AI and the Impending Revolution in Brain Sciences

AAAII Presidential Address

Tom M. Mitchell
Carnegie Mellon University
August 2002

Collaborators: Marcel Just, Radu Stefan Niculescu, Francisco Pereira, Xuerui Wang
Thesis of This Talk

The synergy between AI and Brain Sciences will yield profound advances in our understanding of intelligence over the coming decade, fundamentally changing the nature of our field.
The synergy between AI and Brain Sciences will yield profound advances in our understanding of intelligence over the coming decade.

1. Common goal: understand intelligence

2. Significant correspondences between AI methods and brain organization

3. New instrumentation is causing a revolution

Outline

1. The Thesis

2. AI processes and brain processes

3. New instrumentation, discoveries, methods

4. Reflections and Projections
Spatial Localization

How can a mobile agent track its location as it moves about?
Probabilistic Localization in Robots

\[
p(x_0 | m)
\]

\[
p(z_0 | x, m)
\]

\[
p(x_0 | z_0, m)
\]

\[
p(x_1 | u_1, z_0, m)
\]

\[
p(z_1 | x, m)
\]

\[
p(x_1 | z_1, u_1, z_0, m)
\]

\[
p(x_0 | m)
\]

\[
p(z_0 | x, m)
\]

\[
p(x_0 | z_0, m)
\]

\[
p(x_1 | u_1, z_0, m)
\]

\[
p(z_1 | x, m)
\]

\[
p(x_1 | z_1, u_1, z_0, m)
\]

\[
\]
Monte Carlo Localization (MCL)

[Thrun, Burgard, Fox, Dellaert]
Rat Place Cell Firing Patterns

Table: Rat Place Cell Firing Patterns

<table>
<thead>
<tr>
<th>Cell 1 firing density</th>
<th>Cell 2 firing density</th>
<th>...</th>
<th>Cell 7 firing density</th>
</tr>
</thead>
</table>

Diagram:

- **A**
 - N
 - S
- **B**
 - Visual representation of firing patterns for different cells.
Rat Place Cell Firing Patterns

[Skaggs & McNaughton, *J. Neurosci.*, 1998]

\[\text{define } P(x(t)) = \frac{1}{N} \prod_{i \in \text{cells}} P_i(x(t)) \]

\[\text{where } P_i(x(t)) = \text{Poisson}(\text{density}_i(x), \text{spike_rate}_i(t)) \]
Rat Place Cells Encode Location Distribution

[Skaggs & McNaughton, J. Neurosci., 1998]
Navigation and Localization

Robots
- Probabilistic representation of location and orientation
- Bayesian update of estimated position
- Practical using MC methods
- Related Bayesian methods for simultaneous mapping/localization
- Calculate x, y, θ jointly

Rats
- Place cells: encode location
- Place cell firing rates encode probability distribution over locations
- Method for updating location estimate unknown
- Unknown how simultaneous mapping/localization works
- Other cells reflect head orientation θ

Spatial Reasoning

• Do mammals use probabilistic representations for location, orientation?
• And for other things?
• Why use their encoding of belief state?
• Do they make Bayesian updates?
• Do they explicitly model $P(x'|x,u)$? $P(\text{obs}|x)$?
• How do they learn, store, invoke the right map?
Reinforcement Learning
Temporal Difference Learning

[Sutton and Barto 1981; Samuel 1957]

\[V^*(s) = E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots] \]
Dopamine As Reward Signal

[Schultz et al., Science, 1997]
Reinforcement Learning

• How close is biological learning to the temporal difference learning algorithm?

• What learning strategy do primates use?

• Are “positive” (appetitive) and “negative” (aversive) rewards handled differently?

