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Today: Reading:

* Non-linear regression * Mitchell: Chapter 4
Artificial neural networks » Bishop: Chapter 5
Backpropagation
Cognitive modeling
Deep belief networks

Artificial Neural Networks tolearnf: X 2> Y

« f might be non-linear function
+ X (vector of) continuous and/or discrete vars
* Y (vector of) continuous and/or discrete vars

» Represent f by network of logistic units

» Each unit is a logistic function
1

1+ exp(wg + X; wix;)

unit output =

* MLE: train weights of all units to minimize sum of squared
errors of predicted network outputs

* MAP: train to minimize sum of squared errors plus weight
magnitudes




Multilayer Networks of Sigmoid Units
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Connectionist Models

Consider humans:
e Neuron switching time ~ .001 second
e Number of neurons ~ 10'?
e Connections per neuron ~ 10*~°
e Scene recognition time ~ .1 second
¢ 100 inference steps doesn’t seem like enough

— much parallel computation

Properties of artificial neural nets (ANN’s):
e Many neuron-like threshold switching units
e Many weighted interconnections among units

e Highly parallel, distributed process

Sigmoid Unit
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o(z) is the sigmoid function
1
1+e™

Nice property: %;—) =o(z)(1 —o(x))

We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation




M(C)LE Training for Neural Networks

» Consider regression problem f:X->Y , for scalar Y
y=f(x)+e

—

assume noise N(0,0,), iid

deterministic

+ Let's maximize the w

W «— arg max In HP(YZ|Xl,W)
W «— arg mmi/n Z(yl — f(2')?
A

Learned
neural network

MAP Training for Neural Networks

» Consider regression problem f:X->Y , for scalar Y
y = f(x) + € —noise N(0,,)

deterministic

lGaussia P(W) = N(0O,cI)

W «— arg max In P(W) HP(YZ\XZ, W)
.

W «— argmin
W
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Error Gradient for a Sigmoid Unit -
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Gradient Descent
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Training rule:
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Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient VEp[w]

dde =)

2.1 4 W — nV Ep[w]
—> Incremental mode Gradient Descent:
Do until satisfied
e For each training example d in D

1. Compute the gradient V Ey[u]
2.0 + W — nV E4[d]

» 1
Ep[w] = ing(td - Od)2
_ 1
Ed[w] = §(td — Od)2

Incremental Gradient Descent can approximate
Batch Gradient Descent arbitrarily closely if n
made small enough

Backpropagation Algorithm (MLE)

e/I/nitialize all weights to small random numbers.
Until satisfied, Do -

e For each training example, Do

1. Input the training example to the network
and compute the network outputs

2. For each output unit k

(] . \
v
3. For each hidden unit l/td = target output
erngutS %@ 04 = Observed unit

output
4. Update each network weight w; ; P

@ “’"-iﬁt w; = wt from i to |

where @&
Aw,j =




More on Backpropagation

e Gradient descent over entire network weight
vector

$SE

e Easily generalized to arbitrary directed graphs
e Will find a local, not necessarily global error
minimum
— In practice, often works well (can run multiple
times)

e Often include weight| momentum «

Aw”(% =\1 + « wi.j(n — ].)
s el - w
e Minimizes error over training examples ch\! et

— Will it generalize well to subsequent V?DQW['C

examples?

e Training can take thousands of iterations —
slow!

e Using network after training is very fast

Overfitting in ANNs
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Dealing with Overfitting

BEEEEREE:

Our learning algorithm involves a parameter
n=number of gradient descent iterations
How do we choose n to optimize future error?
(note: similar issue for logistic regression, decision trees, ...)

e.g. the n that minimizes error rate of neural net over future data

Dealing with Overfitting
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Our learning algorithm involves a parameter =
n=number of gradient descent iterations
How do we choose n to optimize future error?

» Separate available data into training and validation set
* Use training to perform gradient descent
* n < number of iterations that optimizes validation set error

- gives unbiased estimate of optimal n
(but a biased estimate of true error)




K-Fold Cross Validation

Idea: train multiple times, leaving out a disjoint subset of data each time
for test. Average the test set accuracies.

Partition data into K disjoint subsets

For k=1to K
testData = kth subset
h & classifier trained* on all data except for testData
accuracy(k) = accuracy of h on testData

end

FinalAccuracy = mean of the K recorded testset accuracies

* might withhold some of this to choose number of gradient decent steps

Leave-One-Out Cross Validation

This is just k-fold cross validation leaving out one example each iteration

Partition data into K disjoint subsets, each containing one example
For k=1to K
testData = kth subset
h & classifier trained* on all data except for testData
accuracy(k) = accuracy of h on testData
end
FinalAccuracy = mean of the K recorded testset accuracies

* might withhold some of this to choose number of gradient decent steps




Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by
network with single hidden layer

e but might require exponential (in number of

inputs) hidden units —

Continuous functions:
us dnctlo

e Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
\’/ " .
accuracy by a network with two hidden layers
[Cybenko 1988]. T

Learning Hidden Layer Representations

A target function:

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??
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Learning Hidden Layer Representations

A network:

Learned hidden layer representation:

Input Hidden Output
Values
~»10000000 — .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001
Training

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Sum of squared errors for each output unit
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Inputs Outputs

Training
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Neural Nets for Face Recognition
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http://www.cs.cmu.edu/~tom/faces.html
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