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Machine Learning 10-701 
Tom M. Mitchell 

Machine Learning Department 
Carnegie Mellon University 

February 1, 2011 

Today: 
•  Generative – discriminative 

classifiers 
•  Linear regression 
•  Decomposition of error into 

bias, variance, unavoidable 

Readings: 

•  Mitchell: “Naïve Bayes and 
Logistic Regression” 

     (see class website) 
•  Ng and Jordan paper (class 

website) 
•  Bishop, Ch 9.1, 9.2 

•  Consider learning f: X  Y, where 
•  X is a vector of real-valued features, < X1 … Xn > 
•  Y is boolean 
•  assume all Xi are conditionally independent given Y 
•  model P(Xi | Y = yk) as Gaussian N(µik,σi) 
•  model P(Y) as Bernoulli (π) 

•  Then P(Y|X) is of this form, and we can directly estimate W 

•  Furthermore, same holds if the Xi are boolean 
•  trying proving that to yourself 

•  Train by gradient ascent estimation of w’s (no assumptions!) 

Logistic Regression 
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MLE vs MAP  
•  Maximum conditional likelihood estimate 

•  Maximum a posteriori estimate with prior W~N(0,σI) 

Generative vs. Discriminative Classifiers 

Training classifiers involves estimating f: X  Y, or P(Y|X) 

Generative classifiers (e.g., Naïve Bayes) 
•  Assume some functional form for P(Y), P(X|Y)  
•  Estimate parameters of P(X|Y), P(Y) directly from training data 
•  Use Bayes rule to calculate P(Y=y |X= x) 

Discriminative classifiers (e.g., Logistic regression) 
•  Assume some functional form for P(Y|X) 
•  Estimate parameters of P(Y|X) directly from training data 

•  NOTE! even though our derivation of the form of P(Y|X) made GNB-
style assumptions, the training procedure for Logistic Regression 
does not! 
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Use Naïve Bayes or Logisitic Regression? 

Consider 
•  Restrictiveness of modeling assumptions 

•  Rate of convergence (in amount of 
training data) toward asymptotic 
hypothesis  
–  i.e., the learning curve 

Naïve Bayes vs Logistic Regression 
Consider Y boolean, Xi continuous, X=<X1 ... Xn> 

Number of parameters to estimate: 
•  NB:   

•  LR:   
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Naïve Bayes vs Logistic Regression 
Consider Y boolean, Xi continuous, X=<X1 ... Xn> 

Number of parameters: 
•  NB: 4n +1 
•  LR: n+1 

Estimation method: 
•  NB parameter estimates are uncoupled 
•  LR parameter estimates are coupled 

G.Naïve Bayes vs. Logistic Regression 

Recall two assumptions deriving form of LR from GNBayes: 
1. Xi conditionally independent of Xk given Y 
2. P(Xi | Y = yk)  =  N(µik,σi),    not N(µik,σik) 

Consider three learning methods: 
• GNB (assumption 1 only) 
• GNB2 (assumption 1 and 2) 
• LR  

Which method works better if we have infinite training data, and... 

• Both (1) and (2) are satisfied 

• Neither (1) nor (2) is satisfied 

• (1) is satisfied, but not (2)  

[Ng & Jordan, 2002] 
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G.Naïve Bayes vs. Logistic Regression 

Recall two assumptions deriving form of LR from GNBayes: 
1. Xi conditionally independent of Xk given Y 
2. P(Xi | Y = yk)  =  N(µik,σi),    not N(µik,σik) 

Consider three learning methods: 
• GNB (assumption 1 only)     -- decision surface can be non-linear 
• GNB2 (assumption 1 and 2) – decision surface linear 
• LR                                         -- decision surface linear, trained differently 

Which method works better if we have infinite training data, and... 

• Both (1) and (2) are satisfied:    LR = GNB2 = GNB 

• Neither (1) nor (2) is satisfied:   LR > GNB2,   GNB>GNB2 

• (1) is satisfied, but not (2) :        GNB > LR,   LR > GNB2  

[Ng & Jordan, 2002] 

G.Naïve Bayes vs. Logistic Regression 

What if we have only finite training data? 

They converge at different rates to their asymptotic (∞ data) error 

Let          refer to expected error of learning algorithm A after n training 
examples 

Let d be the number of features: <X1 … Xd> 

So, GNB requires n = O(log d) to converge, but LR requires n = O(d) 

[Ng & Jordan, 2002] 
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Some experiments 
from UCI data sets 

[Ng & Jordan, 2002]  

Naïve Bayes vs. Logistic Regression 
The bottom line: 

GNB2 and LR both use linear decision surfaces, GNB need not 

Given infinite data, LR is better than GNB2 because training 
procedure does not make assumptions 1 or 2 (though our 
derivation of the form of P(Y|X) did). 

