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Today:  
Learning representations III 

•  Deep Belief Networks 
•  ICA 
•  CCA 

•  Neuroscience example 
•  Latent Dirichlet Allocation 

Readings: 
•    

Deep Belief Networks 

•  Problem: training networks with many hidden layers 
doesn’t work very well 
–  local minima, very slow training if initialize with zero weights 

•  Deep belief networks 
–  autoencoder networks to learn low dimensional encodings  

–  but more layers, to learn better encodings 

[Hinton & Salakhutdinov, Science, 2006] 
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original image 

reconstructed from 
2000-1000-500-30 DBN 
reconstructed from  
2000-300, linear PCA 

[Hinton & Salakhutdinov, 2006] 
Deep Belief Networks 

versus 

logistic transformations linear transformations 

Encoding of digit images in two dimensions 

784-2 linear encoding (PCA) 784-1000-500-250-2 DBNet 

[Hinton & Salakhutdinov, 2006] 
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Restricted Boltzman Machine 

•  Bipartite graph, logistic activation 
•  Inference: fill in any nodes, estimate other nodes 
•  consider vi, hj are boolean variables 

v1 v2 vn … 

h1 h2 h3 

Deep Belief Networks: Training 
[Hinton & Salakhutdinov, 2006] 
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Independent Components Analysis (ICA) 

•  PCA seeks orthogonal directions <Y1 … YM> in feature 
space X that minimize reconstruction error 

•  ICA seeks directions <Y1 … YM> that are most statistically 
independent.  I.e., that minimize I(Y), the mutual 
information between the Yj : 

x x 

Dimensionality reduction across multiple datasets 

•  Given data sets A and B, find linear projections of each 
into a common lower dimensional space! 
–  Generalized SVD: minimize sq reconstruction errors of both 
–  Canonical correlation analysis: maximize correlation of A and B in 

the projected space 

data set A  data set B 

learned shared representation 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[slide courtesy of Indra Rustandi] 

An Example Use of CCA 

Generative theory     of word 
representation arbitrary word  predicted brain 

activity 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fMRI activation for “bottle”: 

Mean activation averaged over 60 different stimuli: 

“bottle” minus mean activation: 

fMRI 
activation  

high 

below 
average 

average 

bottle 

Idea: Predict neural activity from corpus statistics of stimulus word 

Generative theory 

predicted activity 
for “telephone” “telephone” 

Statistical features 
from a trillion-word 

text corpus 

Mapping learned 
from fMRI data 

[Mitchell et al., Science, 2008] 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Semantic feature values: 
“celery” 
 0.8368, eat  
 0.3461, taste 
 0.3153, fill 
 0.2430, see  
 0.1145, clean 
 0.0600, open 
 0.0586, smell 
 0.0286, touch 
 … 
 … 
 0.0000, drive 
 0.0000, wear 
 0.0000, lift 
 0.0000, break 
 0.0000, ride 

Semantic feature values: 
“airplane” 
 0.8673, ride 
 0.2891, see 
 0.2851, say 
 0.1689, near   
 0.1228, open 
 0.0883, hear 
 0.0771, run 
 0.0749, lift 
 … 
 … 
 0.0049, smell 
 0.0010, wear 
 0.0000, taste 
 0.0000, rub 
 0.0000, manipulate 

Predicted Activation is Sum of Feature Contributions 

Predicted 
Celery = + 0.35 0.84 

Predicted “Celery” 

“eat” “taste” 

+ 0.32 + … 

“fill” 

high 

low 

c14382,eat 

learned 

feat(celery) 

from corpus 
statistics 

500,000 learned 
parameters 



8 

“celery” “airplane” 

Predicted: 

Observed: 

fMRI 
activation  

high 

below 
average 

average 

Predicted and observed fMRI images for “celery” and “airplane” 
after training on 58 other words.   

Evaluating the Computational Model 

•  Train it using 58 of the 60 word stimuli 
•  Apply it to predict fMRI images for other 2 words 
•  Test: show it the observed images for the 2 held-out, 

and make it predict which is which 

1770 test pairs in leave-2-out: 
–  Random guessing  0.50 accuracy 
–  Accuracy above 0.61 is significant (p<0.05) 

celery? 

airplane? 
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Q4: What are the actual semantic primitives from 
which neural encodings are composed?  

predicted neural 
representation 

word 

25 verb  
co-occurrence 
counts??!? 

verb co-
occurrence 
features 

predict neural 
representation 

Alternative semantic feature sets 
PREDEFINED corpus features Mean Acc. 

25 verb co-occurrences .79 

486 verb co-occurrences  .79 

50,000 word co-occurences .76 

300 Latent Semantic Analysis features .73 

50 corpus features from Collobert&Weston ICML08 .78 

218 features collected using Mechanical Turk* .83 

20 features discovered from the data** .87 

*   developed by Dean Pommerleau 
** developed by Indra Rustandi 
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Discovering shared semantic basis   

word w 

learned*         
intermediate semantic 

features 

subj 1, word+pict predict representation 

subj 9, word+pict predict representation 

subj 10, word only predict representation 

subj 20, word only predict representation 

…
 

…
 

…
 

…
 

218 base  
features 

20 learned  
latent 
features  

…
 

…
 

[Rustandi et al., 2009] 

* trained using Canonical Correlation Analysis 

independent of study/subject 

specific to study/subject 

Multi-study (WP+WO) Multi-subject (9+11) CCA 
Top Stimulus Words 

component 1
 component 2
 component 3
 component 4


most 
active 
stimuli


apartment

church

closet

house

barn


screwdriver

pliers


refrigerator

knife


hammer


telephone

butterfly

bicycle

beetle

dog


pants

dress

glass

coat

chair


shelter?
 manipulation?
 things that 
touch me? 
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Subject 1 (Word-Picture stimuli) 
Multi-study (WP+WO) Multi-subject (9+11) CCA 

Component 1 

Subject 1 (Word-ONLY stimuli) 
Multi-study (WP+WO) Multi-subject (9+11) CCA 

Component 1 


