Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

March 1, 2011

Today:

- Computational Learning Theory
- VC dimension
- PAC results as quantitative model of overfitting

Recommended reading:

- Mitchell: Ch. 7
- suggested exercises: 7.1, 7.2, 7.7

What it means

[Haussler, 1988]: probability that the version space is not ϵ -exhausted after m training examples is at most $|H|e^{-\epsilon m}$

$$\frac{\Pr[(\exists h \in H) s.t.(error_{train}(h) = 0) \land (error_{true}(h) > \epsilon)]}{\uparrow} \leq |H|e^{-\epsilon m}$$

Suppose we want this probability to be at most δ

1. How many training examples suffice?

$$m \geq \frac{1}{\epsilon} (\ln|H| + \ln(1/\delta))$$

2. If $error_{train}(h) = 0$ then with probability at least (1- δ):

$$error_{true}(h) \le \frac{1}{m}(\ln|H| + \ln(1/\delta))$$

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 \not - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

Sufficient condition:

Holds if learner L requires only a polynomial number of training examples, and processing per example is polynomial

$$m \geq \frac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H|?

$$m \geq \frac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H|?

Answer: The largest subset of X for which H can <u>guarantee</u> zero training error (regardless of the target function c)

$$m \geq \frac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H|?

Answer: The largest subset of X for which H can <u>guarantee</u> zero training error (regardless of the target function c)

VC dimension of H is the size of this subset

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H|?

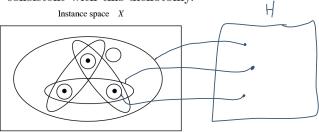
Answer: The largest subset of X for which H can <u>guarantee</u> zero training error (regardless of the target function c)

Shattering a Set of Instances

Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets.

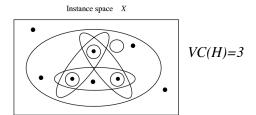
a labeling of each member of S as positive or negative

Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.



The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.



Sample Complexity based on VC dimension

How many randomly drawn examples suffice to ϵ -exhaust VS_{H,D} with probability at least (1- δ)?

ie., to guarantee that any hypothesis that perfectly fits the training data is probably $(1-\delta)$ approximately (ϵ) correct

$$m \geq \frac{1}{\epsilon} (4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon))$$

Compare to our earlier results based on |H|:

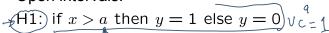
$$m \ge \frac{1}{\epsilon} (\underbrace{\ln(1/\delta) + (\ln|H|)}$$

VC dimension: examples

Consider $X = \mathbb{R}$, want to learn c:X \rightarrow {0,1}

What is VC dimension of

Open intervals:



1

Closed intervals:

$$(H3:) \text{ if } a < x < b \text{ then } y = 1 \text{ else } y = 0$$

VC dimension: examples

Consider X = <, want to learn $c:X \rightarrow \{0,1\}$

What is VC dimension of

VC=2

Open intervals:

H1: if
$$x > a$$
 then $y = 1$ else $y = 0$ VC(H1)=1

H2: if
$$x > a$$
 then $y = 1$ else $y = 0$ or, if $x > a$ then $y = 0$ else $y = 1$

Closed intervals:

H3: if
$$a < x < b$$
 then $y = 1$ else $y = 0$ VC(H3)=2

H4: if
$$a < x < b$$
 then $y = 1$ else $y = 0$ VC(H4)=3 or, if $a < x < b$ then $y = 0$ else $y = 1$

VC dimension: examples

What is VC dimension of lines in a plane?

• $H_2 = \{ ((w_0 + w_1x_1 + w_2x_2) > 0 \rightarrow y=1) \}$

VC dimension: examples

What is VC dimension of

- $H_2 = \{ ((w_0 + w_1x_1 + w_2x_2) > 0 \rightarrow y=1) \}$ - $VC(H_2)=3$
- For H_n = linear separating hyperplanes in n dimensions, $VC(H_n)$ =n+1

For any finite hypothesis space H, can you give an upper bound on VC(H) in terms of |H|?

(hint: yes)

Can you give an upper bound on VC(H) in terms of |H|, for any hypothesis space H? (hint: yes)

$$VC(H)=K$$

$$|og|H|$$

$$|og|H|$$

$$|abelies of them$$

$$|H|=2^{k}$$

$$|x|=k \leq |og_{2}|H|$$

More VC Dimension Examples to Think About

- Logistic regression over n continuous features
 - Over n boolean features?
- Linear SVM over n continuous features
- Decision trees defined over n boolean features
 F: <X₁, ... X_n> → Y
- Decision trees of depth 2 defined over n features
- · How about 1-nearest neighbor?

Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the training data perfectly is probably $(1-\delta)$ approximately (ε) correct?

$$\underbrace{m \geq \frac{1}{\epsilon} (4\log_2(2/\delta) + 8VC(H)\log_2(13/\epsilon))}$$

How tight is this bound?

Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the training data perfectly is probably $(1-\delta)$ approximately (ε) correct?

$$m \ge \frac{1}{\epsilon} (4\log_2(2/\delta) + 8VC(H)\log_2(13/\epsilon))$$

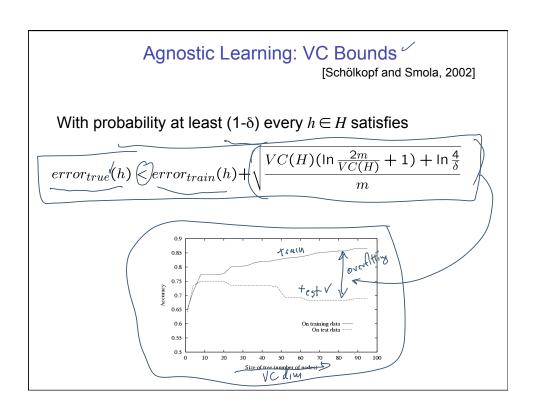
How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that VC(C) > 1, any learner L, any $0 < \epsilon < 1/8$, and any $0 < \delta < 0.01$. Then there exists a distribution $\mathcal D$ and a target concept in C, such that if L observes fewer examples than

$$\max\left[\frac{1}{\epsilon}\log(1/\delta), \frac{VC(C)-1}{32\epsilon}\right]$$

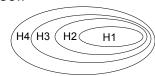
Then with probability at least δ , L outputs a hypothesis with $error_{\mathcal{D}}(h) > \epsilon$



Structural Risk Minimization [Vapnik]

Which hypothesis space should we choose?

· Bias / variance tradeoff



SRM: choose H to minimize bound on expected true error!

$$error_{true}(h) < error_{train}(h) + \sqrt{\frac{VC(H)(\ln{\frac{2m}{VC(H)}} + 1) + \ln{\frac{4}{\delta}}}{m}}$$

* unfortunately a somewhat loose bound...

PAC Learning: What You Should Know

- PAC learning: Probably (1-δ) Approximately (error ε) Correct
- · Problem setting
- Finite H, perfectly consistent learner result \(\vec{\psi} \)
- If target function is not in H, agnostic learning
- If |H| = ∞ , use VC dimension to characterize H
- Most important:
 - Sample complexity grows with complexity of H
 - Quantitative characterization of overfitting
- Much more: see Prof. Blum's course on Computational Learning Theory