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Animal and human studies have frequently shown that in primary sensory and motor regions the BOLD signal
correlates positively with high-frequency and negatively with low-frequency neuronal activity. However, recent
evidence suggests that this relationship may also vary across cortical areas. Detailed knowledge of the possible
spectral diversity between electrophysiological and hemodynamic responses across the human cortex would
be essential for neural-level interpretation of fMRI data and for informative multimodal combination of electro-
magnetic and hemodynamic imaging data, especially in cognitive tasks. We applied multivariate partial least
squares correlation analysis to MEG–fMRI data recorded in a reading paradigm to determine the correlation pat-
terns between the data types, at once, across the cortex. Our results revealed heterogeneous patterns of high-
frequency correlation between MEG and fMRI responses, with marked dissociation between lower and higher
order cortical regions. The low-frequency range showed substantial variance, with negative and positive correla-
tions manifesting at different frequencies across cortical regions. These findings demonstrate the complexity of
the neurophysiological counterparts of hemodynamic fluctuations in cognitive processing.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Inmost functionalmagnetic resonance imaging (fMRI) studies, brain
activity is determined based on the blood-oxygen-level dependent
(BOLD; Ogawa et al., 1992) signal, a measure sensitive to hemodynam-
ics. Over the last 15 years several investigations have addressed the
relationship between hemodynamic and electrophysiological measures
of neuronal activity (Logothetis et al., 2001; Mukamel et al., 2005;
Ojemann et al., 2010). In their seminal work, Logothetis et al. (2001)
demonstrated that in monkey primary visual cortex, the BOLD signal
was most highly correlated with high-frequency local field potential
(LFP), whereas spiking activity offered a lower explanatory value.
Subsequent investigations into systems-level aspects of the relationship
between hemodynamic and electrophysiological activity have focused
on the correlation between the BOLD signal and neural activity in specif-
ic frequency bands. Evidence has accumulated for a positive correlation
of BOLD signal with neural activity in the gamma band (ca 40–130 Hz)
(Mukamel et al., 2005; Nir et al., 2007) and for a negative correlation of
BOLDwith lower-frequency neural activity (Laufs et al., 2003;Mukamel
et al., 2005).
. Lounasmaa Laboratory, Aalto
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In humans, the relationship between hemodynamic and electro-
physiological signals can be addressed by collecting intracranial electric
and fMRI data from the same subjects in separate measurement ses-
sions (Conner et al., 2011; Lachaux et al., 2007). Such recordings are
sensitive and spatially specific but necessarily restricted to a limited
number of brain regions and subjects. Alternatively, magnetoencepha-
lography (MEG) (Liljeström et al., 2009; Schulz et al., 2004) or scalp
electroencephalography (EEG) (de Munck et al., 2007; Laufs et al.,
2003) provide full head coverage, on a virtually unlimited population
of subjects. One benefit of scalp EEG measurements is that they can be
performed simultaneously with fMRI. However, by studying the rela-
tionship of fMRI with neural signals through separate fMRI and MEG
measurements (with the same subjects undergoing identical experi-
ments) it is possible to obtain estimates of correspondence between
neural activity and hemodynamics that have both good spatial coverage
(compared to typical intracranial electric measurements) and spatial
specificity (compared to scalp EEG). MEG–fMRI comparisons have
shown, for example, that increases and decreases in oscillatory power
may be associated with spatially distinct BOLD effects (Stevenson
et al., 2012), and also that in some instances gamma-band activity and
BOLD signalmay be decoupled (Muthukumaraswamy and Singh, 2009).

So far, most studies investigating the correlation patterns between
electrophysiological and hemodynamic responses have focused on a
fairly limited set of hypotheses, using primary sensory cortices as the
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model systems. Yet, recent intracranial investigations have indicated re-
gional differences in the electrophysiology–hemodynamics relationship
(Conner et al., 2011), with distinct mechanistic origins (Sloan et al.,
2010). Notably, the variability, while relatively small across lobes, is
manifest when the relationship between electrophysiological and he-
modynamic signals is evaluated at the gyral level (Conner et al.,
2011). Therefore, it seems critical to allow spatial and spectral heteroge-
neity in the analysis. We used MEG and fMRI in an unconstrained rela-
tional framework to explore the possible spatiospectral heterogeneity
of the relationship between electrophysiological and hemodynamic
activity during cognitive processing. Specifically, we analyzed the rela-
tionship between neuronal and hemodynamic responses voxel-by-
voxel, throughout the cortex, using a dataset where the same subjects
had been presented the same, multi-condition reading paradigm in
both MEG and fMRI (Vartiainen et al., 2011). Multivariate partial least
squares correlation analysis (PLSC; McIntosh et al., 1996; Krishnan et al.,
2011) was applied to discover consistent correlation patterns between
frequency-decomposed neural (MEG) and hemodynamic (fMRI) signals
simultaneously across the entire cortex, in a fully data-driven manner,
without limiting the analysis to a priori defined frequency ranges. In the
PLSC analysis, the within-condition MEG–fMRI correlation patterns
were combined into a set of orthogonal representations across conditions,
allowing the study of both condition-invariant and condition-dependent
aspects of the relationship between electrophysiological hemodynamic
responses. We hypothesized that our analysis would reveal a well-
defined spatial and functional distribution of correlation patterns, with
distinct low- and high-frequency features in different brain regions.

Materials and methods

The following sections describe the key elements of the experimen-
tal design, MEG and fMRI data collection, and the regular activation
analysis; a more detailed description of these aspects can be found in
Vartiainen et al. (2011), where the focus was on the relationship be-
tween activation patterns obtained with measures most often used in
imaging studies, i.e., MEG evoked responses and BOLD fMRI. EEG data,
collected in both the MEG and fMRI sessions, were used to ascertain
similar task dependence of neurophysiological responses in both envi-
ronments (Vartiainen et al., 2011).

