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Today: Readings:
» Generative — discriminative
classifiers * Mitchell: “Naive Bayes and
Linear regression Logistic Regression”
Decomposition of error into . ﬁgeaﬁﬁiz:éggsg:ger (class
bias, variance, unavoidable website)
Bishop, Ch 9.1, 9.2

Logistic Regression

 Consider learning f: X 2 Y, where
+ X is a vector of real-valued features, < X, ... X, >
* Y is boolean
» assume all X; are conditionally independent given Y
* model P(X; | Y =vy,) as Gaussian N(u;,0;)
* model P(Y) as Bernoulli (i)

* Then P(Y|X) is of this form, and we can directly estimate W

1
P(Y =1|X =< X1,..Xn>) =
| " 1+ exp(wo + X3 wi X;)

* Furthermore, same holds if the X; are boolean
* trying proving that to yourself

» Train by gradient ascent estimation-of w’s (no assumptions!)




MLE vs MAP

 Maximum conditional likelihood estimate
W «— arg max In HP(YZ|Xl, W)
l

w; —w;+nY XUy - P(Y! = 1]x", W)
l

« Maximum a posteriori estimate with prior W~N(0,oT)

W« arg max In[P(W) J[PYYxtw)]
l

w; — w; —niw;+nY XHYT - P(Y!=1]x!, W)
l

Generative vs. Discriminative Classifiers

Training classifiers involves estimating f: X = Y, or P(Y|X)

Generative classifiers (e.g., Naive Bayes)

*  Assume some functional form for P(Y), P(X]Y)

» Estimate parameters of P(X|Y), P(Y) directly from training data
» Use Bayes rule to calculate P(Y=y |X= x)

Discriminative classifiers (e.g., Logistic regression)
*  Assume some functional form for P(Y|X)
» Estimate parameters of P(Y|X) directly from training data

* NOTE! even though our derivation of the form of P(Y|X) made GNB-
style assumptions, the training procedure for Logistic Regression
does not!




Use Naive Bayes or Logisitic Regression?

Consider
» Restrictiveness of modeling assumptions

» Rate of convergence (in amount of
training data) toward asymptotic
hypothesis
—i.e., the learning curve

Naive Bayes vs Logistic Regression

Consider Y boolean, X; continuous, X=<X, ... X,>

Number of parameters to estimate:
* NB:

1

P =01X,W) = 1 4 exp(wo + 3w X;)

. .
LR exp(wo + 3w X;)

PO =X W) = T (o + 3 wiX0)




Naive Bayes vs Logistic Regression

Consider Y boolean, X, continuous, X=<X, ... X,>

Number of parameters:
* NB:4n +1
* LR: n+1

Estimation method:
* NB parameter estimates are uncoupled
* LR parameter estimates are coupled

G.Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:

1.X; conditionally independent of X, given Y
2PX 1Y =y = N(uy,0), < not N(w,0)

Consider three learning methods:
*GNB (assumption 1 only)
*GNB2 (assumption 1 and 2)
LR

Which method works better if we have infinite training data, and...

*Both (1) and (2) are satisfied
*Neither (1) nor (2) is satisfied

(1) is satisfied, but not (2)




G.Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:
1.X; conditionally independent of X, given Y
2.PX Y =yq) = N(uy,0), < not N(w,0j)

Consider three learning methods:

*GNB (assumption 1 only)  -- decision surface can be non-linear
*GNB2 (assumption 1 and 2) — decision surface linear
LR -- decision surface linear, trained differently

Which method works better if we have infinite training data, and...

*Both (1) and (2) are satisfied: LR = GNB2 = GNB
*Neither (1) nor (2) is satisfied: LR > GNB2, GNB>GNB2

(1) is satisfied, but not (2) : GNB > LR, LR > GNB2

G.Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]

What if we have only finite training data?
They converge at different rates to their asymptotic (~ data) error

Let €4,n refer to expected error of learning algorithm A after n training
examples

Let d be the number of features: <X, ... X;»

d
€LRn S €ELRc -+ (0 ( E)
logd
EGNBn < €fRoc T+ O ( %)

So, GNB requires n = O(log d) to converge, but LR requires n = O(d)
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from UCI data setss |
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Figure 1: Results of 15 experiments on datasets from the UCT Machine Learnin
repository. Plots are of generalization error vs. m (averaged over 1000 randoi]

train/test splits). Dashed line is logistic regression; solid line is naive Bayes,

Naive Bayes vs. Logistic Regression
The bottom line:

GNB2 and LR both use linear decision surfaces, GNB need not

Given infinite data, LR is better than GNB2 because training
procedure does not make assumptions 1 or 2 (though our
derivation of the form of P(Y|X) did).