• One learning mechanism, or many?
Object Detection

[Schneiderman, 2000]

training images for each orientation
New instrumentation enables scientific revolutions - Kuhn

- Individual neuron recordings (100’s)
- New dyes to observe brain metabolism
- ‘Knock out’ experiments (genetic engineering)
- Brain imaging (fMRI, PET, ERP, …)
functional Magnetic Resonance Imaging

~1 mm resolution
~1 sec temporally
30,000 voxels/image
two images per sec
non-invasive, safe
measures blood oxygen fluctuations
Mental Rotation of Imagined Objects

Clock rotation
Shephard-Metz rotation
both

[Just, et al., 2001]
Verbal Remembering and Forgetting Predicted by fMRI Activity

[Wagner et al., *Science*, 1998]
Study of Men and Women Listening

“Men listen with only one side of their brains, while women use both”

(IU School of Medicine Department of Radiology)

23. Mitchell, AAAI 2002
What We’d Like

Cognitive model:

- See word
- Recognize word
- Understand statement
- Answer question

Hypothesized intermediate states, representations, processes:

Observed image sequence:

time →
ACT-R Cognitive Architecture

[Anderson et al.]

- Production rule, inductive and analytical learning methods
- Successfully models some human cognitive functions, e.g.
 - Predicts response times, error rates, learning rates
 - E.g., Learning of arithmetic and multiplication tables [Lebiere]
Production rule firing (Basil Ganglia)

- **Intentional Module** (not identified)
- **Goal Buffer** (DLPFC)
- **Retrieval Buffer** (VLPFC)
- **Declarative Module** (Temporal/Hippocampus)
- **Matching** (Striatum)
- **Selection** (Pallidum)
- **Execution** (Thalamus)

- **Visual Buffer** (Parietal)
- **Visual Module** (Occipital/etc)
- **Manual Buffer** (Motor)
- **Manual Module** (Motor/Cerebellum)

Environment

ACT-R 5.0
[Anderson et al.]
Mental Algebra Task

[Anderson, Qin, & Sohn, 2002]

Load

\[a = 3 \]
\[b = 5 \]
\[c = 24 \]

Equation

\[a \times 3 = c \]

Blank Period

white

red

1.5 Second Scans
Activity Predicted by ACT-R Model

[Anderson, Qin, & Sohn, 2002]
Imaginal buffer predicts posterior parietal activity: effect of number of transformations
Intentional Module
(Declarative Module
(Temporal/Hippocampus)
Local Buffer
(DLPFC)
Retrieval Buffer
(VLPFC)
Visual Buffer
(Lateral)
Manual Buffer
(Motor)
Visual Module
(Decentral etc)
Manual Module
(Motor/Cerebellum)

Environment

Retrieval Predicts Prefrontal $r = .991$

Image: "Retrieval Predicts Prefrontal $r = .991$"

Manual Predicts Motor, $r = .972$

Image: "Manual Predicts Motor, $r = .972$"

Imaginal Predicts Posterior Parietal $r = .998$

Image: "Imaginal Predicts Posterior Parietal $r = .998$"

30. Mitchell, AAAI 2002

[Anderson, Qin, & Sohn, 2002]
4CAPS Model of Language Processing

[Just, et al., 2002]
Figure 5. Human reading time (diamonds) and 4CAPS predictions (purple squares)
The player was followed by the parent.

[Just, et al., 2002]
4CAPS Prediction of fMRI Activity

Figure 10: Model prediction of CU in 4CAPS comprehension model components.
Semantic Word Category Experiment

- Animal (4 legged, fish)
- Nature (trees, flowers)
- Food (fruits, vegetables)
- People (family members, occupations)
- Artifact (tools, kitchen items)
- Building (human dwellings, parts of buildings)
Is Word from Category i or j?

- Learn fMRI(t) → word-category(t)
 - Single subject
 - Classify based on single time instant
 - 2592 voxels used
 - Train on all category pairs (six categories total)

- Training method:
 - Gaussian Naïve Bayes classifier
 - P(fMRI | word-category)
Accuracy Detecting Word Semantics from Single fMRI Snapshot

1. Animal-Nature 83
2. Animal-Food 85
3. Animal-People 64
4. Animal-Artifact 62
5. Animal-Building
6. Nature-Food 86
7. Nature-People 72
8. Nature-Artifact 78
9. Nature-Building
10. Food-People 80
11. Food-Artifact 62
12. Food-Building 55
13. People-Artifact 71
14. People-Building 53
15. Artifact-Building 77

(subject5886, Gaussian Bayes classifier)

