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Today: Recommended reading:
+ Computational Learning * Mitchell: Ch. 7

Theory  suggested exercises: 7.1,
» PAC learning theorem 72,77
» VC dimension

Computational Learning Theory

What general laws constrain inductive learning?
We seek theory to relate:

e Probability of successful learning

e Number of training examples

e Complexity of hypothesis space

e Accuracy to which target function is
approximated

e Manner in which training examples presented

* see Annual Conference on Learning Theory (COLT)




Sample Complexity

How many training examples are sufficient to learn
the target concept?

Target concept is 1. If learner proposes instances, as queries to
the boolean-valued teacher

fn to be learned
¢ X > {01 \ Learner proposes instance z, teacher provides
' ' c(z)

2. If teacher (who knows ¢) provides training
examples

e teacher provides sequence of examples of form
(z,c())
3. If some random process (e.g., nature) proposes
instances

e instance x generated randomly, teacher
provides ¢(x)

Function Approximation: The Bingicture
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Sample Complexity: 3

Given:
e set of instances X

e set of hypotheses H

c - zc:)ﬁ»éio’{\'s}

e training instances generated by a fixed, unknown

probability distribution D over X EOQ
— L

Learner observes a sequence D of training examples
of form (z,¢(x)), for some target concept ¢ € C'

e set of possible target concepts

e instances x are drawn from distribution D
e teacher provides target value ¢(x) for each

Learner must output a hy;ﬁthesis h estimating ¢

e h is evaluated by its performance on subsequent
instances drawn according to D

Note: randomly drawn instances, noise-free
classifications

True Error of a Hypothesis

Instance space X P(X)=D

Where ¢
and h disagree

Definition: The true error (denoted
errorp(h)) of hypothesis h with respect to
target concept ¢ and distribution D is the
probability that ~ will misclassify an instance
drawn at random according to D.

errorp(h) = E%[c(x) # h(z)]




Two Notions of Error

Training error of hypothesis h with respect to
target concept ¢
e How often h(x) # ¢(z) over training instances D

XgeD 8(c(x) # h(z))

errorp(h) = xFe’E)[c(:r) # h(z)] = D]
\
training
True error of hypothesis h with respect to ¢ examples

e How often h(z) # c(zx) over future instances
drawn at random from D

Probability
distribution
P(x)

errorp(h) = llZg[c(x) # h(z)]

Two Notions of Error
Can we bound
errorp(h):
Training error of hypothesis h with respect to in terms of
target concept c¢ errorp(h)&
e How often h(x) # c¢(x) over training instances D ??

YgeD 8(c(@) # h(z))
D]

errorp(h) = Pr [c(z) # h(z)] =
zeD
\
training
True error of hypothesis h with respect to ¢ examples

e How often h(z) # c¢(x) over future instances
drawn at random from D

Probability
distribution
P(x)

errorp(h) = E%[C(I) # h(z)]




YgeD 0(c(@) # h(z))

errorp(h) = wIZII’D[c(a:) # h(z)] =

\

D

training
examples

errorp(h) = llZg[c(:c) # h(z)]

Probability
distribution

P(x)

Can we bound
errorp(h) Ane.

in terms of .
errorp(h) A

2?

if D was a set of examples drawn from D and independent of h,
then we could use standard statistical confidence intervals to
determine that with 95% probability, errorp(h) lies in the intepval;

n

h)(1 — er h
@D(h‘) N 1.96\ errorp(h) ( errorp(h))

but D is the training data for h ....

Version Spaces

A hypothesis h is consistent

training examples D of target concept ¢ if and
only if h(z) = ¢(x) for each training example

(z,c(z)) in D.

Consistent(h,D) = (Y{x,c(x)) € D) h(zx) = ¢(x)

The version space, V Sy p, with respect to
hypothesis space H and training examples D,
is the subset of hypotheses from H consistent

with a set

with all training examples in D.

VSyp={h € H|Consistent(h,D)}

¢ X>{0,1}




Function Approximation: The BibgﬂmPicture
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Exhausting the Version Space

& - nagstel Q~/ E>. 7

Hypothesis space H

error=.3
r=4

error=.2
r=.

(r = training error, error = true error)
— 0

Definition: The version space V Sy p is said
to be e-exhausted with respect to ¢ and D, if
every hypothesis h in V' Sy p has true error less
than e with respect to ¢ and D.

