
1

Machine Learning 10-701
Tom M. Mitchell

Machine Learning Department
Carnegie Mellon University

March 24, 2011

Today:
•  Non-linear regression
•  Artificial neural networks
•  Backpropagation
•  Cognitive modeling
•  Deep belief networks

Reading:
•  Mitchell: Chapter 4
•  Bishop: Chapter 5

Artificial Neural Networks to learn f: X  Y

•  f might be non-linear function
•  X (vector of) continuous and/or discrete vars
•  Y (vector of) continuous and/or discrete vars

•  Represent f by network of logistic units
•  Each unit is a logistic function

•  MLE: train weights of all units to minimize sum of squared
errors of predicted network outputs

•  MAP: train to minimize sum of squared errors plus weight
magnitudes

2

ALVINN
[Pomerleau 1993]

3

4

•  Consider regression problem f:XY , for scalar Y
y = f(x) + ε
 assume noise N(0,σε), iid

deterministic

M(C)LE Training for Neural Networks

Learned
neural network

•  Let’s maximize the conditional data likelihood

•  Consider regression problem f:XY , for scalar Y
y = f(x) + ε
 noise N(0,σε)

deterministic

MAP Training for Neural Networks

 Gaussian P(W) = N(0,σΙ)

ln P(W) ↔ c ∑i wi
2

5

xd = input

td = target output

od = observed unit
output

wi = weight i

6

xd = input

td = target output

od = observed unit
output

wij = wt from i to j

(MLE)

7

8

Dealing with Overfitting

Our learning algorithm involves a parameter
 n=number of gradient descent iterations

How do we choose n to optimize future error?
(note: similar issue for logistic regression, decision trees, …)

e.g. the n that minimizes error rate of neural net over future data

Dealing with Overfitting

Our learning algorithm involves a parameter
 n=number of gradient descent iterations

How do we choose n to optimize future error?

•  Separate available data into training and validation set
•  Use training to perform gradient descent
•  n  number of iterations that optimizes validation set error

 gives unbiased estimate of optimal n
 (but a biased estimate of true error)

9

K-Fold Cross Validation
Idea: train multiple times, leaving out a disjoint subset of data each time

for test. Average the test set accuracies.
__
Partition data into K disjoint subsets
For k=1 to K

 testData = kth subset
 h  classifier trained* on all data except for testData

 accuracy(k) = accuracy of h on testData
end
FinalAccuracy = mean of the K recorded testset accuracies

* might withhold some of this to choose number of gradient decent steps

Leave-One-Out Cross Validation
This is just k-fold cross validation leaving out one example each iteration
__
Partition data into K disjoint subsets, each containing one example
For k=1 to K

 testData = kth subset
 h  classifier trained* on all data except for testData

 accuracy(k) = accuracy of h on testData
end
FinalAccuracy = mean of the K recorded testset accuracies

* might withhold some of this to choose number of gradient decent steps

10

11

12

13

w0
left strt right up