37. Mitchell, AAAI 2002
Learned Bayes Models - Means
\[P(\text{BrainActivity} \mid \text{WordCategory} = \text{People}) \]
Learned Bayes Models - Means
\(P(\text{BrainActivity} \mid \text{WordClass}) \)

Accuracy: 85%

Animal words

People words
New instrumentation enables scientific revolutions - Kuhn

• Virtual sensors of mental state
 – semantic word category
 – garden path versus standard sentence
 – examining picture versus sentence
 – rat’s location belief state

• In future publish virtual sensors for broad use?
• See Dartmouth fMRI data repository
Challenge: virtual sensors to track sequence of cognitive states

\[a=6, \ldots \ 3x+a=2 \]

\begin{itemize}
 \item recall correct
 \item transform correct
 \item recall error
 \item transform error
 \item answer
 \item read problem
\end{itemize}

\[\text{time} \rightarrow \]

\[\ldots \]
fMRI Clues for Cognitive Architectures

- Most of the time, most of brain is idling
- Functions are not strictly local, but distributed
- Greater task difficulty results in recruiting more cortical regions (e.g., bilaterally)
- Greater task difficulty can result in greater synchronization among cortical regions
- Learning typically results in decreased activity, but often increased synchronization
AI: Impact on Brain Sciences

• AI will provide key computational concepts
 – Algorithms
 – Representations
 – Theoretical results

• Machine learning methods will add
 – virtual “mental state” sensors
 – and more: info bottleneck codes, ICA, HMM’s,…

• The final theory of brain function will be an AI program!
Brain Sciences: Likely Impact on AI

• Won’t soon reveal detailed brain algorithms
• Will reveal decomposition of cognitive tasks
 – substages in object recognition
 – location and orientation represented separately
• Organizational principles of the brain
 – Population codes
 – One learning mechanism, or many?
• New issues for AI
 – Forgetting, attention, motivation, habituation,…
FDA approves expanded use of brain implant for Parkinson's disease

FDA today approved an expanded use of a brain implant to help control some symptoms of advanced Parkinson's disease.

The device, a deep brain stimulator, made by Medtronic, Inc., of Minneapolis, Minn., was initially approved by FDA in 1997 for use in one side of the brain to help control tremors on one side of the body.

Today, after review of additional studies conducted by the manufacturer, the agency approved the device, called the Activa Parkinson's Control System, for use in both sides of the brain to help reduce some of the other symptoms of advanced Parkinson's that cannot be adequately controlled with medication.

An estimated 1.5 million Americans have Parkinson's disease, which results in tremors, rigidity, postural instability, slowness and difficulty moving and, in some people, intellectual deterioration.

The Activa system consists of electrodes that are implanted into the brain and connected by leads (wires) under the skin to a pulse generator implanted in the abdomen or chest. The pulse generator sends a constant stream of tiny electrical pulses to the brain, blocking tremors. When the device is implanted in both sides of the brain, two separate systems are used.

To turn the stimulator on and off, the patient holds a magnet over the pulse generator. The generator must be replaced every three to five years, the life of the battery.

FDA based approval of the device on a clinical study conducted by Medtronic of the system's safety and effectiveness when implanted in both sides of the brain and on the recommendation of the Neurological Devices Panel of FDA's Medical Devices Advisory Committee.

Some 160 patients with advanced Parkinson's disease were enrolled at 18 medical centers in the United States, Canada, Australia and Europe. The device was implanted bilaterally in 134 patients. The implant procedures were done simultaneously or in stages. The patients were followed
AI → Brain Sciences

Constraint satisfaction
Probabilistic reasoning
Planning
Multiagent systems
Knowledge based methods

Spatial representations
Learning
Vision
Language

Hebbian learning
Population codes
Emotion
Attention
Memory and forgetting
Motivation
Habituation

46. Mitchell, AAAI 2002
Thank You!

- John Anderson
- Peter Bandettini
- Bruce Buchanan
- Pat Carpenter
- Rich Caruana
- Bill Eddy
- Marcel Just
- Jay McClelland
- Joan Mitchell

- Jack Mostow
- Stefan Niculescu
- Francisco Pereira
- Tomaso Poggio
- Yulin Qin
- Sebastian Thrun
- David Touretzky
- Manuela Veloso