In the present study, we investigated the relationship between he-
modynamic and electrophysiological signals across the cortex from
theseMEG and fMRI data sets, using PLSC analysis on estimates of oscil-
latory MEG activity and BOLD fMRI activity, matched at the voxel-level.
This approach allowed an unbiased data-driven determination of the
cortex-wide correlation between electrophysiological and hemody-
namic responses and a spatially specific evaluation of the possible spec-
tral variability of the electrophysiology–hemodynamics relationship.

Subjects

fMRI and MEG data were recorded from 15 healthy, right-handed,
native Finnish-speaking subjects (7 females, 8 males; age 20–49 years,
mean 27 years). In agreement with the prior approval of the Helsinki
and Uusimaa Ethics Committee, informed consent was obtained from
all subjects.

Experimental design and behavioral data analysis

The experiment consisted of a silent reading task with five stimulus
categories: Finnish words, pseudowords, consonant strings, symbol
strings, and words embedded in high-frequency visual noise (noisy
words). An identical paradigm was used in MEG and fMRI, and the
MEG and fMRI datawere collected in a pseudo-randomized order across
the subjects. Each category consisted of 112 stimuli (length 7–8 letters/
symbols). The stimuli were presented one at a time, for 300 ms, in a
block design, with seven stimuli of the same category in each block.
After each stimulus, 1200 ms of gray background was shown. In addi-
tion to 16 stimulus blocks of each condition type, 16 rest blockswere in-
cluded. The subjects were instructed to report when a stimulus
appeared twice in a row (1 target block of each condition type per sub-
ject and imaging modality, not included in the analysis). Collection of
the behavioral data from these target blockswas successful in 8 subjects
in theMEG experiment and 11 subjects in the fMRI experiment. Overall,
the subjects were able to perform the task with high accuracy, as mea-
sured by the percentage of true positives across the target blocks in
both imaging modalities (words 100%, pseudowords 89%, consonant
strings 84%, symbol strings 89%, noisywords 47%). The average task per-
formance over the 5 conditions was remarkably similar in theMEG and
fMRI sessions (Wilcoxon rank sum test across subjects, p = 0.64).

fMRI data collection

The MRI data were collected using a 3 T Signa EXCITE scanner (GE
Healthcare) at the AdvancedMagnetic Imaging Centre, Aalto University.
The fMRI datawere acquired using a single-shot GRE-EPI sequencewith
in-plane resolution 3.4 × 3.4 mm2 (TR 2.4 s, TE 32 ms, flip angle 75°,
acquisition matrix size 64 × 64, FOV 22 cm, slice thickness 3 mm).
For anatomical data, a T1-weighted 3D SPGR sequence was used, with
0.9 × 0.9 × 1.0 mm3 resolution.

MEG data collection

The MEG data were recorded in a magnetically shielded room using
a 306-channel whole-head device (Elekta Oy, Helsinki, Finland) at the
MEG Core, Aalto University. The signals were bandpass filtered to
0.03–200 Hz and sampled at 600 Hz. The data were preprocessed
using the temporal extension of the Signal Space Separation method
(Taulu and Simola, 2006).

fMRI data analysis

The fMRI data preprocessing and analysis of the BOLD signal were
conducted using BrainVoyager QX software (Brain Innovation). The
preprocessing steps consisted of headmovement and slice scan time cor-
rection, high-pass filtering at a 0.01 Hz cutoff frequency and linear trend
removal. Serial correlations were compensated for by using a first-order
autoregressivemodel. The fMRI datawere coregisteredwith the anatom-
ical MR data and spatially smoothed with an 8-mm full-width-at-half-
maximum Gaussian kernel. A general linear model (GLM) was con-
structed by convolving the regressors for the five stimulus types with a
two-gamma canonical hemodynamic response function. For the present
analysis, percent effects of the stimulus conditions on the hemodynamic
signal were computed by subtracting the GLM constant term (reflecting
the signal level during rest) from the beta value of each condition and
then dividing the result with the constant term.

MEG data analysis

Estimates of cortical-level neural activity were obtained from the
MEG signals by using event-related Dynamic Imaging of Coherent
Sources (erDICS; Laaksonen et al., 2008), a beamforming technique
(Gross et al., 2001; Van Veen et al., 1997) that allows the evaluation of
oscillatory power and coherence in the brain as a function of time. In
erDICS, a time-dependent cross-spectral density matrix (CSD) that rep-
resents the sensor-level data is calculated via a product of the trial-level
time-frequency representations, computed using Morlet wavelets
(Tallon-Baudry et al., 1997). Here, Morlet wavelets of width 7 were
used to calculate the time-dependent CSD in the range from 200ms be-
fore stimulus onset to 800 ms post stimulus at 30-ms intervals and
spanning frequencies from 2 to 96 Hz at 2-Hz intervals (excluding fre-
quency bins close to the line noise, i.e., bins at 48, 50 and 52Hz). Cortical
estimates of oscillatory power levelswere then calculated separately for
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each condition at each frequency bin, averaged over the time interval of
50–800 ms where salient stimulus-evoked neural responses were ob-
served; the reference level per frequency bin was estimated as the
power in the−200 to 0msbaseline interval, averaged across all stimuli.
The integration of activity over the relevant post-stimulus interval en-
sured stable estimates of frequency-decomposed activity. Analogously
to the values extracted from fMRI, the percent signal change in each ex-
perimental condition was computed by subtracting the common base-
line power level from the power level in that condition and dividing
the difference by the baseline power level.

