Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

April 7, 2011

Today: Kernel methods, SVM

* Regression: Primal and dual
forms

» Kernels for regression
* Support Vector Machines

Thanks to Aarti Singh, Eric Xing,
John Shawe-Taylor for several slides

Readings:

Required:
Kernels: Bishop Ch. 6.1
SVMs: Bishop Ch. 7, through 7.1.2

Optional:
Bishop Ch 6.2, 6.3

Kernel Functions

Kernel functions provide a way to manipulate data as
though it were projected into a higher dimensional
space, by operating on it in its original space

This leads to efficient algorithms

And is a key component of algorithms such as

Support Vector Machines
kernel PCA

kernel CCA

kernel regression

Linear Regression

Wish to learn f: X 2 Y, where X=<Xj, ... X;>, Y real-valued

-~

w
A ‘K"'i’qwsptﬁg »
o:i N &D:f MV\ y ;lo.\a ?Yebavd‘ . R
o4 quw& _ ‘ - p :
where W = arg 11111M+ A Z “"ﬁ w,,
=1 k
ﬂ_‘ﬂ'\ ‘l’v’qllﬂ CXMF ¢
}/\{ el 1 W,
| v P2 o xw
Ya Va
- >< j‘ A
, YFXW
' T " w
\/M X\ X} o %“ !

Linear Regression

Wishtolearn f : X — Y, where X = (X;. X,,... Xy), Y ER

N
Learn f(x) =) zuw; = (x.w) =x"w

1=1
M

N
where w = arg mi - 2
W 11g11£‘1,112(/ xt w kz_: i

=1

w = argmin ||y — Xw|* + \||w|?
w

here the /" row of X is the [training example x

N

and w|® =) wi=|wl3

k=1

Vectors, Data Points, Inner Products
N
Consider f(x) = Z.r,-u"i = (x,w) =xTw

—— —

i=1

between the
e

(||| || w]| cos (6

Linear Regression: Primal Form
el

N

Learn f(x) = Z

1=1

ra; = (X, w) = xTw

where w = arg 11‘1’311 ly — Xwl[* + Allw]*

—_—

solve by taking derivative wrt w, setting to zero...
w=(X"X+) ' X"y

SO: .f(xnew) — X;feww = x;few (XIX + /\I)—l X'I'y

Aha!

N
N ’1‘
Learn f(x E Tw; = =X W

i=1

where w = arg 11‘1Ai,n ly — Xwl|* + Al|w]?

solution: w = (X'X + AI) ! X'y

But notice w lies in the space spanned by training examples
(why?)

Linear Regression' Dual Form

Primal form: ¥ "Q' oﬁ t

Learn f(x) =

o ==
Solution: o = (XX'/4+ \I) ' y o u (/}
Af>

IS m»;e“ o

w
A dual solution expresses the weight vector as a

linear combination of the training examples:

X'Xw + 2w = X'y \ implies
1
w= § X'y = XXw) = X' (-%y)- X'a,

where

or equivalently

m

W = ;X5
=1

The vector « is the dual solution.

[slide from John Shawe-Taylor]

Substituting w = X'« into equation (1) we obtain:

A=y — XX«
implying
(XX +AM,,)a=y
This means the dual solution can be computed as:

a=(XX'+AL,) 'y

with the regression function

m ™m
g(x) =x'w=xX'a = <X, Zo"’ixi> = Za,;(x,x,;)
i=1 i=1

[slide from John Shawe-Taylor]

Key ingredients of dual solution

g dyam exu

Step 1: Compute ” ém s
o =)\Im,)il y

where K = XX’ thatis K;; = (x;,x;)

Step 2: Evaluate on new point x by

m

g(x) =D ailx,x;)
1=1

Important observation: Both steps only involve
inner products between input data points

[slide from John Shawe-Taylor]

Applying the ‘kernel trick’

Since the computation only involves inner products,
we can substitute for all occurrences of (-, -) a kernel
function « that computes:

k(x,2) = (9(x), 6(2))

and we obtain an algorithm for ridge regression in
the feature space F’ defined by the mapping

P xr— p(x) e F
Note if ¢ is the identity this has no effect.

