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Today: 
•  Non-linear regression 
•  Artificial neural networks 
•  Backpropagation  
•  Cognitive modeling 
•  Deep belief networks  

Reading: 
•  Mitchell: Chapter 4 
•  Bishop: Chapter 5 

Artificial Neural Networks to learn f: X  Y 

•  f might be non-linear function 
•  X (vector of) continuous and/or discrete vars 
•  Y (vector of) continuous and/or discrete vars 

•  Represent f by network of logistic units 
•  Each unit is a logistic function 

•  MLE: train weights of all units to minimize sum of squared 
errors of predicted network outputs 

•  MAP: train to minimize sum of squared errors plus weight 
magnitudes 
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ALVINN 
[Pomerleau 1993] 
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•  Consider regression problem f:XY , for scalar Y 
y = f(x) + ε
 assume noise N(0,σε), iid 

deterministic 

M(C)LE Training for Neural Networks 

Learned 
neural network 

•  Let’s maximize the conditional data likelihood 

•  Consider regression problem f:XY , for scalar Y 
y = f(x) + ε
 noise N(0,σε) 

deterministic 

MAP Training for Neural Networks 

 Gaussian P(W) = N(0,σΙ) 

ln P(W)  ↔ c ∑i wi
2 
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xd = input 

td = target output 

od = observed unit 
output 

wi = weight i 
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xd = input 

td = target output 

od = observed unit 
output 

wij = wt from i to j 

(MLE) 
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Dealing with Overfitting 

Our learning algorithm involves a parameter  
 n=number of gradient descent iterations 

How do we choose n to optimize future error?  
(note: similar issue for logistic regression, decision trees, …) 

e.g. the n that minimizes error rate of neural net over future data 

Dealing with Overfitting 

Our learning algorithm involves a parameter  
 n=number of gradient descent iterations 

How do we choose n to optimize future error?  

•  Separate available data into training and validation set 
•  Use training to perform gradient descent 
•  n  number of iterations that optimizes validation set error 

 gives unbiased estimate of optimal n 
    (but a biased estimate of true error) 
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K-Fold Cross Validation 
Idea: train multiple times, leaving out a disjoint subset of data each time 

for test.  Average the test set accuracies. 
________________________________________________ 
Partition data into K disjoint subsets 
For k=1 to K 

 testData = kth subset 
      h  classifier trained* on all data except for testData 

 accuracy(k) = accuracy of h on testData 
end 
FinalAccuracy = mean of the K recorded testset accuracies 

* might withhold some of this to choose number of gradient decent steps 

Leave-One-Out Cross Validation 
This is just k-fold cross validation leaving out one example each iteration 
________________________________________________ 
Partition data into K disjoint subsets, each containing one example 
For k=1 to K 

 testData = kth subset 
      h  classifier trained* on all data except for testData 

 accuracy(k) = accuracy of h on testData 
end 
FinalAccuracy = mean of the K recorded testset accuracies 

* might withhold some of this to choose number of gradient decent steps 
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w0 
left strt right up 