For reference, the cortical distribution of evoked neural activity
(reported in full in Vartiainen et al., 2011) was visualized as noise-
normalized L2-minimum-norm estimates (MNE Suite software package
by M. Hämäläinen, Martinos Center for Biomedical Imaging, Massachu-
settsGeneralHospital); the noise covariancematrixwas estimated from
the 200-ms prestimulus baseline periods of unaveraged data. For each
subject and condition, t-scores were calculated at each post-stimulus
time-point in individually determined cortical surface grids with
8-mm spacing by subtracting the mean of the baseline window from
the post-stimulus values, and by dividing the obtained values with the
standard deviation of the baseline period. The t-scores were then trans-
formed to a common coordinate system using a surface-based transfor-
mation (Fischl et al., 1999). Group-level evaluation was conducted by
averaging the t-scores across subjects in 50% overlapping 50-ms long
time-windows that covered the time range from 50 to 800 ms. For
each condition and voxel, the largest absolute average t-score across
the time-windows was taken, and t-scores of more than 3.291 (corre-
sponding to p b 0.001) were considered to represent significant neural
activity.

MEG–fMRI correlation analysis

The PLSC analysis between the frequency-decomposed MEG esti-
mates and BOLD fMRI estimates was evaluated separately in each
voxel of a grid that covered the cortical gray matter. An equivalent spa-
tial sampling across subjects was achieved by first forming a grid with
6-mm sampling on the gray matter surface of the template brain. A
grid pointwas included in the analysiswhen anMEG sensorwas located
within a 7 cm radius; this restriction excluded areas (e.g., deep cortical
structures) where MEG has limited sensitivity. The grid generated in
the template brain, consisting of 7596 points, was then transformed,
via a surface-based transformation (Fischl et al., 1999), to each
individual's anatomy. For each grid point, the fMRI voxel closest to the
transformed point was determined, and the beta values in these voxels
were considered to represent corresponding functional data across sub-
jects. For the MEG data, the estimates were calculated directly at the
individual-level grid points. The procedure yielded percent signal
change estimates for each condition in the 7596 equivalent voxels
across subjects,with a single value for the BOLDdata and 45MEG values
(from 45 different frequency bins). Thus, the approach enabled the
evaluation of electrophysiology–hemodynamics relationship and its
possible variability at the voxel-level. This spatial specificity further fa-
cilitated the examination of possible detailed spectral differences across
brain regions. The procedure used for co-registering the MEG and fMRI
data is described in more detail in the Supplementary Data.

PLSC (Krishnan et al., 2011;McIntosh et al., 1996)was applied to de-
termine the correspondence between the MEG and fMRI signals, sepa-
rately in each voxel. In the PLSC analysis (illustrated in Fig. 1a),
condition-invariant and condition-dependent aspects of the relation-
ship between electrophysiological hemodynamic responses were stud-
ied by computing within-condition cross-correlation matrices, which
were further combined to calculate orthonormal representations across
conditions using singular value decomposition (SVD). Both the magni-
tudes and spectral shapes of these representationswere then evaluated.
The multiple experimental conditions were key to this analysis design.
Cross-correlations between the MEG and fMRI signal-change estimates
were first calculated separately within-condition, across subjects, for
each voxel i.e.:

RC ¼ YC
TXC; ð1Þ

where YC is the voxel's normalized fMRI activity (15 × 1) and XC the
voxel's normalizedMEG activity (15 × 45) in a single condition C across
the 15 subjects. These cross-correlation matrices RC (1 × 45) were
then stacked across the 5 conditions into a combined correlationmatrix
R (5 × 45), and singular value decompositionwas used to determine or-
thogonal correlation patterns across the conditions. The decomposition,

R ¼ UΔVT
; ð2Þ

yielded, for each voxel, 5 orthogonal MEG–fMRI correlation spectra
(45 × 1, rows of V) and 5 singular values (diagonal elements Δ) that
were used to assess the overall magnitude and significance of the corre-
lation. In this study, we focus only on the first singular value, which ex-
plained the majority of the correlation between the data types, and the
corresponding MEG–fMRI correlation spectra.

In order to determine whether the magnitude of the MEG–fMRI cor-
relationwas significant, indicating a consistent relationship between the
electrophysiological and hemodynamic responses, the order of the
75 (5 conditions × 15 subjects) fMRI values were randomly permuted
10,000 times (the permutation procedure is shown in Fig. 1b) and the
largest singular value for each permutation was computed, separately
for each voxel. The significance level was then determined by testing
how many of the 10,000 singular values from the permuted data were
larger than the original singular value. Voxelswith p b 0.05 (false discov-
ery rate, FDR, corrected) were considered to represent significant corre-
lation between the data types. In voxels that showed a significant
correlation, spatially unconstrained hierarchical clustering was used to
determine the grouping of similar correlation patterns across voxels. In
this clustering, correlation was calculated between all voxel combina-
tions for the MEG–fMRI correlation spectra. Voxels that showed a
correlation of higher than 0.95 were linked together, resulting in a
spatiospectral clustering of electrophysiology-hemodynamics coupling
patterns across voxels, and, thus, a representation of themost systematic
components of the MEG–fMRI correlation.

Thepermutation-based significance testingdescribed above allowed
only the evaluation of the possible consistency of the relationship be-
tween theMEG and fMRI responses at each location. In order to evaluate
the frequency specificity of the estimated spectral shapes of correlation,
we applied bootstrapping analysis (Efron, 1979). This procedure was
applied to evaluate the uncertainty resulting from the specific data sam-
pling in our study and, thus, to determine whether the observed corre-
lation patterns displayed any frequency specificity across regions. As the
PLSC analysis applied in this study is based on the cross-subject MEG
and fMRI estimates of electrophysiological and hemodynamic activity
in multiple experimental conditions, an applicable sampling test is to
evaluate the stability of the correlation spectra against varying combi-
nations of subjects and conditions. In the bootstrapping analysis we
first determined, randomly, how large a percentage of the data was to
be left out (up to 20% of the original data). We then selected, also ran-
domly, a matching set of MEG–fMRI data pairs across subjects and con-
ditions. Notably, as the covariances are computedfirstwithin-condition,
it is possible to have a different number of subjects for each condition.
The re-sampling of the data was repeated 1000 times, and the PLSC
analysis was conducted on the re-sampled datasets identically to
the main PLSC evaluation. Thus, for each re-sampling, the within-
condition covariances were computed as:

Rcb ¼ Ycb
TXcb; ð3Þ

whereYcb is thenormalized re-sampled fMRI (N×1) andXcb thenormal-
ized re-sampledMEG activity (N × 45) in a single condition, with N≤ 15.



