring. Both are fairly straight-
forward. Note that the order in which operands are considered is chosen by a heuristic, as
this order may have a significant impact on the quality of the coloring obtained; our current
implementation, however, uses an arbitrary order. When enqueuing predecessors we may
also insert some ® functions, simplifying the ®-insertion step later; see the next section for
details.

The upColor(color, B, P) method translates the current color into a compatible color
based on any ¢-functions passed through while going up the edge; it makes no change to
color if no such ¢-functions are present. When going down an edge past a ¢, a choice must be
made: for each ¢-function on a variable argument to op, that same variable can continue to
be tracked (this is the current implementation), or the variable resulting from the ¢ function
can be tracked. For example, in Figure (2), if we are scanning down from L1 with color {z},
the algorithm can choose to continue scanning down for {z} from the top of L3 (so that it
will find and add [4] to the set), or it may scan down for color {a}, in which case it will find
[3] and add it to E. Each of these choices is “right” in this case, and will result in different
partial redundancy being eliminated.* In order to prove that the optimization performed
by C-SSAPRE is at least as strong as standard SSAPRE we need to use the heuristic that
tracks the newly defined variable rather than the original. We call this the ¢-following down
coloring heuristic.

41t is somewhat better to defer the call to downColorHeuristic until (S,B,color) is popped off the stack,
because if at that point S has already been colored, our only choice is wether or not the color of S is
compatible with the color of B. Only if S is not colored do we need to apply the heursitic. However, to
maintain symmetry and simplicity in the code we show the naive implementation.

10

enqueuePreds (Block B, Color color)
predList = heuristicPickPredOrder (B)
for each P in predlList
newColor = upColor(color, B, P)
if (newColor != color) // passed through a phi
B.addPhi ()
end if
upScanQueue.add (P, B, newColor)
end for
end enqueuePreds
enqueueSuccs(Block B, Color color)
val succs = heuristicPickSuccOrder(B)
for each S in succs
newColor = downColorHeuristic(color, B, S)
downScanQueue.add(S, B, newColor)
end for
end enqueueSuccs

This algorithm is fairly straightforward to implement, and does at least as well as SS-
APRE:

Theorem 3. Let P be a procedure in standard SSA form that contains some occurrences of
the arity k operator op on variables a',a?,...,a". Let e be particular expression occurrence
of op on these variables. Then, running C-SSAPRE with the simple coloring algorithm
using the ¢-following down coloring heuristic on P will optimize e in the same manner that
standard SSAPRE would.

Sketch of Proof: The live ranges of the different versions of a® do not overlap, and so as
the the coloring algorithm proceeds it will find a coloring that is a subset of the coloring
constructed in the proof of Theorem (2). O

While this is a strong property, the colorings produced by simple are naive in the sense
that they are not minimal. Appendex (9) outlines a coloring algorithm that produces a
minimal coloring that also has the property that it eliminates at least as much redundancy
as SSAPRE. It is straighforward to construct examples that show that the colorings it
constructs lead to strictly more optimization than the simple algorithm.

6 The SSAPRE Algorithm

We now described the changes to the standard SSAPRE algorithm so that it can be combined
with a coloring pre-pass to form C-SSAPRE, without explicitly performing the program
transformation specified by the coloring.

e dO-insert is accelerated by the fact that we insert ®’s corresponding to ¢’s for op
variables during the coloring phase. In particular, we need to insert a ® for this
reason if and only if on an enqueuePreds call one of the variables passes through a

11

¢-function. Thus, in the ®-insertion phase we need only insert ®s at blocks in the
iterated dominance frontier of blocks containing expressions in E; we avoid the need
for the set_var_phis [7, pg. 661] step.

e Rename is implemented in a fashion similar to the naive algorithm described in [7, pg.
641]. However, in that version variable renaming stacks are necessary for the variables
in the expression being optimized, as well as a renaming stack for the ® functions. We
can do away with the renaming stack for variables, because when we assign a class to a
®-operand we can look at the bottom color of the block instead. This gives us a sparse
renaming algorithm with an easy implementation; however, it is not really a win over
the algorithm in [7] because we are really just taking advantage of the information
collected in the dense coloring pass.

e Optimization Scheduling Since we cannot partition the expressions into our pro-
grams into convenient sets based on the underlying variables used (a + b) as in the
original algorithm, it is unclear how best to schedule optimization passes generated
from seeds using the coloring algorithm presented earlier. Currently, our implemen-
tation follows a naive approach whereby it continues trying seeds for a given op until
all possible expressions have occurred in at least one optimization set E. This runs
relatively few optimization sets; a much slower but more thorough algorithm might
optimize the sets achieved by using each potentially optimizable expression in the pro-
cedure as a seed. These methods are naive, and better seed selection and organization
of the coloring passes will probably be required for practical implementation.