[slide from John Shawe-Taylor]

Kernel functions

Original space Projected space

SR @‘K@Pé (higher dimensional)

Example: Quadratic Kernel

Suppose we have data originally in 2D, but project it into 3D using ®(x)

(W Cegarss W

this converts our original linear regression into quadratic regression!
But we can use the following kernel function to calculate inner products

in the projected 3D space, in terms of operations in the 2D space

(®(x;). P(x5)) = (xi.%5)% = Ko (x5, %;)

—_—

And use it to train and apply our regression function, never leaving 2D space
M

f(x) = Z o k(x,x") a=(K+A) 'y K;; = r(xi.x;)
=1

Implications of the “Kernel Trick”

e Consider for example computing a regression
function over 1000 images represented by pixel
vectors —say 32 x 32 = 1024 pixels.

e By using the quadratic kernel we implement the
regression function in a 1,000,000 dimensional
space

e but actually using less computation for the
learning phase than we did in the original space
— inverting a 1000 x 1000 matrix instead of a
1024 x 1024 matrix.

[slide from John Shawe-Taylor]

Some Common Kernels

Polynomials of degree d

K(u,v) = (u-v)*
kkg‘(\’\ti‘(‘q‘
Polynomials of degree up to d

K(u,v) = (u-v+ 1)4

Gaussian/Radial kernels (polynomials of all orders —
projected space has infinite dimension)
202
Sigmoid
K(u,v) =tanh(nu-v 4+ v)

Which Functions Can Be Kernels?

not all functions

for some definitions of k(x,,x,) there is no corresponding
projection ¢(x)

Nice theory on this, including how to construct new
kernels from existing ones

Initially kernels were defined over data points in
Euclidean space, but more recently over strings, over
trees, over graphs, ...

Some of this covered in 10-702

Kernels : Key Points
Many learning tasks are framed as optimization problems
Primal and Dual formulations of optimization problems
Dual version framed in terms of dot products between x’s

Kernel functions k(x,y) allow calculating dot products
<®(x),P(y)> without bothering to project x into ®P(x)

Leads to major efficiencies, and ability to use very high
dimensional (virtual) feature spaces

Kernel Based Classifiers

Simple Kernel Based Classifier

e Consider finding the centres of mass of positive
and negative examples and classifying a test
point by measuring which is closest -

h(x) = sgn ([o(x) = ds_|I* = 6(x) — ¢s. %)
— — ~—

e we can express as a function of kernel

m

h(x) = sgn (LZA(XXJ - mi Z R(X,X;) — b)

i=1 T i=mag+1

12 ZH(Xi,Xj)_W Z ri(Xi, X;)

+ i,j=1 — 1, j=my4+1

[slide from John Shawe-Taylor]

10

Linear classifiers — which line is better?

11

Pick the one with the largest margin!

i -
+ =
T L N -
ain -
+ =
%}1 - ==

Parameterizing the decision boundary

wix+b>0 wWix+b<0
+
O =]
P 1l =
¢ Q -
+ - =
T+ L 2
2 = _
+ . ¢ - _
+ [~ [~

Labels ¥ € {—1,+1} — class

12

Parameterizing the decision boundary

wix+b>0 wix+b<0
L
(@) (=)
*]] =
T Q =
+
ol - =
S = _
+ . ¢ - _
%}’ [~ [~
Labels ¥ € {—1,+1} — class

Maximizing the margin

Margin = Distance of
closest examples
from the decision line/

N"‘/\ﬂ hyperplane

o E—"

- margin £ y = a/IIwIl

13

Maximizing the margin

Margin = Distance of
closest examples
from the decision line/

hyperplane
- margin =y = a/llwll
- max y = a/llwll
w,b
= s.t. (W'x+b) y, 2 a Vj

Note: ‘a’is arbitrary (can normalize
equations by a)

Support Vector Machine

min w'w

(=] W,b

s.t. (Wix+b)y; 21 Vj

Solve efficiently by quadratic
- programming (QP)
— Well-studied solution
= = algorithms

Linear hyperplane defined
by “support vectors”

14

