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VC dimension

PAC results as quantitative
model of overfitting

Recommended reading:

¢ Mitchell: Ch. 7

* suggested exercises: 7.1,
72,77

What it means

[Haussler, 1988]: probability that the version space is not e-exhausted

after m training examples is at most |Hle™ ™

—

Pr{(3h € H)s.t.(erroryqin(h) = 0)A(errorirye(h) > €)] < |H|e™ ™

!

Suppose we want this probability to be at most 6

1. How many training examples suffice?

m > (I [H| + In(1/6))

2. If erroryyqin(h) = 0O then with probability at least (1-9):

errorirye(h) < %(In |H| 4+ In(1/6))




PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a
learner L using hypothesis space H.

Definition: C' is PAC-learnable by L using
H if for all ¢ € C, distributions D over X, €
such that 0 < € < 1/2, and ¢ such that
0<d<1/2,

learner L will with probability at least (1 — 4)
output a hypothesis h € H such that
errorp(h) < e, in time that is polynomial in
1/e, 1/4, n and size(c).
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. processing per
output a hypothesis h € H such that example is polynomial

errorp(h) < e, in time that is polynomial in
1/e, 1/6, n and size(c).




m > =(n |H| +1n(1/5))

Question: If H={h | h: X = Y} is infinite,
what measure of complexity should we
use in place of [H| ?
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what measure of complexity should we
use in place of |H| ?

Answer: The largest subset of X for which H can guarantee
zero training error (regardless of the target function c)




m > =(n |H| +1n(1/5))

Question: If H={h | h: X = Y} is infinite,
what measure of complexity should we
use in place of [H| ?

Answer: The largest subset of X for which H can guarantee
zero training error (regardless of the target function c)

VC dimension of H is the size of this subset

Question: If H={h | h: X = Y} is infinite,
what measure of complexity should we
use in place of |[H| ?

Answer: The largest subset of X for which H can guarantee
zero training error (regardless of the target function c)

Informal intuition: » H




Shattering a Set of Instances

a labeling of each

. . . member of S as
Definition: a dichotomy of a set S'is a positive or negative

partition of S into two disjoint subsets.

Definition: a set of instances S is shattered
by hypothesis space H if and only if for every
dichotomy of S there exists some hypothesis
in H consistent with this dichotomy.
Instance space X H




The Vapnik-Chervonenkis Dimen-
sion

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = oc.

Instance space X

VC(H)=3

Sample Complexity based on VC dimension

How many randomly drawn examples suffice to e-exhaust
VS, p with probability at least (1-8)?

ie., to guarantee that any hypothesis that perfectly fits the
training data is probably (1-8) approximately (g) correct

1
m > —(41092(2/6) H8V L (H) 10g2(13/€))
€ —C N
Compare to our earlier results based on |H|:

1
m 2 Z(n(1/6) +(n 1)




VC dimension: examples
Consider X =[R, want to learn c:X->{0,1} 0

!
What is VC dimension of & o TX

+ Open intervals: L © .
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VC dimension: examples

Consider X = <, want to learn c:X->{0,1}
What is VC dimension of o o X
* Open intervals:

H1l: ifx >a then y =1 else y =

VC(H1)=1

H2: if x >a then y =1 else y

0
0 VC(H2)=2
or, ifx>atheny=0else y=1

* Closed intervals:
H3: ifa<z<btheny=1else y=0 VC(H3)=2

H4: ifa<z<btheny=1else y=0 VC(H4)=3
or, i fa<z<btheny=O0elsey=1




VC dimension: examples
Xz R

What is VC dimension of lines in a plane?
© Hy={((wy+wix; + Wyx,)>0 2> y=1) } Vez3

VC dimension: examples

What is VC dimension of
* Hy={((wo+wWx; +W,x,)>0 > y=1)}
— VC(H,)=3

* For H, = linear separating hyperplanes in n dimensions,
VC(H,)=n+1




For any finite hypothesis space H, can you
give an upper bound on VC(H) in terms of |H| ?

(hint: yes)
Ve () =k
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Can you give an upper bound on VC(H) in
terms of |H|, for any hypothesis space H?

(hint: yes)
V(W) = o5 [1]
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More VC Dimension Examples to Think About

* Logistic regression over n continuous features
— Over n boolean features?

* Linear SVM over n continuous features

» Decision trees defined over n boolean features
Fi<X,, .. X>>Y

» Decision trees of depth 2 defined over n features

* How about 1-nearest neighbor?

Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the
training data perfectly is probably (1-8) approximately (&) correct?

m > 2(41095(2/8) + 8VC(H) loga(13/¢))

How tight is this bound?
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Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the
training data perfectly is probably (1-0) approximately (¢) correct?

m > L(4109(2/6) + 8V C(H) 1095(13/¢))
€
How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that VC(C) > 1, any learner L,
any 0 <€ < 1/8,and any 0 < § <0.01. Then there exists a distribution D
and a target concept in C, such that if L observes fewer examples than
ve(e) -1

1
max |—log(1/6),
; a(1/9) 3¢

Then with probability at least 8, L outputs a hypothesis with errorp(h) > €

Agnostic Learning: VC Bounds <
[Schélkopf and Smola, 2002]

With probability at least (1-0) every h € H satisfies

VC(H)Y(In 2™ 4+ 1)+ In%
erTOTtrain(h){ ( )( VC(H) ) >
m

errm“tme'/(h)
-
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Structural Risk Minimization .

Which hypothesis space should we choose?
+ Bias / variance tradeoff

o Hs

SRM: choose H to minimize bound on expected true error!

VCH)(In g2 <+ 1) +1In%
errorirye(h) < errortmm(h)—l—\J ()( VC(H) ) b

m

* unfortunately a somewhat loose bound...

PAC Learning: What You Should Know

* PAC learning: Probably (1-6) Approximately (error €) Correct
* Problem setting

 Finite H, perfectly consistent learner result /
« |If target function is not in H, agnostic Iearning’/
» If |H| = «», use VC dimension to characterize H ~

* Most important:
— Sample complexity grows with complexity of H
— Quantitative characterization of overfitting

* Much more: see Prof. Blum'’s course on Computational
Learning Theory
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