7 Open Problems

Several important questions have been left unanswered by our work so far.

e Speed Improvements: Can the coloring phase be combined with the rest of the SSAPRE
algorithm to obtain a more efficient solution? Can the coloring phase be re-designed so
it can compute a set of colorings for a given procedure that express all the optimizations
that should be done, rather than performing one pass for each optimization? (This
would solve the scheduling problem).

e Find an efficient coloring algorithm such that if a coloring exists that allows an expres-
sion e to be removed by PRE, then the algorithm will find such a coloring. Classify
the set of expressions that can be removed using PRE with a single temporary.

e There are programs where an expression can be moved via PRE only if multiple tem-
poraries are used. In the (a,b)-swapping example, the expression in the loop can be
safely removed with two temporaries.’

SNote that to make the transformation down-safe two new blocks must be inserted, a landing-pad that
executes once if the loop executes at least once, and another landing-pad that executes once if the loop
executes at least twice.

12

With this in mind, extend PRE so that it finds redundencies that require the use of
two temporary variables, or perhaps even k temporary variables. This might also lead
to algorithms with improved performance, possibly allowing a single PRE optimization
pass to handle all the redundancy for a single operator.

e We have not been able to construct an example where two temporaries are required
to remove an expression e when it is possible to remove e using partial redundancy
with some expression other than e. That is, it appears to be the self-referential nature
of the (a,b)-swapping example that makes the use of two temporaries necessary. Note
that there is a coloring that removes op a from

L(a,b):
. =op a
... =opb
GOTO L(b,a)

using redundancy with op b.

Prove that if e can be removed by using redundancy with some other expression, then
there is a coloring that allows e to be removed. Find an algorithm that always discovers
such a coloring if it exists.

8 Discussion and Conclusions

We know of only two SSAPRE implementations that are readily available.® There is imple-
mentation in C for GCC in 3000 lines of fairly dense code [3], and a 4000-line implementation
in Java as part of the BLOAT project [1]. The authors of both versions comment on the
complexity of the algorithm and difficulty of the implementation. We point this out only to
put our results in context. Our ML implementation, including our new coloring phase, opti-
mization scheduling code, and a critical edge removal pass total around 2000 lines of code, a
testament to the representative power of the language. Our code compiles and runs, but we
have not yet had time to run interesting experiments; developing coloring algorithms took
considerably more time than expected. Also, we expect that initial performance gains will
not be outstanding, because we do not make a pass to transform loops to insert down-safe
landing pads for loop invariant code motion. We intend to test, debug, and measure our
code for potential inclusion into the MLton distribution.

We have described a substantial extension to the standard SSAPRE algorithm. We have
explained the algorithm as it applies to the unrestrected ¢-functions from MLton’s IR, and
we have shown that by copy-folding a standard SSA representation our algorithm can be
applied to detect additonal optimizations across copies. We hope to demonstrate that these
additional optimizations have practical significance in the near future.

6We are unaware of the size and complexity of the original SGI implementation

13

References

1]
2]
3]

[4]

Bloat. http://www.cs.purdue.edu/s3/projects/bloat /.
The mlton compiler. http://mlton.org/.

Ssa for trees. http://people.redhat.com/dnovillo/tree-ssa-doc/html/tree-ssa-pre_8c-
source.html.

Zoran Budimlic, Keith D. Cooper, Timothy J. Harvey, Ken Kennedy, Timothy S. Oberg,
and Steven W. Reeves. Fast copy coalescing and live-range identification. In Proceeding
of the ACM SIGPLAN 2002 Conference on Programming language design and imple-
mentation, pages 25-32. ACM Press, 2002.

Fred C. Chow, Sun Chan, Robert Kennedy, Shin-Ming Liu, Raymond Lo, and Peng Tu.
A new algorithm for partial redundancy elimination based on SSA form. In SIGPLAN
Conference on Programming Language Design and Implementation, pages 273-286, 1997.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control dependence
graph. ACM Transactions on Programming Languages and Systems, 13(4):451-490, Oc-
tober 1991.

Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo, Peng Tu, and Fred Chow. Par-
tial redundancy elimination in SSA form. ACM Transactions on Programming Languages
and Systems, 21(3):627-676, 1999.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT,
August 1990.

14

9 Appendix: A Better Coloring Algorithm

We describe a coloring algorithm that is minimal in the sense of Section 3.

The algorithm tries to find a coloring that is good for removing a particular seed expres-
sion.

First, we add expressions in an up-scan phase that may make the seed partially redundant.
As we scan up for a particular color (via scanUpForColor), we will encounter a unique
stopBlock where one of the variables in the current color is defined. If the definition was by
a ¢-function, we then recursively process the predecessors of this stopBlock, using new colors
based on the ¢-function. We then “finalize” the colorings that are actually on interesting
paths by scanning down from expressions and from the ¢ if it was “interesting.” Note that
this finalizeColorDown is different from the scanDownForColor that finds expressions that
help to prove down safety.

The scanDownForColor portion of the algorithm is very similar to the scanUpForColor,
and so pseudocode is ommited for that routine.

Each scanUpForColor call uses a ScanData structure to store certain information.

minimalColor (Expr seed)
scanUpForColor(seed.block, seed.opnds)
for each colored block B

scanDownForColor (B)

end for

end

struct ScanData
stopBlock
colorSet
found

end

The up scanning phase is performed via a nested depth-first search. The outer search
is controlled by scanUpForColor. A single call to this method does a scan up from the
given block for a given color. This scan is controlled by the innerScanUp method. Af-
ter the inner scan is complete, and any additional upScans for our predecessors through
¢-functions are completed, there is enough information to determine what edges tenta-
tively colored (by maybe clr) are actually interesting. This finalization step is done via
the finalizeColorDown procedure. A color is final if it is not a maybe color. We assume
all values are initialized to null or false as appropriate.

boolean scanUpForColor(Block start, Color clr)
assert start.botColor == UNCOLORED
sd = new scanData
innerScanUp(start, null, scanData)
boolean ia = false // interesting above
if (sd.stopBlock.splitPoint == null) // stopped by phi
for each P in sd.stopBlock.predecessors
newColor = up Color(clr, B, P)
ia = ia OR scanUpForColor(P, newColor)
end for
if (ia)
sd.colorSet.add((stopBlock, TOP_OF_BLOCK))
end if
end if
for each (B,p) in sd.colorSet
finalizeColorDown (B)
end for
clear all visited flags on edges we set
remove all non-finalized phi’s
return ia || sd.found
end scanUpForColor

i

innerScanUp(Block B, Block S, Color clr, ScanData sd)
if (B.scannedUpFor(clr)) return // already scanned this node
if (B.botcolor != UNCOLORED)
if ((B.botcolor == clr) OR (B.botcolor == maybe clr))
edge(B,S) .visited = true
else // wrong color
S.addMaybePhi() // finalized to real Phi if we color this node
S.phi.argFor(B) = bottom
end if
return
end if
B.botColor = maybe clr
B.scannedUpFor(clr) = true
instr:ist = instrListFromBottom(B, clr)
for each e in instrlist
if (isExpression(e) && e.opnds == clr)
add e to E
sd.found = true
sd.colorSet.add((B,e))
else if (e defines a variable in color)
B.splitPoint = e
assert (stopBlock == null)
sd.stopBlock = B
return
end if
end
assert B.splitPoint == null
B.topColor = maybe clr
if (some variable in clr is defined by ¢ at start of this block)
assert (stopBlock == null)
sd.stopBlock = B
return
else
for each P in B.predecessors
scanUp(P, B, clr)
end for
end if
return
end innerScanUp

il

finalizeColorDown(Block B, ProgramPointInBlock p, Color clr)
if (p == TOP_OF_BLOCK)

if (B.topColor == clr) return // already colorDown’ed

assert B.topColor == maybe clr

B.topColor = clr

if (B.phi == maybe phi) // finalize phi if we have one
B.phi.finalize()

if (B.splitPoint != null)
assert (b.botColor != clr AND b.botColor.isFinal())
return

end if

else if (isExprOccurrence(p))

end
for

end

assert B.splitPoint ==
if
each S in B.successors
if (edge(B,S) .visited)
colorDown(S, TOP_OF_BLOCK, clr)
end if
for

end colorDown

scanDownForColor (Block B)

end scanDownForColor

v

