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Today: Readings:
* The Big Picture Decision trees, overfiting
+ Overfitting * Mitchell, Chapter 3

* Review: probability
Probability review
» Bishop Ch. 1 thru 1.2.3
» Bishop, Ch. 2 thru 2.2

* Andrew Moore’s online
tutorial

Function Approximation: Decision Tree Learning

Problem Setting:
» Set of possible instances X
— each instance x in X is a feature vector
X=<X; Xy ... X,>
» Unknown target function f: X->Y
— Yis discrete valued
» Set of function hypotheses H={ h | h: XY }

— each hypothesis / is a decision tree

Input:

» Training examples {<x(",y>} of unknown target function f
Output:

» Hypothesis i € H that best approximates target function f




Function approximation as Search
for the best hypothesis
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Which Tree Should We Output?

» ID3 performs heuristic
J/ search through space of
}('{ decision trees

* |t stops at smallest
Ef‘\?;/ 5}?\\ acceptable tree. Why?

o . Occam's razor: prefer the
SN T simplest hypothesis that

fits the data

Why Prefer Short Hypotheses? (Occam’s Razor)

Arguments in favor:

Arguments opposed:




Why Prefer Short Hypotheses? (Occam’s Razor)

Argument in favor:
* Fewer short hypotheses than long ones

—> a short hypothesis that fits the data is less likely to be
a statistical coincidence

—> highly probable that a sufficiently complex hypothesis
will fit the data

Argument opposed:

» Also fewer hypotheses containing a prime number of
nodes and attributes beginning with “Z”

* What'’s so special about “short” hypotheses?

Overfitting in Decision Trees

Consider addlng noisy training eximple #15:

[emy
{S’unny, Normal, 9, PlayTennis M

What effect on earher tre

O utlook

Sunny O\ erazst Rain

6% cale
i 5 trong Weuk
/ XD




Overfitting

Consider error of hypothesis h over
e training data: errory.q.i,(h)
e entire distribution D of data: errorp(h)

Hypothesis h € H overfits training data if there is
an alternative hypothesis h' € H such that

erroriain(h) < erroriqin(h')

and
errorp(h) > errorp(h’)

Overfitting in Decision Tree Learning
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Avoiding Overfitting

How can we avoid overfitting?

e stop growing when data split not statistically
significant

e grow full tree, then post-prune

Avoiding Overfitting

How can we avoid overfitting?

e stop growing when data split not statistically
significant

e grow full tree, then post-prune

How to select “best” tree:
e Measure performance over training data

e Measure performance over separate validation
data set

e MDL: minimize
size(tree) + size(misclassifications(tree))




Reduced-Error Pruning

Split data into training and validation set
Create tree that classifies training set correctly
Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning
each possible node (plus those below it)

2. Greedily remove the one that most improves
validation set accuracy

e produces smallest version of most accurate
subtree

e What if data is limited?

Effect of Reduced-Error Pruning
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Rule Post-Pruning

1. Convert tree to equivalent set of rules
2. Prune each rule independently of others

3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)

Converting A Tree to Rules

Sunny Overcast Rain

High Normal Strong Weak

No Yes No Yes




What you should know:

» Well posed function approximation problems:
— Instance space, X
— Sample of labeled training data { <x®, y®>}
— Hypothesis space, H = {f: X>Y}

* Learning is a search/optimization problem over H
— Various objective functions
* minimize training error (0-1 loss)
» among hypotheses that minimize training error, select smallest (?)
— But inductive learning without some bias is futile !

+ Decision tree learning
— Greedy top-down learning of decision trees (ID3, C4.5, ...)
— Overfitting and tree/rule post-pruning
— Extensions...

Extra slides

extensions to decision tree learning




Continuous Valued Attributes

Create a discrete attribute to test continuous
e T'emperature = 82.5

o (Temperature > 72.3) =t, f

Temperature: 40 48 60 72 80 90
PlayTennis: No No Yes Yes Yes No

Attributes with Many Values

Problem:
o If attribute has many values, Gain will select it

e Imagine using Date = Jun_3.1996 as attribute

One approach: use GainRatio instead

' ' Gain(S, A)
GainRatio(S, A) = ’
ainia ZO( ) ) Split[nformatiOTL(S,A)

: : c |Si|, ]Sl
SplitIn formation(S,A) = — X log
(5, 4)= =& g1 o8 g

where S; is subset of S for which A has value v;
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Unknown Attribute Values

What if some examples missing values of A?
Use training example anyway, sort through tree

e If node n tests A, assign most common value of
A among other examples sorted to node n

e assign most common value of A among other
examples with same target value

e assign probability p; to each possible value v; of
A

— assign fraction p; of example to each
descendant in tree

Classify new examples in same fashion

Questions to think about (1)
» ID3 and C4.5 are heuristic algorithms that

search through the space of decision trees.

