Machine Learning 10-701

Tom M. Mitchell Machine Learning Department Carnegie Mellon University

March 15, 2011

Today:

- Computational Learning Theory
- Mistake bounds

Recommended reading:

- Mitchell: Ch. 7
- suggested exercises: 7.1, 7.2, 7.7

Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:

- Probability of successful learning
- Number of training examples
- Complexity of hypothesis space
- Accuracy to which target function is approximated
- Manner in which training examples presented

* see Annual Conference on Learning Theory (COLT)

Mistake Bounds

So far: how many examples needed to learn?

What about: how many mistakes before convergence?

Let's consider similar setting to PAC learning:

- Instances drawn at random from X according to distribution $\mathcal{D} \subset \mathcal{P}(X)$
- Learner must classify each instance before receiving correct classification from teacher
- Can we bound the number of mistakes learner makes before converging?

Mistake Bounds: Find-S $x = \langle x_1, x_2, \dots x_n \rangle$ (\$\int \{0, i\}\)

e.g. $h = (x_2 - 1) h(x_1 - 0) f(x_1 - 0)$

Consider Find-S when H = conjunction of boolean literals

FIND-S:

- Initialize h to the most specific hypothesis $l_1 \wedge \neg \not l_1 \wedge l_2 \wedge \neg \not l_2 \dots \not h \wedge \neg l_n$
- \bullet For each positive training instance x
 - -Remove from h any literal that is not satisfied by x
- \bullet Output hypothesis h.

Start with 2n lits.

MI stake 1: remove n

= first + example

MI stake 2: remove 1 or

more

L:

L:

I

How many mistakes before converging to correct $h? \leq N+1$

Optimal Mistake Bounds

Let $M_A(C)$ be the max number of mistakes made by algorithm A to learn concepts in C. (maximum over all possible $c \in C$, and all possible training sequences)

$$M_A(C) \equiv \max_{c \in C} M_A(c)$$

Definition: Let C be an arbitrary non-empty concept class. The optimal mistake bound for C, denoted Opt(C), is the minimum over all possible learning algorithms A of $M_A(C)$.

$$Opt(C) \equiv \min_{A \in learning\ algorithms} M_A(C)$$

$$(VC(C)) \le Opt(C) \le M_{Halving}(C) \le log_2(|C|).$$

Weighted Majority Algorithm

 a_i denotes the i^{th} prediction algorithm in the pool A of algorithms. w_i denotes the weight associated with

- For all i initialize $w_i \leftarrow 1$ For each training example $\langle x, c(x) \rangle$
 - * Initialize q_0 and q_1 to 0
 - * For each prediction algorithm a_i
 - · If $a_i(x) = 0$ then $q_0 \leftarrow q_0 + w_i$ If $a_i(x) = 1$ then $q_1 \leftarrow q_1 + w_i$
 - * If $q_1 > q_0$ then predict $c(x) = 1 \nu$
 - If $q_0 > q_1$ then predict c(x) = 0If $q_1 = q_0$ then predict 0 or 1 at random for
 - * For each prediction algorithm a_i in A do If $a_i(x) \neq c(x)$ then $w_i \leftarrow \beta w_i$

when $\beta=0$, equivalent to the Halving algorithm...

B = 0.5

What You Should Know

- · Sample complexity varies with the learning setting
 - Learner actively queries trainer
 - Examples arrive at random
 - **–** ..
- Within the PAC learning setting, we can bound the probability that learner will output hypothesis with given error
 - For ANY consistent learner (case where $c \in H$)
 - For ANY "best fit" hypothesis (agnostic learning, where perhaps c not in H)
- · VC dimension as measure of complexity of H
- Mistake bounds
- Conference on Learning Theory: http://www.learningtheory.org
- · Avrim Blum's course on Machine Learning Theory:
 - http://www.cs.cmu.edu/~avrim/ML09/index.html