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To

day:

Naive Bayes — Big Picture
Logistic regression
Gradient ascent

Generative — discriminative
classifiers

Readings:

Required:

+ Mitchell: “Naive Bayes and
Logistic Regression”

(see class website)

Optional
* Ng and Jordan paper (class
website)

Gaussian Naive Bayes — Big Picture




Logistic Regression

ldea:
» Naive Bayes allows computing P(Y|X) by
learning P(Y) and P(X]Y)

* Why not learn P(Y|X) directly?

 Consider learning f: X =Y, where
+ X is a vector of real-valued features, < X, ... X, >
* Y is boolean
» assume all X; are conditionally independent given Y
» model P(X; | Y =y,) as Gaussian N(w;,o;)
» model P(Y) as Bernoulli (i)

» What does that imply about the form of P(Y|X)?

1
P(Y =1|X =< Xq,..Xn >) =

1+ exp(wo + X; w; X;)




Derive form for P(Y|X) for continuous X;

P(Y = 1)P(X|Y = 1)
P(Y =1)P(X|Y =1)+ P(Y = 0)P(X|Y =0)

P(Y = 1|X)

1
P(Y=0)P(X|Y=0)
1+ p(y:l)P(XIYzl)
1
P(Y=0)P(X|Y=0)
1+ exp(In P(Y:l)P(XIY=1))

1
1+ exp( (In127) +[5; In PET=9)
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P(Y =1|X) =

1 4 exp(wg + Z?:lxwixi)

Very convenient!

1
P(Y =1|X =< Xq,..Xp>) =

1+ exp(wg + X; w; X;)
implies

P(Y =0|X =< Xq,..Xp >) =

implies
P(Y =0|X) _
P(Y =1|X)
implies
PO =01X) _

P(Y =1|X)




Very convenient!

1
1+ exp(wo + X wi X;)

P(Y =1|1X =< X1,..Xn>) =

implies
exp(wo + 3; wiX;)

P(Y = 0|X =< Xq,..Xpn >) =
| " 1+ exp(wg + X; w; X;)

implies

P(Y = 0|X)

—————~ =exp(wg + > w;X;)

P =11X) i XZ: o linear

/ classification

implies (Y = o|X) rule!
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P(Y = 1|X)




Logistic function
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P(Y =1|X) =

14 exp(wo + X w; X;)

Logistic regression more generally

 Logistic regression when Y not boolean (but
still discrete-valued).

* Now y E{y, ... yp} : learn R-1 sets of weights

exp(wyg + Z?:l wii X;)

< PY = yi|X) =
for k<R Kl 1+ Zfz_ll exp(wjo + i wi X;)

1
1+ > exp(wio 4+ Xy w)iX;)

for k=R P =yg|X)=




Training Logistic Regression: MCLE

» we have L training examples: {(x1 v1) .. (xT vy

« maximum likelihood estimate for parameters W
WyLe = argmuz}xP(< XLyls < XEYl>|w)

_ Iyl
—arng%XI:[P(< XY > W)

* maximum conditional likelihood estimate

Training Logistic Regression: MCLE

* Choose parameters W=<w,, ... w,> to

maximize conditional likelihood of training data
1
1+ exp(wo + X wiX;)

exp(wo + X w; X;)
1+ exp(wo + X3 w; X;)

« Training data D = {(x',v'h),...(xF,vh)}
« Data likelihood = [[P(X' Yiw)
l
« Data conditional likelihood = [] P(Y!|x!,w)
l

where P(Y =0|X,W) =

P(Y = 1|X,W) =

_ Ayl I
WwyeLe = arng%xHP(Y W, X")




Expressing Conditional Log Likelihood

(W) =In[[PYYxt,w) =3 InP(Y! X, w)
l 1

1

PO =0 = w0 + S wiX))

exp(wo + 3w X;)

P =11XW) = 1 4 exp(wo + 3w X;)

(w) = S vlinpyl=1x,w)+ @ -yHinp!=o/x,w)
l

PY'=1|x!.w
; P(Yl=0|X!,, W)

+InPY'=o0|x!, W)

= Y Yiwo + Y w; X! — In(1 + exp(wo + > w; XH)
[ 7 7

Maximizing Conditional Log Likelihood

1

PO =0 W) = T oo + 5 wiX)

exp(wo + 3 wiX;)

P =11X,W) = 1+ exp(wo + 3w X;)

(W) In[[ PCYYx!, w)

[
= Y Yi(wo + Y w; X — In(1 + exp(wo + > w; X1))
l 7 7

Good news: /(W) is concave function of W
Bad news: no closed-form solution to maximize (W)




Gradient Descent
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Training rule:
AW = —nVE[w]
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E
Aw; = _778711,-

Maximize Conditional Log Likelihood:
Gradient Ascent

(w) = I[Pl xtLw)
l

= ZYl('wo + Zwin) —In(1 4+ exp(wg + Zlef))
l 7 7

% =) Xj(y' - P(v' = 11x", W)
wy l




Maximize Conditional Log Likelihood:
Gradient Ascent

(W) = In[[PYxLw)
l

= Y Yi(wo + Y w;X}) — In(1 + eap(wo + > w; X}))
l 5 i

ol(W)

a’wi

=Y xivt— Pyt =11x1, w))
l

Gradient ascent algorithm: iterate until change < ¢
For all i, repeat

w; —w; + 1Y XI(Y - Py =1x,w))
l

That's all for M(C)LE. How about MAP?