Why not just do an exhaustive search?

11



Questions to think about (2)

» Consider target function f: <x1,x2> > vy,
where x1 and x2 are real-valued, y is
boolean. What is the set of decision surfaces
describable with decision trees that use each
attribute at most once?

Questions to think about (3)

* Why use Information Gain to select attributes
in decision trees? What other criteria seem
reasonable, and what are the tradeoffs in
making this choice?

12



Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

January 13, 2011

Today:
* Review: probability

many of these slides are
derived from William Cohen
Andrew Moore, Aarti Singh
Eric Xing. Thanks!

Readings:

Probability review
» Bishop Ch. 1 thru 1.2.3
» Bishop, Ch. 2 thru 2.2

* Andrew Moore’s online
tutorial

The Problem of Induction

« David Hume
(1711-1776): pointed
out

1. Empirically, induction
seems to work

2. Statement (1) is an
application of
induction.

« This stumped people
for about 200 years

¥
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BREATISES

SEVERAL SUBJECTS.
By DAVID HUME, Efg;

VOL. IL

coxt
An ENQUIRY
UNDERS
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DING;

A DISSERTATION on the PASSIONS;

An ENQUIRY concerning the PRINCIPLES
of MORALS;

The NATURAL HISTORY of RELIGION.

A NEW EDITION.
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Probability Overview

 Events

— discrete random variables, continuous random variables,
compound events

» Axioms of probability
— What defines a reasonable theory of uncertainty

* Independent events

» Conditional probabilities

» Bayes rule and beliefs

+ Joint probability distribution

* Expectations

* Independence, Conditional independence

Random Variables

Informally, A is a random variable if
— A denotes something about which we are uncertain
— perhaps the outcome of a randomized experiment

Examples
— A =True if a randomly drawn person from our class is female
— A =The hometown of a randomly drawn person from our class
— A = True if two randomly drawn persons from our class have same birthday

Define P(A) as “the fraction of possible worlds in which A is true” or “the
fraction of times A holds, in repeated runs of the random experiment”

— the set of possible worlds is called the sample space, S

— Arandom variable A is a function defined over S

A:S > {0,1)

14



A little formalism

More formally, we have

a sample space S (e.g., set of students in our class)
— aka the set of possible worlds

a random variable is a function defined over the sample
space

— Gender: S > {m, f}

— Height: S > Reals

an event is a subset of S

— e.g., the subset of S for which Gender=f

— e.g., the subset of S for which (Gender=m) AND (eyeColor=blue)

we’re often interested in probabilities of specific events
and of specific events conditioned on other specific events

Visualizing A

Sample space
of all possibte— Worlds in which P(A) = Area of
worlds A true reddish oval

Its area is’l/

Worlds in which A is False

15



The Axioms of Probability

* 0<=PA) <=1

* P(True) =1

+ P(False)=0

* P(AorB)=P(A)+ P(B)

P(A and B

The Axioms of Probability

* 0<=P(A)<=1

* P(True) =1

+ P(False)=0

« P(AorB)=P(A)+P(B)-P(Aand B)

[di Finetti 1931]:

when gambling based on “uncertainty formalism A” you can
be exploited by an opponent

iff

your uncertainty formalism A violates these axioms

16



Interpreting the axioms

<=1

* P(True) =1
* P(False)=0
* P(AorB)=P(A) + P(B) - P(A and B)

And a zero area
would mean no
world could ever
have A true

Interpreting the axioms

e 0O<=

* P(True)=1

* P(False)=0

*+ P(AorB)=P(A) + P(B) - P(A and B)

And an area of 1
would mean all
worlds will have A
true

17



Interpreting the axioms

« 0<=PA)<=1
 P(True)=1
+ P(False)=0

* P(orB)=P()+P(B)-P( andB)

Theorems from the Axioms

* 0<=P(A) <=1, P(True) =1, P(False) =0

« P( orB)=P( )+P(B)-P( andB)