But GNB2 converges more quickly to its perhaps-less-accurate
asymptotic error

And GNB is both more biased (assumptionl) and less (no
assumption 2) than LR, so either might beat the other




What you should know:

» Logistic regression
— Functional form follows from Naive Bayes assumptions
* For Gaussian Naive Bayes assuming variance o;, = o;
» For discrete-valued Naive Bayes too

— But training procedure picks parameters without the
conditional independence assumption

— MLE training: pick W to maximize P(Y | X, W)
— MARP training: pick W to maximize P(W | X,Y)
* regularization: e.g., P(W) ~ N(0,0)
* helps reduce overfitting

« Gradient ascent/descent

— General approach when closed-form solutions for MLE, MAP are
unavailable

* Generative vs. Discriminative classifiers
— Bias vs. variance tradeoff
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Regression

So far, we've been interested in learning P(Y|X) where Y has
discrete values (called ‘classification’)

What if Y is continuous? (called ‘regression’)
« predict weight from gender, height, age, ...

+ predict Google stock price today from Google, Yahoo,
MSFT prices yesterday

« predict each pixel intensity in robot’s current camera
image, from previous image and previous action

Regression

Wish to learn f:X->Y, where Y is real, given {<x',y'>...<x",y">}
Approach:

1. choose some parameterized form for P(Y|X; 6)
( O is the vector of parameters)

2. derive learning algorithm as MLE or MAP estimate for 6




1. Choose parameterized form for P(Y|X; 6)
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Assume Y is so%d_ejgmlsﬂcKMrandom noise
(ado sy = f(z) 4 € where € ~ N(0,0)
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Therefore Y is a random variable that follows the distribution

plyle) = N(f(@),0) | = |/ )

° W0+Wf7<

and the expected value of y for any given x is f(x)

Consider Linear Regression

plylz) = N(f(z),0)

E.g., assume f(x) is linear function of x
p(ylz) = N(wy + wiz, o)
Ely|z] = wo + wrz

Notation: to make our parameters explicit, let's write
W =< wgy, wy >
p(ylz; W) = N(wg + wiz, o)




Training Linear Regression:

p(ylz; W) = N(wy + wiz, 0)

How can we learn W from the training data?

Training Linear Regression:,

p(ylz; W) = N(w + wiz, 0)

How can we learn W from the training data?

. V// m!"\ll; Cyxa W
Wucre = arg mV[E}XHP(y z, W

— | AP
WuceLe = arg ngX; np(y'|z’, W)

L Maxi Conditional Likelihood Estimate!
earn Maximum Con ||ona/%glwoo up{

where |
1y—f(z;W)\2
pylz; W) =/—— e 20 )
(ylz; W) —
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Training Linear Regression:
Learn Maximum Conditional Likelihood Estimate:;,c,/f’*”;”2'°’
_ 0,1 L R P L
Wycre = argmuz;x;lnp(y |z, W) a‘ﬁ‘ﬁﬂﬁj/\“

Training Linear Regression:

Learn Maximum Conditional Likelihood Estimate:}(‘;i’»«i,,,,.,/:

— 1 )
WcLs arnggXZl: np(y'|z’, W)

where 1 _1u=f@W)y2
x7 = (A 2 [
Plls W) = ——;

. _ : _ . 2
sO.  Wycerr = arg min ;(y f(z; W)




Training Linear Regression:

Learn Maximum Conditional Likelihood Estimate:f,,;f’*i”39

_ : Y 2
Whyeore = arg min ;(y f(z; W)
Can we derive gradient descent rule for training?

0y — flmW))* _ Oy — f(z W)
o = le 2Ay = fla; W)=~

& (@ W)
- le =2y — flas W)=~

How about MAP instead of MLE estimate?
W = arg max AR(W) + El: In P(Y'| X" W)

RW)=[W|5=> w}
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Regression — What you should know
Under general assumption  p(y|z; W) = N(f(z; W), 0)

MLE corresponds to minimizing sum of squared prediction errors
MAP estimate minimizes SSE plus sum of squared weights

Again, learning is an optimization problem once we choose our
objective function

* maximize data likelihood

* maximize posterior prob of W

Again, we can use gradient descent as a general learning algorithm
+ as long as our objective fn is differentiable wrt W

+ though we might learn local optima ins

Almost nothing we said here required that f(x) be linear in x

Bias/Variance Decomposition of Error
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Bias and Variance

given some estimator Y for some parameter 6, we
define

the bias of estimator Y = E[Y]| — 6
the variance of estimator Y = E[(Y — E[Y])Q]

e.g., define Y as the MLE estimator for probability of
heads, based on n independent coin flips

biased or unbiased?

variance decreases as sqrt(1/n)

Bias — Variance decomposition of error
Reading: Bishop chapter 9.1, 9.2

» Consider simple regression problem f:X-2>Y
y=f(x)+e

\
‘ noise N(0,0)

deterministic
What are sources of prediction error?

Ep [ |, @) = 1@ ptlyp(a)dyda

learned
estimate of f(x)
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Sources of error

» What if we have perfect learner, infinite
data?
— Our learned h(x) satisfies h(x)=f(x)
— Still have remaining, unavoidable error

o2

Sources of error

» What if we have only n training examples?
« What is our expected error

— Taken over random training sets of size n,
drawn from distribution D=p(x,y)

Bp [ | [ (@) = 7@ pCuleIp(e)dyda
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Sources of error

Ep [ |, L@ = F@)p(slaIp(a)dyda

= unavotrdable Error + bias? + variance

bias? = [(Eplh(@)] - £(2))?p(w)da

variance = /ED[(h(:c) — Ep[h(2)])?]p(z)dx
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