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Machine Learning 10-701 
Tom M. Mitchell 

Machine Learning Department 
Carnegie Mellon University 

March 29, 2011 

Today:  
Learning representations II 

•  Artificial neural networks 
•  PCA 
•  ICA 
•  CCA 

Readings: 
•  Bishop Ch. 12 through 12.1 

•  “A Tutorial on PCA,’ J. Schlens 

•  Wall et al., 2003 
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Semantic Memory Model Based on ANN’s 
[McClelland & Rogers, Nature 2003] 

Train with assertions, 
e.g., Can(Canary,Fly) 
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Humans act as though they have a hierarchical memory 
organization 

1.  Victims of Semantic Dementia progressively lose knowledge of objects 
 But they lose specific details first, general properties later, suggesting 
hierarchical memory organization 
   

Thing 
Living 

Animal Plant 

NonLiving 

Bird Fish 

Canary 

2.  Children appear to learn general 
categories and properties first, following 
the same hierarchy, top down*.  

* some debate remains on this.


Question: What learning mechanism could produce this emergent hierarchy? 

Memory deterioration follows semantic hierarchy 
[McClelland & Rogers, Nature 2003] 
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ANN Also Models Progressive Deterioration  
[McClelland & Rogers, Nature 2003] 

average effect of noise in inputs to hidden layers 
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Training Networks on Time Series 

•  Suppose we want to predict next state of world 
–  and it depends on history of unknown length 
–  e.g., robot with forward-facing sensors trying to predict next 

sensor reading as it moves and turns 

Training Networks on Time Series 

•  Suppose we want to predict next state of world 
–  and it depends on history of unknown length (non-Markovian) 
–  e.g., robot with forward-facing sensors trying to predict next 

sensor reading as it moves and turns 

•  Idea: use hidden layer in network to capture state history 
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Training Networks on Time Series 

How can we train recurrent net?? 

Summary: Neural Networks 

•  Represent highly non-linear decision surfaces 
•  Learn f: X  Y, where Y is vector (e.g., image) 
•  Hidden layer represents re-representation of input 

–  to optimize prediction accuracy (minimize sum sq error) 

•  Role in modeling human cognition 

•  Local minimum problems solving for MLE/MAP 
parameters using gradient descent 
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Learning Lower Dimensional Representations 

•  Supervised learning of lower dimension representation 
–  Hidden layers in Neural Networks 
–  Fisher linear discriminant 

•  Unsupervised learning of lower dimension representation 
–  Principle Components Analysis (PCA) 
–  Independent components analysis (ICA) 
–  Canonical correlation analysis (CCA) 

Principle Components Analysis 

•  Idea:  
–  Given data points in d-dimensional space, project into lower 

dimensional space while preserving as much information as 
possible 

•  E.g., find best planar approximation to 3D data 
•  E.g., find best planar approximation to 104 D data 

–  In particular, choose projection that minimizes the squared error 
in reconstructing original data 
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Principle Components Analysis 

•  Like auto-encoding neural networks, learn re-
representation of input data that can best reconstruct it 

•  learned encoding is linear function of inputs (not logistic) 
•  No local minimum problems when training! 
•  Given d-dimensional data X, learns d-dimensional 

representation, where 
–  the dimensions are orthogonal 
–  top k dimensions are the k-dimensional linear re-representation 

that minimizes reconstruction error (sum of squared errors) 

x x 

PCA:  

PCA Example 

faces eigenfaces 

Thanks to Christopher DeCoro  
see http://www.cs.princeton.edu/~cdecoro/eigenfaces/ 

facei = Σk cik eigenfacek 
face face 
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Reconstructing a face from 
the first N components 
(eigenfaces) 

Adding 1 additional 
PCA component at 
each step  

Adding 8 additional 
PCA components 
at each step  

w0 

left strt right up 
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PCA: Find Projections to Minimize Reconstruction Error 

Assume data is set of d-dimensional vectors, where nth vector is 

We can represent these in terms of any d orthogonal vectors u1 … ud 

x1 

x2 

u2 

u1 PCA: given M<d.  Find  

that minimizes 

where  

Mean  

PCA 

x1 

x2 

u2 
u1 

Note we get zero error if M=d, so all error is due to missing components. 

Therefore,  

PCA: given M<d.  Find  

that minimizes 

where  

Covariance matrix: 

This minimized when ui 
is eigenvector of Σ, the 
covariance matrix of X.  
i.e., minimized when: 
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PCA 

x1 

x2 

u2 
u1 

Minimize 

Eigenvector of Σ

Eigenvalue (scalar)


PCA algorithm 1: 

1.  X  Create N x d data matrix, with 
one row vector xn per data point 

2.  X  subtract mean x from each row 
vector xn in X 

3.  Σ  covariance matrix of X 

4.  Find eigenvectors and eigenvalues 
of Σ


5.  PC’s  the M eigenvectors with 
largest eigenvalues 

PCA Example 

mean 
First 
eigenvector 

Second 
eigenvector 
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PCA Example 

mean 
First 
eigenvector 

Second 
eigenvector 

Reconstructed data using 
only first eigenvector (M=1) 

Very Nice When Initial Dimension Not Too Big 

What if very large dimensional data? 

•  e.g., Images (d ¸ 10^4) 

Problem: 

•  Covariance matrix Σ is size (d x d) 

•  d=104    | Σ | = 108 

Singular Value Decomposition (SVD) to the rescue! 

•  pretty efficient algs available, including Matlab SVD 

•  some implementations find just top N eigenvectors 
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[from Wall et al., 2003] 

SVD 

Data X, one 
row per data 
point 

Rows of VT are unit 
length eigenvectors of 
XTX 

If cols of X have zero 
mean, then XTX = c Σ 
and eigenvects are the 
Principle Components


S is diagonal, 
Sk > Sk+1,     
Sk

2 is kth 
largest 
eigenvalue 

US gives 
coordinates 
of rows of X 
in the space 
of principle 
components 

Singular Value Decomposition 

To generate principle components: 

•  Subtract mean                         from each data point, to  
    create zero-centered data 
•  Create matrix X with one row vector per (zero centered) 

data point 
•  Solve SVD:  X = USVT 

•  Output Principle components: columns of V (= rows of VT) 
–  Eigenvectors in V are sorted from largest to smallest eigenvalues 
–  S is diagonal, with sk

2 giving eigenvalue for kth eigenvector 
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Singular Value Decomposition 

To project a point (column vector x) into PC coordinates: 
    VT x 

If xi is ith row of data matrix X, then  
•  (ith row of US) = VT xi

T 

•  (US)T = VT XT 

To project a column vector x to M dim Principle Components 
subspace, take just the first M coordinates of VT x 

Independent Components Analysis (ICA) 

•  PCA seeks orthogonal directions <Y1 … YM> in feature 
space X that minimize reconstruction error 

•  ICA seeks directions <Y1 … YM> that are most statistically 
independent.  I.e., that minimize I(Y), the mutual 
information between the Yj : 

x x 


