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Today: Readings:
Clustering Recommended:
Mixture model clustering Jordan “Graphlcal MerIs
Learnina Baves Net *  Muphy “Intro to Graphical
g bay Models”
structure
Chow-Liu for trees

Bayes Network Definition

A Bayes network represents the joint probability distribuﬁon
over a collection of random variables

A Bayes network is a directed acyclic graph and a set of CPD’s
« Each node denotes a random variable

» Edges denote dependencies

+ CPD for each node X; defines P(X;/ Pa(X,))

» The joint distribution over all variables is defined as

P(X1...Xp) = H P(X;|Pa(X;))

Pa(X) = immediate parents of X in the graph




Usupervised clustering

Just extreme case for EM with
zero labeled examples...

Clustering

» Given set of data points, group them
* Unsupervised learning

* Which patients are similar? (or which earthquakes,
customers, faces, web pages, ...)




Mixture Distributions

Model joint P(&l ... X,) as mixture of multiple distributions.

Use discrete-valued random variable Z to indicate which
distribution is being use for each random draw

So P(X;.. ZP = i)

Mixture o >

» Assume each data point X=<X1, ... Xn> is generated by
one of several Gaussians, as follows:

1. randomly choose Gaussian i, according to P(Z=i)

2. randomly generate a data point <x1,x2 .. xn> according
to N(u;, ;)

EM for Mixture of Gaussian Clustering

Let's simplify to make this easier:

assume X=<X, ... X,>, and the X, are conditionally independent
given Z.

P(X|Z = j) = [ N(Xi|pjis 05i)
i

@ assume only 2 clusters (values of Z) and Vi, j, 05 = o

P(X) = Z P(Z = JIW)HN(%IM zag)
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EM

Given observed variables X, unobserved Z

Define Q(¢'|0) = Ey xgllog P(X, Z16M)]

e e ® ® © ®
Iterate until convergence:

* E Step: Calculate@@hr each example X(n).

Use this to construct Q(#'|9)

* M Step: Replace current 6 by
0 — arg max Q(9'19)

EM — E Step

Calculate P(Z(n)|X(n),6) for each observed example X(n

X(n)=<x,(n), x,(n), ... x¢(n)>.
& &) &

P(z(n)|z(n) =k,0) P(z(n) = k|0)
Yiop(z(n)|z(n) = 4,0) P(z(n) = j|0)

P(z(n) = klz(n),0) =

[I1; P(zi(n)|z(n) = k,0)] P(z(n) = k|0)
Yi=o Il P(zi(n)|2(n) = j,6) P(z(n) = j|6)

P(z(n) = klz(n),0) =

[IT; N (@i(n) |, )] (wk (1 —m)=H)
Yool N(@i(m)|uji0)] (i (1 —m)(=3))

P(z(n) = k|lz(n),0) =




First consider update fo

Q(8'16) =|Byx pllog P(X, Z|6")]

(\

0 = (m, pji)
Eflog P(X|z,0")+log P(Z]6)]
095 s 7’ has no influence

™ argmax Ey x g[log P(Z|m")]
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Ezx0 ['09 P(Z|7r’)] = Ezx0 [Iog (ﬂ(zflz(”j(l -

= (Z Eyxglz(n)] ) 1og 7'+ (z Ezxol(1 = 2(m)]) | log(1—7")

oFE log P(Z|n' _
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_ Yhe1 Elz(n)] _1 ol “(n
(XA2, Elz()]) + (S, (1 - Elz()) Nn;E[ )

| EM — M Step
Now consider update fo

r. 0 = (m, pji)
Q(8'16) = By x ollog P(X, Z|6)] = log P(2|0")]

w;" has no influence

uji < arg max Ey|x gllog P(X|Z,0")] @ @ @

Jt

Yp=1 P(z(n) = jlz(n),0) w;(n)

Hi T TSN P Ga(n) = jlx(n),0)