One common approach is to define priors on W
— Normal distribution, zero mean, identity covariance

Helps avoid very large weights and overfitting
MAP estimate

W «— arg max In P(W) HP(YZ\XZ, W)
l

let's assume Gaussian prior: W ~ N(0, o)




MLE vs MAP

 Maximum conditional likelihood estimate
W «— arg max In HP(Yl|Xl, W)
l

w; —w;+nY XUy - P(Y! = 1]x", W)
l

« Maximum a posteriori estimate with prior W~N(0,oT)

W — argmax In[P(W) [T PYYxtw)i
l

w; — w; —niw;+nY XHYT - P(Y!=1]x!, W)
l

MAP estimates and Regularization
» Maximum a posteriori estimate with prior W~N(0,ol)

W « arg max In[P(W) HP(YZ]XZ,W)]
l

w; — wi—nAw;+n Y X[V = P(Y! = 11X, W)
1 l

called a “regularization” term

* helps reduce overfitting, especially when training
data is sparse

* keep weights nearer to zero (if P(W) is zero mean
Gaussian prior), or whatever the prior suggests

« used very frequently in Logistic Regression
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The Bottom Line

 Consider learning f: X 2 Y, where
+ X is a vector of real-valued features, < X, ... X, >
* Y is boolean
 assume all X, are conditionally independent given Y
» model P(X; | Y =vy,) as Gaussian N(w;,o;)
» model P(Y) as Bernoulli (i)

» Then P(Y|X) is of this form, and we can directly estimate W

1
P(Y = 1|X =< Xq,..Xp >) =
| " 1+ exp(wg + X; wi X;)

* Furthermore, same holds if the X; are boolean
« trying proving that to yourself

Generative vs. Discriminative Classifiers

Training classifiers involves estimating f: X = Y, or P(Y|X)

Generative classifiers (e.g., Naive Bayes)

*  Assume some functional form for P(X|Y), P(X)

» Estimate parameters of P(X|Y), P(X) directly from training data
+ Use Bayes rule to calculate P(Y|X= x;)

Discriminative classifiers (e.g., Logistic regression)

*  Assume some functional form for P(Y|X)
» Estimate parameters of P(Y|X) directly from training data
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Use Naive Bayes or Logisitic Regression?

Consider
» Restrictiveness of modeling assumptions

» Rate of convergence (in amount of
training data) toward asymptotic
hypothesis
—i.e., the learning curve

Naive Bayes vs Logistic Regression

Consider Y boolean, X; continuous, X=<X, ... X,>

Number of parameters to estimate:
* NB:

1

P =01X,W) = 1 4 exp(wo + 3w X;)

* LR:
Py = 11x, W) = —P(wo t XiwiXi)

1 4 exp(wo + X; w; X;)
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Naive Bayes vs Logistic Regression

Consider Y boolean, X, continuous, X=<X, ... X,>

Number of parameters:
* NB:4n +1
* LR: n+1

Estimation method:
* NB parameter estimates are uncoupled
* LR parameter estimates are coupled

G.Naive Bayes vs. Logistic Regression

[Ng & Jordan, 2002]
» Generative and Discriminative classifiers

» Asymptotic comparison (# training examples - infinity)
* when conditional independence assumptions correct

* GNB, LR produce identical classifiers

* when conditional independence assumptions incorrect
* LR is less biased — does not assume cond indep.

» therefore expected to outperform GNB when both
given infinite training data

13



Naive Bayes vs. Logistic Regression

» Generative and Discriminative classifiers

» Non-asymptotic analysis (see [Ng & Jordan, 2002] )

* convergence rate of parameter estimates — how many
training examples needed to assure good estimates?

* GNB order log n (where n = # of attributes in X)
* LR ordern

GNB converges more quickly to its (perhaps less
accurate) asymptotic estimates

Informally: because LR’s parameter estimates are
coupled, but GNB’s are not

mmmmmmmmm us) 2duit (continuous) boston (predict #f > median price, continucus)

sonar (continuouz) acult (Gcrete)

promoters (diecrete)

20 40 &0 @0 100 EJ 100 150

lenses (predict hard vs. sof, discrete) ik (discrate)

Some experiments
from UCI data sets -
[Ng & Jordan, 2002] e e e

Figure 1: Results of 15 experiments on datasets from the UCT Machine Learnin]
repository. Plots are of generalization error vs. m (averaged over 1000 rando
train/test splits). Dashed line is logistic regression; solid line is naive Bayes,
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Summary: Naive Bayes and Logistic Regression

* Modeling assumptions
— Naive Bayes more biased (cond. indep)
— Both learn linear decision surfaces
* Convergence rate (n=number training examples)
— Naive Bayes ~ O(log n)
— Logistic regression ~O(n)
« Bottom line

— Naive Bayes converges faster to its (potentially too
restricted) final hypothesis

What you should know:

* Logistic regression

Functional form follows from Naive Bayes assumptions
* For Gaussian Naive Bayes assuming variance o;, = o;
* For discrete-valued Naive Bayes too

But training procedure picks parameters without the
conditional independence assumption

MLE training: pick W to maximize P(Y | X, W)
MAP training: pick W to maximize P(W | X,Y)
* regularization: e.g., P(W) ~ N(0,0)
* helps reduce overfitting

* Gradient ascent/descent

— General approach when closed-form solutions for MLE, MAP are
unavailable

* Generative vs. Discriminative classifiers
— Bias vs. variance tradeoff
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