Fig. 1. PLSC analysis scheme for evaluation of the MEG–fMRI correlation. a) The analysis is done separately for each voxel. The within-condition cross-correlations are computed by mul-
tiplying the normalizedMEG spectra (15 subjects × 45 frequency bins)with the transposed fMRI beta-values (15× 1) across subjects. Thewithin-condition cross-correlations (1 × 45) are
then stacked into a combined cross-correlation matrix (5 × 45), from which the orthogonal set of correlation patterns and corresponding singular values are obtained via SVD. b) In the
permutation testing, the procedure is otherwise the same, except that the fMRI beta values across all conditions and subjects (5× 15=75 data points) are permuted and re-divided into 5
shuffled condition categories. This procedure shuffles simultaneously both the condition- and subject-specific relationship between the MEG and fMRI data sets.
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Critically, while the subject numbers may be different, the dimensions
of the cross-correlation Rcb for the re-sampled data remain the same
across all conditions. Thus, the stacking of these matrices and the SVD
computations can be performed identically to the main PLSC analysis.

From the obtained distribution of 1000 correlation spectra per voxel
we calculated the 95% upper and lower confidence limits per frequency
bin and voxel. Subsequently, both the correlation spectra and their 95%
confidence limits were averaged across the voxels belonging to one
component (determined based on the hierarchical clustering described
above) and compared to the mean correlation pattern and 95% confi-
dence limits across all voxels that showed significant MEG–fMRI corre-
lation. When the confidence limits of a specific component and of the
mean of all significant voxels were non-overlapping, the component
was considered to show a spectrally specific pattern of MEG–fMRI cor-
relation. The possible differences in the correlation patterns between
the identified components were evaluated with independent samples
t-tests, across all cluster combinations. The t-tests were computed be-
tween the correlation spectra of the voxels in the different clusters, sep-
arately for each frequency bin. Correlation differences between two
components were considered significant at p b 0.05 (Bonferroni
corrected across frequency bins and cluster combinations).

Results

Partial least squares correlation between rhythmic neural activity and
BOLD-fMRI

The BOLD fMRI (Fig. 2a) and MEG evoked responses (Fig. 2b) re-
vealed typical activation patterns in a reading task, with stimulus-
driven modulation of activity in the posterior visual areas, inferior
occipitotemporal cortex, and posterior and middle temporal, inferior
parietal and frontal cortex (see Vartiainen et al., 2011 for a detailed de-
scription and discussion). The PLSC voxel-wise, cross-condition correla-
tion between the frequency-decomposed MEG and BOLD fMRI signals
revealed significant coupling between the data types in an extensive
cortical network (Fig. 2c; Table 1). MEG–fMRI correlation reached sig-
nificance in 228 voxels that were located in the bilateral occipital, pari-
etal and posterior temporal cortex, inferior precentral gyrus, and left
frontal cortex; a higher proportion of these voxels was located in the
left than right hemisphere (143 vs. 85 voxels). Similarly, of the 750
voxels showing consistent group-level hemodynamic activity (Fig. 2a),
510 were located in the left and 240 in the right hemisphere. For the
MEG evoked responses (Fig. 2b), of the 441 voxels showing consistent
group-level evoked activity, 254 were located in the left and 187 in
the right hemisphere. Although the occipital, parietal and temporal re-
gions forming the MEG–fMRI correlation network were largely similar
to those identified in the separate fMRI (Fig. 2a) andMEG (Fig. 2b) acti-
vation analyses, the network of significant MEG–fMRI correlations
contained only a small number of exactly the same voxels as the fMRI
(6 shared voxels) and MEG (35 shared voxels) activity distributions.

Spatiospectral heterogeneity of the relationship between hemodynamic
and electrophysiological responses

In order to determine the spatiospectral division of correlation be-
tween electrophysiological and hemodynamic responses, spatially un-
constrained hierarchical clustering was applied to the PLSC correlation
spectra of the 228 significant voxels. Based on earlier work, the visual



Fig. 2. Correspondence between neural and hemodynamic activationmeasures. a) BOLD fMRI results. Cortical areas inwhich at least three of the five experimental conditions elicited sig-
nificant (p b 0.01, false discovery rate, FDR, corrected)modulation of hemodynamic signal compared to rest. b)MEG results. Cortical areas inwhich evoked responses in at least three of the
five conditions indicated significant (p b 0.001) neural activation compared to the prestimulus baseline. c) Cortical areas where the frequency-decomposedMEG estimates and the BOLD
fMRI signals were significantly (p b 0.05, FDR) correlated across participants and experimental conditions.
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cortex would be expected to display a positive correlation in the higher
(gamma) frequencies and a negative correlation in the lower frequen-
cies (Niessing et al., 2005; Scheeringa et al., 2011). Indeed, as illustrated
in Fig. 3a, such a pattern was observed in the present study in the left
primary visual cortex (Brodmann area 18, Talairach coordinates −2
−100 0; two clustered voxels).
Table 1
Areas of significant MEG–fMRI correlation.