YN 6(2(n) =5) wi(n)
Compare above to  pji — ="y —
MLE if Z were Xn=18Gn) =)
observable:




EM — putting it together

Given observed variables X, unobserved Z
Define Q(6'|0) = Eyzxpllog P(X, Z|0M)]

where 0 = (7, ;)

&) &) &

Iterate until convergence:

* E Step: For each observed example X(n), calculate P(Z(n)|X(n),0)
[[; N (2i(n) i 0)] (7*(1 = m)1=R))
Z}:O[IL N(zi(n)|pjz,0)] (xd(1 —x)(1=0))

P(z(n) =k |x(n),0) =

* M Step: Update ¢ — arg max Q0'16)

1 & SN P(2(n) = jla(n),0) wi(n)
— — E . “Zn=1 > i
N & Pl ot T TSN P(a(n) = jle(n), 6)

Mixture of Gaussians applet

Go to: http://www.socr.ucla.edu/htmls/SOCR _Charts.html
then go to Go to “Line Charts” - SOCR EM Mixture Chart
* try it with 2 Gaussian mixture components (“kernels”)

o tryitwith 4




What you should know about EM

» For learning from partly unobserved data
6 MLEst of = arg maxlog P(data|0)
* EMestimate: 6 = argmax Eyx y[log P(X, Z|0)]
Where X is observed part of data, Z is unobserved
Ezixp [Dga?cﬁzxz— %
< EM for training Bayes networks o P(rz] ) p(@)
» Can also develop MAP version of EM

» Can also derive your own EM algorithm for your own
problem I
— write out expression for EZ|X,9[Iog P(X, Z|0)]
— E step: for each training example Xk, calculate P(Z* | Xk, 0)
— M step: chose new 6 to maximize Ez| x g[log P(X, Z|6)]

Learning Bayes Net Structure




How can we learn Bayes Net graph structure?

In general case, open problem of%
» can require lots of data (else high risk of overfitting) b‘/\\\i
« can use Bayesian methods to constrain search

One key result:
* Chow-Liu algorithm: finds (‘best) tree-structured networ

* What's best?
— suppose P(X) is true distribution, T(X) is our tree-structured
network, where X = <X, ... X>

— Chou-Liu minimizes_Kullback-Leibler divergence:

P(X = k)

KL(P(X) || T(X))= Y P(X=k)log X =5




Chow-Liu Algorithm

Key result: To minimize KL(P || T), it suffices to find the tree
network T that maximizes the sum of mutual informations
over its edges

Mutual information for an edge between variable A and B:

[(A,B)=Y"Y P(a,b)log P](DS]’JI’()@
a b

This works because for tree networks with nodes x = (x,...x,)

P(X =k)
T(X = k)

= =) I(Xi,Pa(X)))+ Y H(X:)— H(X;...X,)

KL(P(X) || T(X)) = Y PX=k)log

Chow-Liu Algorithm

1. for each pair of vars A,B, use data to estimate P(A,B),
P(A), P(B)

2. for each pair of vars A.B calculate nzutu)al information
P(a,b
I(A,B) = Ea Eb P(a,b)logP(a)P(b)

3. calculate the maximum spanning tree over the set of
variables, using edge weights /(4,B)
(given N vars, this costs only O(N2) time)

4. add arrows to edges to form a directed-acyclic graph

5. learn the CPD’s for this graph




Chowe-Liu algorithm example
Greedy Algorithm to find Max-Spanning Tree

)
X, \X}- T _Xt( D

Bayes Nets — What You Should Know

* Representation

— Bayes nets represent joint distribution as a DAG + Conditional
Distributions

— D-separation lets us decode conditional independence
assumptions

* Inference
— NP-hard in general
— For some graphs, closed form inference is feasible
— Approximate methods too, e.g., Monte Carlo methods, ...
* Learning
— Easy for known graph, fully observed data (MLE’s, MAP est.)
— EM for partly observed data
— Learning graph structure: Chow-Liu for tree-structured networks
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