= P(not A) = P(~A) = 1-P(A)

18



Theorems from the Axioms

* 0<=P(A)<=1,P(True) =1, P(False) =0
« P( orB)=P( )+P(B)-P( andB)

> P(not A) = P(~A) = 1-P(A)

P(Aor~A) = 1 P(Aand ~A) =0
P(Aor ~A) = P(A) + P(~A) - P(A and ~A)

|

1 =PA)+P(~A)- 0

Elementary Probability in

Pictures
« P(~A) + P(A) = 1

~A

19



Another useful theorem

* 0<=P(A) <=1, P(True) =1, P(False) = 0,
P( orB)=P( )+P(B)-P( andB)

> P(A) = P(A * B) + P(A " ~B)

A=Aand (B or ~B) = (Aand B) or (A and ~B)

P(A) = P(Aand B) + P(Aand ~B) — P((A and B) and (A and ~B))
c

P(A) = P(Aand B) + P(Aand ~B) - P(Aand A and B and -B)

Elementary Probability in

Pictures
« P(A)=P(A*B)+ P(A"~B)

20



Multivalued Discrete Random
Variables

» Suppose A can take on more than 2 values

* Ais a random variable with arity k if it can take on
exactly one value out of {v,,v,, ... v}

PS4y d=v)=0ifix
P(A=v,vVA=v,v..vA=y )=1

Elementary Probability in
Pictures

iP(A=Vj)=1

A=2

A=4

21



Definition of Conditional
Probability

P(A A B)
P(A|B) = --emrromeev

Corollary: The Chain Rule
P(A~B) = P(A|B) P(B)

Conditional Probability in Pictures

picture: P(B|A=2)

A=2
A=3

A=4

A=1

22



Independent Events
« Definition: two events A and B are
independent if Pr(A and B)=Pr(A)*Pr(B)

* Intuition: knowing A tells us nothing
about the value of B (and vice versa)

Picture “A independent of B”

23



Elementary Probability in
Pictures
* let’s write 2 expressions for P(A * B)

A
A\B

»

\

P(BIA) * P(A) ,
P(A|B) =W Bayes'’ rule

we call P(A) the “prior” £ ;
Bayes, Thomas (1763) An essay
towards solving a problem in the doctrine
and P(AlB) the “posterior” of chances. Philosophical Transactions of
the Royal Society of London, 53:370-418

...by no means merely a curious speculation in the doctrine of chances,
but necessary to be solved in order to a sure foundation for all our
reasonings concerning past facts, and what is likely to be hereafter....
necessary to be considered by any that would give a clear account of the
strength of analogical or inductive reasoning...

24



Other Forms of Bayes Rule

P(B| A)P(A)

PlAB)- P(B| A)P(4) + P(B|~ A)P(~ A)

P(B|ANX)P(ANKX)

PABrX)- P(B A X)

You should know

 Events

— discrete random variables, continuous random variables,
compound events

* Axioms of probability
— What defines a reasonable theory of uncertainty
* Independent events
» Conditional probabilities
+ Bayes rule and beliefs

25



what does all this have to do with
function approximation?

Your first consulting job

" JEE
m A billionaire from the suburbs of Seattle asks
you a question:

He says: | have thumbtack, if | flip it, what’s the
probability it will fall with the nail up?

You say: Please flip it a few times:

~ LR L b

You say: The probability is:
He says: Why???

You say: Because...

26



Thumbtack — Binomial Distribution

" JEE
m P(Heads) =0, P(Tails)=1-0

0L L& LU A
X %9 %

| 7<n_ ><3 >l<'7’ s

m Flips are i.i.d.:
Independent events

Identically distributed according to Binomial
distribution

m Sequence D of o, Heads and o Tails

P(D | 0) = 621 (1 — 0)°T

Maximum Likelihood Estimation
" JEE

m Data: Observed set D of oy Heads and a5 Tails

m Hypothesis: Binomial distribution

m Learning 0 is an optimization problem
What's the objective function?

m MLE: Choose 6 that maximizes the probability of
observed data:

A~

0 = arg m{;ax P(D|0)
= arg mgax In P(D | 0)

27



Maximum Likelihood Estimate for ©
" JEE
) 0 = arg meax In P(D | 0)

= argmgx InO*H(1 — 9)T

m Set derivative to zero: |4 INnP(D|0) =0

" A = Set derivative to zero:

d
— InP(D|0) =0
25 InP(D|0)