Label X Y Z BA

Left hemisphere
Middle occipital gyrus −39 −89 1 18
Middle occipital gyrus −32 −75 18 19
Supramarginal gyrus −48 −50 20 40
Precentral gyrus −52 −4 14 4
Inferior frontal gyrus −48 25 20 45
Superior frontal gyrus −35 26 47 8
Postcentral gyrus −34 −32 57 3
Inferior parietal lobule −37 −45 55 40
Cuneus −2 −98 0 18
Cuneus 0 −77 35 19
Posterior cingulate −6 −56 19 23
Precuneus −4 −38 44 7
Paracentral lobule −7 −35 70 4
Superior frontal gyrus −8 37 44 8
Medial frontal gyrus −13 53 −6 10
Fusiform gyrus −34 −56 −13 37

Right hemisphere
Superior temporal gyrus 59 −36 9 22
Postcentral gyrus 50 −18 17 43
Inferior frontal gyrus 50 5 12 44
Inferior frontal gyrus 57 29 3 45
Middle frontal gyrus 39 3 55 6
Inferior parietal lobule 51 −33 43 40
Superior parietal lobule 27 −52 48 7
Angular gyrus 47 −70 33 39
Fusiform gyrus 51 −20 −23 20
Fusiform gyrus 42 −44 −15 37
Medial frontal gyrus 5 −14 71 6
Precuneus 16 −77 40 7
Posterior cingulate 17 −66 15 31
Lingual gyrus 14 −60 4 19
Lingual gyrus 12 −90 −1 17
However, the hierarchical clustering revealed even more robust (at
least 5 contiguous voxels) MEG–fMRI correlation patterns in other
brain areas. Clustering of the correlation spectra related to the first
PLSC singular value revealed 8 components that spanned 10 different
cortical regions, including brain areas typically involved in higher-
order cognitive processing (Fig. 3b, Table 2); for the other singular
values and corresponding correlation spectra, no clusters with compa-
rable spatial consistencywere detected. Themost obvious characteristic
of the identified 8 MEG–fMRI correlation clusters was the prominent
role of high-frequency activity: a positive correlation in the range
30–100 Hz was detected in all brain regions (the left middle and supe-
rior temporal gyrus, inferior parietal lobule and inferior, middle and su-
perior frontal gyrus; the right superior parietal lobule, precuneus, and
lingual gyrus) except the left precentral gyrus (component 8)which ex-
hibited a negative correlation at frequencies N30 Hz.

While a positive correlation in this so-called gamma band was a re-
markably systematic phenomenon, its detailed patternwas not uniform
across brain areas (Fig. 3b): the positive correlationwas either relatively
homogeneous throughout the high-frequency range or it showed a
clear distinction between low (ca 30–50 Hz) and high (ca 60–90 Hz)
gamma bands. In the precuneus and middle temporal and lingual gyri
(components 1, 6 and 7), the correlation in the high gamma range dif-
feredmostmarkedly from the average correlation across voxels, where-
as in the middle frontal gyrus (component 5) emphasis was on the low
gamma range. In the inferior frontal and superior temporal gyrus (com-
ponent 3), the correlation differed from the average pattern in the entire
gamma range.

When the MEG–fMRI correlation spectra were compared, pair-wise,
among all the 8 identified components (Fig. 4), the correlation in the
low gamma range, in particular, differed significantly between several
brain areas (components). Significant differences were also observed
specifically in the high-gamma range between, e.g., the frontal gyrus
(both superior and middle) and the lingual gyrus (components 4/5 vs.
7). To evaluate the possibly different neural underpinnings of the distinct
correlation patterns across regions, we focused on the primary visual
cortex (Fig. 5a) and the precentral gyrus (Fig. 5b) that showedmarkedly
different correlation patterns.While the fMRI activity showed clearly dis-
tinctmodulation across the regions and conditions, inMEG both the per-
cent signal change and the absolute power were more similar across the
five conditions and two regions in the 6 examined frequency bands.

image of Fig.�2


Table 2
Most systematic components of MEG–fMRI correlation.

Component and label L/R X Y Z BA

Component 1

212 J. Kujala et al. / NeuroImage 92 (2014) 207–216
In the lower-frequency (b30 Hz) range, the patterns of correlation
between electrophysiological and hemodynamic responses were also
heterogeneous, with components differing significantly from the aver-
age correlation pattern at various frequencies (Fig. 3b). Marked
Middle temporal gyrus (MTG) L −42 −73 24 39

Component 2
Inferior parietal lobule (IPL) L −34 −47 55 40

Component 3
Superior temporal gyrus (STG) L −50 −48 15 22
Inferior frontal gyrus (IFG) L −56 25 14 45

Component 4
Superior frontal gyrus (SFG) L −31 17 55 6
Superior parietal lobule (SPL) R 27 −52 48 7

Component 5
Middle frontal gyrus (MFG) L −40 28 36 9

Component 6
Precuneus (PREC) R 27 −78 33 19

Component 7
Lingual gyrus (LG) R 12 −53 2 19

Component 8
Precentral gyrus (PRCG) L −52 −2 11 6
differences were observed, e.g., in the middle temporal gyrus (compo-
nent 1), where a stronger negative correlation was observed at 2–4
and at ~8 Hz, and in the superior temporal and inferior frontal gyrus
(component 3), where a stronger positive correlation was observed at
6–8 and 14–18 Hz compared to the average pattern. A stronger positive
correlation compared with the average pattern was detected also in the
lingual gyrus (at 22–30 Hz; component 7), inferior parietal lobule (at
20–22 Hz; component 2), precuneus (at ~16 Hz; component 6), and
precentral gyrus (at 12–14Hz; component 8); in the precuneus, a stron-
ger negative correlationwas also detected (at ~8 Hz). In pair-wise com-
parisons among the 8 identified components (Fig. 4), the correlation
spectra differed significantly betweenmost brain region pairs at around
2–8 Hz and 16–30 Hz.