But GNB2 converges more quickly to its perhaps-less-accurate 
asymptotic error 

And GNB is both more biased (assumption1) and less (no 
assumption 2) than LR, so either might beat the other 
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What you should know: 

•  Logistic regression 
–  Functional form follows from Naïve Bayes assumptions 

•  For Gaussian Naïve Bayes assuming variance σi,k = σi 
•  For discrete-valued Naïve Bayes too 

–  But training procedure picks parameters without the 
conditional independence assumption 

–  MLE training: pick W to maximize P(Y | X, W) 
–  MAP training: pick W to maximize P(W | X,Y) 

•  regularization:   e.g., P(W)  ~ N(0,σ) 
•  helps reduce overfitting  

•  Gradient ascent/descent 
–  General approach when closed-form solutions for MLE, MAP are 

unavailable 

•  Generative vs. Discriminative classifiers 
–  Bias vs. variance tradeoff 

Machine Learning 10-701 
Tom M. Mitchell 

Machine Learning Department 
Carnegie Mellon University 

February 1, 2011 

Today: 
•  Linear regression 
•  Decomposition of error into 

bias, variance, unavoidable 

Readings: 
•  Mitchell: “Naïve Bayes and 

Logistic Regression” 
     (see class website) 
•  Ng and Jordan paper (class 

website) 
•  Bishop, Ch 9.1, 9.2 
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Regression 
So far, we’ve been interested in learning P(Y|X) where Y has 

discrete values (called ‘classification’) 

What if Y is continuous? (called ‘regression’) 
•  predict weight from gender, height, age, … 

•  predict Google stock price today from Google, Yahoo, 
MSFT prices yesterday 

•  predict each pixel intensity in robot’s current camera 
image, from previous image and previous action 

Regression 
Wish to learn f:XY, where Y is real, given {<x1,y1>…<xn,yn>} 

Approach: 

1.  choose some parameterized form for P(Y|X; θ) 
( θ is the vector of parameters) 

2.  derive learning algorithm as MLE or MAP estimate for θ 
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1. Choose parameterized form for P(Y|X; θ) 

Assume Y is some deterministic f(X), plus random noise 

Therefore Y is a random variable that follows the distribution 

and the expected value of y for any given x is f(x) 

Y 

X 

where 

Consider Linear Regression 

E.g., assume f(x) is linear function of x 

Notation: to make our parameters explicit, let’s write 



10 

Training Linear Regression 

How can we learn W from the training data? 

Training Linear Regression 

How can we learn W from the training data? 

Learn Maximum Conditional Likelihood Estimate! 

where 
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Training Linear Regression 
Learn Maximum Conditional Likelihood Estimate 

where 

Training Linear Regression 
Learn Maximum Conditional Likelihood Estimate 

where 

so: 
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Training Linear Regression 
Learn Maximum Conditional Likelihood Estimate 

Can we derive gradient descent rule for training? 

How about MAP instead of MLE estimate? 
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Regression – What you should know 
Under general assumption 

1.  MLE corresponds to minimizing sum of squared prediction errors 

2.  MAP estimate minimizes SSE plus sum of squared weights 

3.  Again, learning is an optimization problem once we choose our 
objective function 
•  maximize data likelihood 
•  maximize posterior prob of W 

4.  Again, we can use gradient descent as a general learning algorithm 
•  as long as our objective fn is differentiable wrt W 
•  though we might learn local optima ins  

5.  Almost nothing we said here required that f(x) be linear in x    

Bias/Variance Decomposition of Error 
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Bias and Variance 

given some estimator Y for some parameter θ, we 
define 

the bias of estimator Y =  
the variance of estimator Y = 

e.g., define Y as the MLE estimator for probability of 
heads, based on n independent coin flips 

biased or unbiased? 

variance decreases as sqrt(1/n) 

•  Consider simple regression problem f:XY  
y = f(x) + ε


What are sources of prediction error? 

noise N(0,σ) 

deterministic 

Bias – Variance decomposition of error  
Reading: Bishop chapter 9.1, 9.2 

learned 
estimate of f(x)  
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Sources of error 
•  What if we have perfect learner, infinite 

data? 
– Our learned h(x) satisfies h(x)=f(x) 
– Still have remaining, unavoidable error 

                                  σ2 

Sources of error 
•  What if we have only n training examples? 
•  What is our expected error 

– Taken over random training sets of size n, 
drawn from distribution D=p(x,y)
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Sources of error 