0 = argmaax In P(D | 0)

= argmgax InO*H (1 — )T

28



How many flips do | need?
" J

—~ aH
O =

ozH-I-aT

Bayesian Learning
* JE

m Use Bayes rule:
P(D|0)P(0)

PO|D) = D)

m Or equivalently:
PO |D) x P(D|0)P(H)

29



Be’ta prior distribution — P(0)

" JEE
03 —1(1 0);‘37 1 Mean:

P(o ~ Beta(B, 3
( ) B([)’H BT) € (1( H» T) Mode:

m Likelihood function: P(D|60) = 6% (1 —6)°T
m Posterior: P(0 | D) x P(D|0)P(0)

TAYANIN

Posterior distribution
"

m Prior: Beta(By, 87)

m Data: ay heads and a tails

m Posterior distribution:
P(0 | D) ~ Beta(By + am, Br + ar)

Bata1,1) o Betai2,2) Bata(3,2) A Bata(30,20)
1 14 R
15 —
08, 2
) 4
Eos g g, 2
4 gos ] 23
E 3 3 3
I o4 2 ag = s,
¥ 05
02| 1
02
[} 0 o . o
o 02 04 08 08 1 o 02 04 08 08 1 o 02 04 08 08 1 G o2 o4 08 08 ]
prametnr valis parametnr valos parametnr valos prametnr valos
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Bota(30.20)

MAP for Beta distribution
" S i

] 02 04 06 08
paramater value

pButan—1(1 _ g)Brtar—1
( ) ~ Beta(By—+ay, Brtar)

BB + am, Br + ar)

P(0| D)=

m MAP: use most likely parameter:

6 = arg meaxP(G | D) =

m Beta prior equivalent to extra thumbtack flips
m As N — oo, prior is “forgotten”
m But, for small sample size, prior is important!

Lejeune Dirichlet

Dirichlet distribution

» number of heads in N flips of a two-sided coin
— follows a binomial distribution
— Betais a good prior (conjugate prior for binomial)

Johann Peter Gustav Lejeune Dirichlet

 what it's not two-sided, but k-sided? Doten, e Enio
Died 5 May 1859 (aged 54)
— follows a multinomial distribution Aoadonce e
— Dirichlet distribution is the conjugate prior petonalty —
lelds lathematician
Institutions University of Berlin
University of Breslau
K University of Géttingen
1 ( Alma mater University of Bonn
. Q]— 1) Doctoral advisor Simeon Poisson
P(0y, 05, ..0x) = 5~ ] [ 0 st o
(o) L. P

(] Rudolf Lipschitz
Carl Wilhelm Borchardt

Known for Dirichlet function
Dirichlet eta function

31



Estimating Parameters

» Maximum Likelihood Estimate (MLE): choose
6 that maximizes probability of observed data D

~

0 = arg m@ax P(D|#)

» Maximum a Posteriori (MAP) estimate:
choose 0 that is most probable given prior
probability and the data

0 = arg m@ax P(0| D)
P(D|0)P(6)
P(D)

= arg meax

You should know

* Probability basics
— random variables, events, sample space, conditional probs, ...
— independence of random variables
— Bayes rule
— Joint probability distributions
— calculating probabilities from the joint distribution
* Point estimation
— maximum likelihood estimates
— maximum a posteriori estimates
— distributions — binomial, Beta, Dirichlet, ...

32



Extra slides

The Joint Distribution

Recipe for making a joint
distribution of M variables:

33



The Joint Distribution

Recipe for making a joint

distribution of M variables:

1. Make a truth table listing all

combinations of values of

your variables (if there are

=l=|l=lrlOo|lo|lOo| O

=|l=lO|lO|l=|~=|O| O

=lo|l~|lO|lR|lO|~|O

M Boolean variables then

the table will have 2Mrows).

The Joint Distribution

Recipe for making a joint

0.30

distribution of M variables:

0.05

0.10

1. Make a truth table listing all

0.05

combinations of values of

0.05

0.10

your variables (if there are

0.25

== |=|lO|lOo|lO|O

M Boolean variables then

=|l=lOoO|lO|l~|~|lO|O

=lOoO|lRm|lO|lR|O|~=|O

0.10

the table will have 2V rows).