Discussion

We applied partial least squares correlation analysis on MEG and
fMRI data recorded from the same subjects in a reading task to address
the relationship between electrophysiological and hemodynamic
markers of neural activity in higher-order cortical regions. The selected
unconstrained PLSC approach allowed the evaluation of the consistency
of the relationship between electrophysiological and hemodynamic re-
sponses at the voxel-level, across the cortex. The spatial specificity of the
Fig. 3. Spatiospectral heterogeneity of the relationship between electrophysiological and
hemodynamic responses. a)Medial viewof a region in the left primary visual cortex show-
ing significant MEG–fMRI correlation, and the mean correlation pattern (logarithmic
scale) with 95% confidence limits for the two voxels that clustered together in the region.
b) Components of significant MEG–fMRI correlation patterns that were detected for clus-
ters of at least five voxels. Cortical areas and themean spectral pattern (logarithmic scale)
with 95% confidence limits of the correlation for each component (red line) (1, Middle
Temporal Gyrus, MTG; 2, Inferior Parietal Lobule, IPL; 3, Superior Temporal Gyrus, STG,
and Inferior Frontal Gyrus, IFG; 4, Superior Frontal Gyrus, SFG, and Superior Parietal Lob-
ule, SPL; 5, Middle Frontal Gyrus, MFG; 6, Precuneus, PREC; 7, Lingual Gyrus, LG; 8,
Precentral Gyrus, PRCG). The black line represents the average correlation pattern across
all voxels that showed significantMEG–fMRI correlation, with the grey sidebands indicat-
ing the 95% confidence limits. Most of these components map to a single contiguous clus-
ter of voxels within a single cortical area, with the exception of components 3 and 4which
map tomultiple contiguous cortical regions. The Talairach coordinates of the components
are given in Table 2.
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analysis allowed a detailed examination of possible spectral differences
in the observedMEG–fMRI correlations across brain regions. In general,
the observed correlation patternswere fairly similar across regionswith
strong positive correlations at high frequencies andweaker correlations
at low frequencies. In some regions, the positive gamma-frequency
correlation was accompanied by a negative correlation in the lower
frequencies, in agreement with earlier reports (Niessing et al., 2005;
Scheeringa et al., 2011). However, a more detailed analysis revealed
significant differences in the correlation patterns between the electro-
physiological and hemodynamic responses across brain regions at
multiple frequency bands, akin to previous observations in intracranial
recordings (Conner et al., 2011). The present findings highlight the
importance of considering the complexity of the neural origins of hemo-
dynamic fluctuations when seeking to integrate the views of brain pro-
cessing provided by electrophysiological and BOLD fMRI measures
(Ekstrom, 2010; Lauritzen et al., 2012; Logothetis, 2008; Whitman
et al., 2013).
High-frequency neural activity is not a unitary phenomenon in the
correlation between electrophysiological and hemodynamic responses

Our findings largely agree with the previously reported positive
correlation between high-frequency neural activity and hemodynamic
responses (Logothetis et al., 2001; Nir et al., 2007). However, across re-
gions, these correlations showed notable variance in their specific spec-
tral distributions. Previously, positive correlations between BOLD and
neural activity have most often been attributed to activity in the
so-called gamma band. The exact frequencies, however, have varied
considerably: effects have been reported, for example, at 20–60 Hz
(Goense and Logothetis, 2008), 60–80 Hz (Scheeringa et al., 2011),
and 40–100 Hz (Nir et al., 2008). In other instances, it has been shown
that the BOLD signal may be explained best by neural activity in a
more extended frequency range (50–250 Hz; Ojemann et al., 2010).
While these phenomena occur at overlapping frequencies, theymay re-
flect fundamentally different kinds of neural activities (Kayser and
Ermentrout, 2010). The patterns that are limited to specific, narrower
frequency bands can appropriately be called oscillatory. However, mod-
ulations that span the range from the low-gamma frequencies up to at
least 200Hz (Heet al., 2010) aremore likely to reflect arrhythmic neural
activity (Kayser and Ermentrout, 2010; Scheeringa et al., 2011).

We detected both types of phenomena. These two classes of correla-
tion patterns between electrophysiological and hemodynamic re-
sponses patterns were divided spatially and functionally roughly into
two categories. The brain regions that showed positive MEG–fMRI cor-
relation in somewhat narrower gammabands (the leftmiddle temporal
gyrus, right precuneus, and right lingual gyrus; components 1, 6 and 7 in
Fig. 3) were located in more posterior regions of the brain than the re-
gions that displayed more broad-band effects (the left superior tempo-
ral gyrus, left inferior andmiddle frontal gyrus; components 3, 5 and 8).
In the more posterior regions showing the band-specificity, the higher
(ca 60–90Hz) gamma-band displayed a particularly prominent correla-
tion with the BOLD signal, whereas in the more anterior regions the
correlation between the BOLD signal and neural activity occurred over
a wide gamma range without a clear distinction between the sub-
gamma bands. Indeed, the correlation spectra between these two
types of regions typically differed significantly at around 30–60 Hz.
Moreover, in several temporal and frontal regions the correlation spec-
tra at 30–60 Hz differed significantly from the average correlation pat-
tern across all voxels where significant MEG–fMRI correlation was
detected, whereas in themore posterior regions a similar effect was ob-
served in the high gamma range.

