Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

February 24, 2011

Today:

- Computational Learning Theory
- PAC learning theorem
- · VC dimension

Recommended reading:

- Mitchell: Ch. 7
- suggested exercises: 7.1, 7.2, 7.7

Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:

- Probability of successful learning
- Number of training examples
- Complexity of hypothesis space
- Accuracy to which target function is approximated
- Manner in which training examples presented

* see Annual Conference on Learning Theory (COLT)

Sample Complexity

How many training examples are sufficient to learn the target concept?

Target concept is the boolean-valued fn to be learned c: $X \rightarrow \{0,1\}$

- ${\bf 1.} \ {\bf If} \ {\bf learner} \ {\bf proposes} \ {\bf instances}, \ {\bf as} \ {\bf queries} \ {\bf to} \\ {\bf teacher}$
 - Learner proposes instance x, teacher provides c(x)
- 2. If teacher (who knows c) provides training examples
 - teacher provides sequence of examples of form $\langle x, c(x) \rangle$
- 3. If some random process (e.g., nature) proposes instances
 - instance x generated randomly, teacher provides c(x)

Sample Complexity: 3

Given:

- \bullet set of instances X
- \bullet set of hypotheses H
- set of possible target concepts $C = \{c: X \Rightarrow \{0,13\}\}$ training incts
- \bullet training instances generated by a fixed, unknown probability distribution \mathcal{D} over X

Learner observes a sequence D of training examples of form $\langle x, c(x) \rangle$, for some target concept $c \in C$

- \bullet instances x are drawn from distribution \mathcal{D}
- \bullet teacher provides target value c(x) for each

Learner must output a hypothesis h estimating c

 \bullet h is evaluated by its performance on subsequent instances drawn according to \mathcal{D}

Note: randomly drawn instances, noise-free classifications

True Error of a Hypothesis

Definition: The true error (denoted $error_{\mathcal{D}}(h)$) of hypothesis h with respect to target concept c and distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D} .

$$error_{\mathcal{D}}(h) \equiv \Pr_{\boldsymbol{x} \in \mathcal{D}}[c(\boldsymbol{x}) \neq h(\boldsymbol{x})]$$

Two Notions of Error

Training error of hypothesis h with respect to target concept c

• How often $h(x) \neq c(x)$ over training instances D

$$error_{\mathsf{D}}(h) \equiv \Pr_{x \in \mathsf{D}}[c(x) \neq h(x)] \equiv \frac{\sum_{x \in \mathsf{D}} \delta(c(x) \neq h(x))}{|\mathsf{D}|}$$

True error of hypothesis h with respect to c

training examples

• How often $h(x) \neq c(x)$ over future instances drawn at random from \mathcal{D}

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$

Probability distribution P(x)

Two Notions of Error

Training error of hypothesis h with respect to target concept c

• How often $h(x) \neq c(x)$ over training instances D

Can we bound $error_{\mathcal{D}}(h)$

in terms of $error_{D}(h)$

??

$$error_{\mathsf{D}}(h) \equiv \Pr_{x \in \mathsf{D}}[c(x) \neq h(x)] \equiv \frac{\sum_{x \in \mathsf{D}} \delta(c(x) \neq h(x))}{|\mathsf{D}|}$$

True error of hypothesis h with respect to c

training examples

• How often $h(x) \neq c(x)$ over future instances drawn at random from \mathcal{D}

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$

Probability distribution P(x)

$$error_{\mathsf{D}}(h) \equiv \Pr_{x \in \mathsf{D}}[c(x) \neq h(x)] \equiv \frac{\sum_{x \in \mathsf{D}} \delta(c(x) \neq h(x))}{|\mathsf{D}|}$$

training examples Can we bound $error_{\mathcal{D}}(h)$ the in terms of errorD(h) train

??

Acst

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$

Probability distribution P(x)

if D was a set of examples drawn from \mathcal{D} and <u>independent</u> of h, then we could use standard statistical confidence intervals to determine that with 95% probability, $error_{\mathcal{D}}(h)$ lies in the interval/

$$error_{D}(h) \pm 1.96 \sqrt{\frac{error_{D}(h)(1 - error_{D}(h))}{n}}$$

but D is the training data for h

Version Spaces

 $c: X \to \{0,1\}$

A hypothesis h is **consistent** with a set of training examples D of target concept c if and only if h(x) = c(x) for each training example $\langle x, c(x) \rangle$ in D.

 $Consistent(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) \ h(x) = c(x)$

The **version space**, $VS_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.

 $VS_{H,D} \equiv \{h \in H | Consistent(h, D)\}$

(r = training error, error = true error)

Exhausting the Version Space

error=.3

Definition: The version space $VS_{H,D}$ is said to be ϵ -exhausted with respect to c and \mathcal{D} , if every hypothesis h in $VS_{H,D}$ has true error less than ϵ with respect to c and \mathcal{D} .