(Vh € VSy p) errorp(h) < €




How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < € < 1, the probability that the
version space with respect to H and D is not
e-exhausted (with respect to ¢) is less than

|H|e—€771

How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < e <1, the probability that the
version space with respect to H and D is not
e-exhausted (with respect to c) is less than

|H|e—€"l

Interesting! This bounds the probability that any
consistent learner will output a hypothesis h with
error(h) > €

Any(!) learner
that outputs

a hypothesis
consistent
with all
training
examples (i.e.,
an h
contained in
VSyp)
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What it means

[Haussler, 1988]: probability that the version space is not e-exhausted
after m training examples is at most |Hle™ ™

Pr{(3h € H)s.t.(erroryqin(h) = 0)A(errorirye(h) > €)] < |H|e™ ™

!

Suppose we want this probability to be at most 6

1. How many training examples suffice?
1
m > =(In|H| + In(1/6))
€
2. If erroryyqin(h) = 0O then with probability at least (1-9):

errorirye(h) < %(In |H| 4+ In(1/6))




Example: H is Conjunction of Boolean L iterals
Consider classification problem f:X->Y: M
* instances: X = <X, X, X; X,> where each ; is boolean
- learned hypotheses are rules of the form:

~\IF <x, X, X, X,> <<02,1.75, THEN,Y=1, ELSE Y=0

— i.e., rules constrain any subset of the X;

How many training examples m suffice to assure that with probability

gt/le_ai(_)ﬂ._gg, any consistent learner will output a hypothesis with true
error at most 0.05? | ~ 0N
R
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—
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Example: H is Decision Tree with depth=2
m> %(ln|H| +1n(1/6))

Consider classification problem f:X->Y:
* instances: X = <X, ... X, where each X;is boolean
» learned hypotheses are decision trees of depth 2, using

only two variables ,7‘,,\/\
’?{}\? <@>‘“" ZM}’ K3,

How many training examples m suffice to assure that with probability
at least 0.99, any consistent learner will output a hypothesis with true

error at most 0.057 [l = sn2-gy
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PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a
learner L using hypothesis space H.

Definition: C' is PAC-learnable by L using
H if for all ¢ € C, distributions D over X, €
such that 0 < € < 1/2, and ¢ such that
0<d<1/2,

learner L will with probability at least (1 — 4)
output a hypothesis h € H such that
errorp(h) < e, in time that is polynomial in
1/e, 1/4, n and size(c).

PAC Learning

Consider a class C of possible target concepts
defined over a set of instances X of length n, and a
learner L using hypothesis space H.

Definition: C is PAC-learnable by L using  Sufficient condition:
H if for all ¢ € C, distributions D over X, € Holds if learner L

such that 0 < e < 1/2, and § such that requires only a
0<d<1/2, polynomial number of
learner L will with probability at least (1 /£ d) il o, G

. processing per
output a hypothesis h € H such that example is polynomial

errorp(h) < e, in time that is polynomial in
1/e, 1/6, n and size(c).
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(Agnostic Learning )

So far, assumed ¢ € H

Agnostic learning setting: don’t assume ¢ € H

e What do we want then?

—/The hypothesis h that fiakes fewest errors on
. training data
note ¢ here is

the difference e What is sample complexity in this case?
between the

training error \ m> %(ln@)-l— In(1/4))

and true error

A,

derived from Hoeffding bounds:

Prlerrorp(h) > errorp(h) + €] < g~ 2me’

/ /N

true error  fraining error degree of overfitting

Additive Hoeffding Bounds — Agnostic Learning

» Given m independent coin flips of coin with true Pr(heads) = 6
bound the error in the maximum likelihood estimate 4

Pri0 > 0 4 €] < e2me’

* Relevance to agnostic learning: for any single hypothesis h

2
Prlerroryue(h) > erroriyqgin(h) + €] < e=2m¢

» But we must consider all hypotheses in H

Pr((3h € H)erroryye(h) > errorirqin(h)+e] < |H|e_2m62

* So, with probability at least (1-8) every h satisfies

In|H|+Ini
eTTOTtT‘ue(h') S eTTOTtrain(h) + @
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General Hoeffding Bounds

*  When estimating parameter 6 inside [a,b] from m examples

—2me2
P10 — E[f]] > €) < 2e(-0)?

* When estimating a probability 6 is inside [0,1], so

P10 — E[0]] > ¢) < 2¢72me”

* And if we're interested in only one-sided error, then

P((E[0] — 0) > €) < e=2m’

m > ~(n|H| +1n(1/5))

Question: If H={h | h: X = Y} is infinite,
what measure of complexity should we
use in place of |H| ?
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m > =(n |H| +1n(1/5))

Question: If H={h | h: X = Y} is infinite,
what measure of complexity should we
use in place of [H| ?

Answer: The largest subset of X for which H can guarantee
zero training error (regardless of the target function c)
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