This dissociation between regionsmay originate from themore pos-
terior and lower-order cortical areas exhibiting true oscillatory activity
in specific bands, whereas in the more frontal, higher-order regions
the hemodynamic responses could be generated by arrhythmic high-
frequency neural activity. Furthermore, a negative broad-band correla-
tion between the high-frequency neural activity and the BOLD signal
appeared in the precentral gyrus, resulting in a notable distinction of
the correlation patterns between two nearby areas, the precentral
gyrus (BA 6) and the inferior frontal gyrus (BA 45). One possible reason
is the different cytoarchitecture of the two regions (Amunts et al., 1999)
that may be expressed also in their electrophysiological and hemody-
namic activity relationship. It is also possible that the central role of
theprecentral gyrus as a vascular source could crucially affect the profile
of BOLD activity in the region (Webb et al., 2013) and, thus, play a role in
its distinct MEG–fMRI correlation pattern compared to the neighboring
inferior frontal gyrus.

Notably, markedly different MEG–fMRI correlation patterns in the
high-gamma rangemay be accompanied by rather similar MEG activity
profiles (cf. Fig. 5). Different correlation patterns in the high-gamma
range may thus not necessarily indicate distinct neural activities in the
different brain regions, but could possibly be linked to regional differ-
ences in the generation of the BOLD signal, (cf. Fig. 5 for distinct condi-
tion dependence of the fMRI patterns in the two brain areas). Different
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Fig. 5. Power spectra and signal modulations in the primary visual cortex (V1) and the left precentral gyrus (PRCG). fMRI percent signal change (mean ± SEM) on top, followed byMEG
percent signal change (mean ± SEM; middle) and absolute MEG spectral power (arbitrary units, mean ± SEM; bottom). The MEG spectral power is displayed in 6 different frequency
bands (delta/theta, δ/τ, 2–6 Hz; alpha, α, 8–12 Hz; low-beta, Lβ, 14–24 Hz; high-beta, Ηβ, 26–34 Hz; low-gamma, Lγ, 36–46 Hz; high-gamma, Hγ, 54–96 Hz). Data shown in a) V1
and b) PRCG for all experimental conditions.
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vasculature andneurovascular coupling could be one explanatory factor
for the observed distinct BOLD and correlation patterns across the re-
gions, despite rather similar neural activity profiles. It should also be
noted that while we detected a negative gamma-band correlation be-
tween the MEG and fMRI data sets in the precentral gyrus, previous
studies have reported a positive correlation in that general region
(Conner et al., 2011). Future studies should address whether this dis-
tinction might reflect the specific experimental manipulations or that,
in our data, the correlation pattern was determined in themost inferior
part of the precentral gyrus (vs. the entire precentral gyrus by Conner
et al.).

Heterogeneous coupling of low-frequency neural activity to hemodynamics

Several investigations into the relationship between electrophysio-
logical and hemodynamic responses have reported negative correlations
between BOLD and low-frequency (b30 Hz) neural activity (Laufs et al.,
2003; Mukamel et al., 2005). In the present study, most of the detected
correlation patterns had a substantial low-frequency component. How-
ever, the observed patterns were not dominated by either negative or
positive correlations, but both types of correlations, significantly differ-
ent from zero, manifested at various frequencies across brain regions.
Notably, whilewe did detect a fairly broad-band low-frequency negative
correlation in the left middle temporal gyrus, and a slightly narrower
overall negative correlation in the left middle frontal gyrus, in many re-
gions the observed negative correlations were limited to very low-
frequency bands (b5 Hz); in the inferior parietal lobule, precuneus and
middle frontal gyrus, the negative correlations at b15 Hz were also ac-
companied by more salient positive correlations in the beta-band
(15–30 Hz). Moreover, in several regions, the correlation patterns dif-
fered significantly also from the average correlation spectra across all
voxels at varying frequencies (e.g., 2–4, 6–8, 12–14, 14–18, 20–22, and
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22–30 Hz). In fact, the lower-frequency correlation patterns appeared to
be fairly unique to each region. As an important exception, an identical
pattern was evident in the left inferior frontal and superior temporal
gyrus (component 3 in Fig. 3); this finding suggests a tight functional
and physiological link between the two areas, in line with their known
anatomical connection (Friederici, 2009). Akin to the findings for high-
frequency neural activity, marked differences in the correlation between
electrophysiological and hemodynamic responses between close-by
brain regions were detected also at the lower frequencies: for example,
the left middle (Brodmann area, BA, 9) and superior frontal gyri (BA 6)
showed a rather similar correlation pattern, except that themiddle fron-
tal gyrus exhibited a strong positive correlation at around20Hz (compo-
nents 4 and 5).

These findings may seem partly at odds with the currently pre-
dominant view of the relationship between electrophysiological and
hemodynamic activity. Reports of positive correlations between low-
frequency neural activity and the BOLD signal are scarce, limited to
observations, e.g., of 4–8 Hz activity in the parahippocampal gyrus
(Ekstrom et al., 2009) and the postcentral and superior temporal gyri
(Conner et al., 2011). There are, however, two key reasons why our
findings are, in fact, complementary to rather than in disagreement
with previous studies. First, the vast majority of studies that have re-
ported negative correlation between spatially matched BOLD and low-
frequency neural signals have been conducted in the primary sensory
or motor regions using relatively simple experimental paradigms
(Mukamel et al., 2005; Niessing et al., 2005). In the present study, how-
ever, correlations between electrophysiological and hemodynamic re-
sponses were investigated across the cortex via PLSC analysis of 5
cognitive conditions, and the most systematic components of correla-
tionwere detected in higher-order cortical areas. These higher-level re-
gions showed quite heterogeneous patterns, with both negative and
positive correlations in several distinct low-frequency bands. Negative
correlation between neural and hemodynamic signals has also been re-
ported in studies that have applied regression analyses between a single
sensor-level-based EEG measure and BOLD responses across the brain
(e.g., Laufs et al., 2003). Those types of studies have addressed, e.g.,
the manner in which modulation of the posteriorly recorded alpha
rhythm may be correlated with the BOLD signal across brain regions.
In contrast, we focused on spatially matched MEG and fMRI activity
measures to examine the voxel-wise spectral relationship between
electrophysiological and hemodynamic signals. By applying spatial
matching across the modalities, both the present fully noninvasive
MEG–fMRI study and that of Conner and colleagues, combining fMRI
with intracranial electric recordings, detected a positive correlation be-
tween the neural and BOLD signals below 10 Hz in the superior tempo-
ral gyrus.
Sensitivity and specificity of group-level PLSC analysis