2. For each combination of
values, say how probable it
is.

34



The Joint Distribution

Recipe for making a joint
distribution of M variables:

0.30
0.05
0.10
0.05
0.05
0.10
0.25
0.10

1. Make a truth table listing all
combinations of values of
your variables (if there are
M Boolean variables then

=l=|l=lrlOo|lo|lOo| O
=|l=lO|lO|l=|~=|O| O
=lo|l~|lO|lR|lO|~|O

the table will have 2Mrows).
2. For each combination of
values, say how probable it
is.
3. If you subscribe to the
axioms of probability, those
numbers must sum to 1.

gender hours_worked wealth

. Female v0:40.5- poor 0253122 [N
USlng the rich  0.0245895 [}

. v1:40.5+ poor 0.0421768 [l
Joint

rich  0.0116293 ||
Male  v0:40.5- poor 0331313 [N
rich  0.0971295 |
v1:40.5+ poor 0.134106 [N
rich  0.105933 [N

One you have the JD P(E) = E P(row)
you can ask for the rows matching £
probability of any logical

expression involving

your attribute




gender hours_worked wealth

. Female v0:40.5- poor 0253122 [N
USlng the rich  0.0245895 i

J H t v1:40.5+ poor 0.0421768 [l
OI n rich  0.0116293 ||
ale  v0:40.5- 0.331313
rich  0.0971295 I
'd v1:40.5+ oor_ 0.134106

rich  0.105933 [

P(Poor Male) = 0.4654 P(E)= Y P(tow)

rows matching £

gender hours_worked wealth

emale v0:40.5- 0.253122

U S | n g th e rich  0.0245895 [}
. v1:40.5+ 0.0421768
Joint C__vusosr  ponr OozriccH

rich  0.0116293 ||

frale _ v0:40.5- oor 0331313
rich  0.0971295 |

'd v1:40.5+ oor  0.134106

rich  0.105933 [N

P(Poor) = 0.7604 P(E)= ) P(row)

rows matching £
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Inference
with the
Joint

P(E, | E,)

gender hours_worked wealth
Female v0:40.5- poor 0253122 [N
rich  0.0245895 i
v1:40.5+ poor 0.0421768 [l
rich  0.0116293 ||
Male  v0:40.5- poor 0331313 |
rich  0.0971295 I
v1:40.5+ poor 0.13410¢6 [
rich  0.105933 [
P(row)
_ P(El A Ez) __ rows matching £, and E,
P(E,) E P(row)

rows matching £,

Inference
with the
Joint

P(E, | E,)

gender hours_worked wealth

emale v0:40.5- 0.253122
rich  0.0245895 [}
' v1:40.5+ poor _ 0.0421765 Ml
rich  0.0116293 ||
ale v0:40.5- oor  0.331313
rich  0.0971295 [
v1:40.5+ ‘poor  0.134106
rich  0.105933 [
P(row)

_ P(El A Ez) __ rows matching £, and £,

P(E,) E P(row)

rows matching £,

'P(Male | Poor) = 0.4654 / 0.7604 = 0,612




Expected values

Given discrete random variable X, the expected value of
X, written E[X] is

E[X]=) zP(X =z)
TeX

We also can talk about the expected value of functions
of X

E[f(X) =) f(z)P(X =)

TeX

Covariance

Given two discrete r.v.’s X and Y, we define the
covariance of X and Y as

Cov(X,Y)=E[X — EX))(Y — E(Y))]

e.g., X=gender, Y=playsFootball
or X=gender, Y=leftHanded

Rememb E[X] _ ZH’JP(X _ SE)

TeX
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Example: Bernoulli model

e Data:
e We observed Niid coin tossing: O={1, 0, 1, ..., 0}

e Representation:

Binary r.v: x, ={0.1}
e Model: . [1-6 forx=0 :
X)= = )=6"(1-6)"
o forx=1 Plx)=6'0-6)

e How to write the likelihood of a single observation x;?

P(x)=0"(1-0)"™

e The likelihood of datasetD={x,, ..., x\}:

¥
N 5 Sl-x,

N X )
P(xy. %%y | )= [ [ P(x, |0) [ [ (67 1-0)"7) =67 (1-6)F =61 -g)"*
i=1

i=1

You should know

* Probability basics
— random variables, events, sample space, conditional probs, ...
independence of random variables
Bayes rule
Joint probability distributions
calculating probabilities from the joint distribution
* Point estimation
— maximum likelihood estimates
— maximum a posteriori estimates
— distributions — binomial, Beta, Dirichlet, ...