 $(\forall h \in VS_{H,D}) \ error_{\mathcal{D}}(h) < \epsilon$

How many examples will ϵ -exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a sequence of $m \geq 1$ independent random examples of some target concept c, then for any $0 \leq \epsilon \leq 1$, the probability that the version space with respect to H and D is not ϵ -exhausted (with respect to c) is less than

 $|H|e^{-\epsilon m}$

How many examples will ϵ -exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a sequence of $m \geq 1$ independent random examples of some target concept c, then for any $0 \leq \epsilon \leq 1$, the probability that the version space with respect to H and D is not ϵ -exhausted (with respect to C) is less than

 $|H|e^{-\epsilon m}$

Interesting! This bounds the probability that any consistent learner will output a hypothesis h with $error(h) \ge \epsilon$

Any(!) learner that outputs a hypothesis consistent with all training examples (i.e., an h contained in VS_{H,D})

hyp space H

14 h, ... h, be the hyps hell with five evor
$$\geq \epsilon$$

14 stances \times

for $c: \times \Rightarrow \{0,1\}$

Multiplied examps

Evitor tolerance ϵ

Prob that h, will be consistent with first training example

$$\leq (1-\epsilon)$$

11 h, will be cons. $w \mid m$ indep drawn examps?

$$\leq (1-\epsilon)^m$$

11 that at least of $h_1 \cdots h_{1c}$ will be consist $w \mid m$ if $0 \leq \epsilon \leq 1-\epsilon$

$$\leq |H| (1-\epsilon)^m$$

$$\leq |H| (1-\epsilon)^m$$

Then $|I-\epsilon| \leq \epsilon$

What it means

[Haussler, 1988]: probability that the version space is not ϵ -exhausted after m training examples is at most $|H|e^{-\epsilon m}$

$$\frac{\Pr[(\exists h \in H) s.t.(error_{train}(h) = 0) \land (error_{true}(h) > \epsilon)]}{\uparrow} \le |H|e^{-\epsilon m}$$

Suppose we want this probability to be at most δ

1. How many training examples suffice?

$$m \geq rac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

2. If $error_{train}(h) = 0$ then with probability at least (1- δ):

$$error_{true}(h) \le \frac{1}{m}(\ln|H| + \ln(1/\delta))$$

Example: H is Conjunction of Boolean Literals

Consider classification problem f:X→Y:

- instances: $X = \langle X_1 X_2 X_3 X_4 \rangle$ where each X_i is boolean
- learned hypotheses are rules of the form:

$$-(IF < X_1 X_2 X_3 X_4 > = < 0.2, 1.2 >)$$
, THEN, Y=1, ELSE Y=0

- i.e., rules constrain any subset of the X_i

How many training examples <u>m</u> suffice to assure that with probability at least 0.99, <u>any</u> consistent learner will output a hypothesis with true

error at most 0.05?

$$M \ge \frac{1}{.05} \left(\ln \left| H \right| + \ln \left(\frac{1}{.01} \right) \right)$$
 $N = 4 \Rightarrow m \ge 180 = 34$
 $N = 10 \ge 312$
 $N = 100 \ge 3290$

Example: H is Decision Tree with depth=2

Consider classification problem f:X→Y:

 $m \ge \frac{1}{\epsilon} (\ln |H| + \ln(1/\delta))$

- instances: $X = \langle X_1 \dots X_N \rangle$ where each X_i is boolean
- learned hypotheses are decision trees of depth 2, using only two variables

How many training examples m suffice to assure that with probability at least 0.99, any consistent learner will output a hypothesis with true error at most 0.05?

$$M > \frac{1}{0.05} \left(\left| n \left(8N^{\frac{3}{2}} 8N \right) + \left| n \left(\frac{1}{0.01} \right) \right| \right)$$

$$N = 4 \qquad M > 184$$

$$N = 10 \qquad M > 24$$

$$N = 10 \qquad M > 318$$

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1/\epsilon)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

Sufficient condition:

Holds if learner L requires only a polynomial number of training examples, and processing per example is polynomial

Agnostic Learning

So far, assumed $c \in H$

Agnostic learning setting: don't assume $c \in H$

- What do we want then?
 - The hypothesis h that makes fewest errors on training data

note & here is the difference between the training error and true error

• What is sample complexity in this case?

derived from Hoeffding bounds:

$$Pr[error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h) + \epsilon] \leq e^{-2m\epsilon^2}$$
 true error training error degree of overfitting

Additive Hoeffding Bounds – Agnostic Learning

• Given m independent coin flips of coin with true Pr(heads) = θ bound the error in the maximum likelihood estimate $\widehat{\theta}$

$$\Pr[\theta > \hat{\theta} + \epsilon] \le e^{-2m\epsilon^2}$$

• Relevance to agnostic learning: for any \underline{single} hypothesis h

$$\Pr[error_{true}(h) > error_{train}(h) + \epsilon] \le e^{-2m\epsilon^2}$$

· But we must consider all hypotheses in H

$$\Pr[(\exists h \in H)error_{true}(h) > error_{train}(h) + \epsilon] \le |H|e^{-2m\epsilon^2}$$

So, with probability at least (1-δ) every h satisfies

$$error_{true}(h) \le error_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$$

General Hoeffding Bounds

• When estimating parameter θ inside [a,b] from m examples

$$P(|\hat{\theta} - E[\hat{\theta}]| > \epsilon) \le 2e^{\frac{-2m\epsilon^2}{(b-a)^2}}$$

• When estimating a probability θ is inside [0,1], so

$$P(|\hat{\theta} - E[\hat{\theta}]| > \epsilon) \le 2e^{-2m\epsilon^2}$$

· And if we're interested in only one-sided error, then

$$P((E[\hat{\theta}] - \hat{\theta}) > \epsilon) \le e^{-2m\epsilon^2}$$

$$m \geq rac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

Question: If H = {h | h: X → Y} is infinite, what measure of complexity should we use in place of |H|?

$$m \geq \frac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H|?

Answer: The largest subset of X for which H can <u>guarantee</u> zero training error (regardless of the target function c)