Significant correlation between electrophysiological and hemody-
namic responses was observed in a wide range of cortical areas that
are commonly detected in activation studies related to reading. Further-
more, in the primary visual cortex the hemodynamic signals were
negatively correlated with low and positively correlated with high
frequency neural activity; this finding agrees remarkably well with pre-
vious studies (Scheeringa et al., 2011; Zumer et al., 2010), demonstrat-
ing the accuracy of a group-level PLSC compared to individual-level
correlation analysis. Notably, the present analysis was performed at
the group-level in spatially matched voxels, without seeking to identify
functionally exactly corresponding regions across subjects. Together
with inter-subject spectral variability of neural responses, this resulted
in slightly smaller correlation values than are sometimes observed in
cases where intermodal correlations are estimated within subjects
(i.e., analysis of trial-to-trial co-variation of electrophysiological and he-
modynamic responses).
The areas showing significant correlation did not fully match the
areas in which activation levels, as measured with either fMRI or MEG,
were most strongly modulated. This indicates that the sensitivity of
the PLSC approach does not depend merely on the signal-to-noise
ratio of the data. Correlation estimates are generally, and likely in this
study as well, more robust when there is salient variation in activity
levels across subjects. However, such variability tends to reduce the sig-
nificance of standard, t-statistics-based group-level activation esti-
mates. It is also worth noting that the PLSC framework could be
unsuccessful in determining the relationship between electrophysiolog-
ical and hemodynamic activity in functional areas where the spectral
patterns differ considerably across subjects. Indeed, some of this appar-
ent disparity between the activation and correlation patterns results
from differences in the significance levels that were reached with the
different measures. For instance, in the supramarginal gyrus, where
MEG-fMRI correlation was not evident but both MEG and fMRI activa-
tion measures exceeded the selected significance thresholds, a more le-
nient (p b 0.05) threshold for the PLSC analysis sufficed to reveal MEG–
fMRI correlation as well.

The observeddifference between themost activated andmost corre-
lated brain regions also yields insights into the distinct pictures of read-
ing that have been obtained with MEG and fMRI. For example, the fMRI
data revealed the typical functional difference between words and con-
sonant strings in left inferior frontal cortex, whereas the MEG evoked
responses did not (Vartiainen et al., 2011). However,we detected signif-
icant correlation in that region showing that the BOLD response was
correlated with a broad-band neural response in the gamma range.
This observation suggests that the BOLD activity in the left inferior fron-
tal cortex is linked tomodulation of high-frequency neural activity, pos-
sibly over a relatively long time period. This type of modulation would
not be readily picked up in typical MEG analysis where the focus is on
specific time windows and the signals are dominated by the relatively
high-amplitude low-frequency oscillations.

The present analysis was built on multiple, language-related task
conditions. The heterogeneous coupling between electrophysiological
and hemodynamic activity we observed thus included, not surprisingly,
several key areas of language processing. The spatiospectral MEG–fMRI
correlation patterns in those areas differed considerably from that of the
visual cortex, especially in the lower frequency range. The good match
of the coupling pattern in the visual cortex detected here with those
reported in previous studies (Scheeringa et al., 2011; Zumer et al.,
2010) increases confidence that the coupling patterns observed in the
higher-order regions also reflect specific linkage properties between
neuronal and hemodynamic activity. However, whether or not (or to
what degree) the correlation patterns would display spatiospectral in-
variance across different cognitive tasks, remains to be determined by
future studies. Furthermore, as the stability of MEG estimates of neural
activity at individual frequency bins required averaging over the entire
response time interval, the present analysis does not allow linking the
BOLD fMRI signals with specific phases of the MEG responses. The
observed MEG–fMRI correlation may reflect different temporal and
spectral properties of the neural response in different brain regions
(Supplementary data, Fig. S2).

Finally, we do not propose that the observed patterns would reflect
the full profile of neural activity; our findings merely demonstrate that
these patterns of neural activity, as detected with MEG, correlate with
the hemodynamic signal, as detected with BOLD fMRI. There may be
brain areas where one imagingmodality is sensitive to activity patterns
that are not detectable with the other technique. For example, non-
synchronous neural activity can lead to significant BOLD modulations
without detectable signals in MEG. Conversely, there may be other,
transient neural patterns that are picked up by MEG but not reflected
in the hemodynamic signal. In addition, MEG's high sensitivity to the
tangential component of neural current flow and low sensitivity to the
radial component may influence the observed correlation spectra.
Moreover, it should be noted that each MEG source localization
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technique yields slightly different estimates of neural activity which
could have some effect on the observedMEG–fMRI correlation patterns.

Conclusions

Our holistic PLSC analysis of the relationship between BOLD fMRI
and frequency-decomposed MEG activity measures during cognitive
processing revealed heterogeneous spectral patterns of correlation
across the cortex, akin to previous results from intracranial recordings
(Conner et al., 2011). Our findings further showed that brain regions in-
volved in different levels of cortical processingmay also display distinct
patterns Moreover, our results suggest that, while high-frequency
neural activity is a major component in the MEG–fMRI coupling, in
distinct functional regions this activitymay be attributed to either oscil-
latory components or more widely spread, possibly arrhythmic, high-
frequency neural activity. Similarly, various low-frequency oscillations
contribute in a distinct manner to the generation of the hemodynamic
signal. These findings demonstrate the complexity of the neurophysio-
logical correlates of hemodynamic fluctuations in cognitive processing.
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