Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

March 29, 2011

Today: Readings:

Learning representations || « Bishop Ch. 12 through 12.1
Artificial neural networks * “A Tutorial on PCA,’ J. Schlens
PCA * Wall et al., 2003

ICA
CCA

Neural Nets for Face Recognition
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Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces




Learned Hidden Unit Weights
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Typical input images

http://www.cs.cmu.edu/~tom/faces.html
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Semantic Memory Model Based on ANN’s &
[McClelland & Rogers, Nature 2003] / :
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Humans act as though they have a hierarchical memory
organization

1. Victims of Semantic Dementia progressively lose knowledge of objects

But they lose specific details first, general properties later, suggesting
hierarchical memory organization

Thing
PR /\
NonLiving |>VIQ
2. Children appear to learn general N Plant Animal
categories and properties first, following
the same hierarchy, top down’. Fish Bird
Canary

Question: What learning mechanism could produce this emergent hierarchy?

* some debate remains on this.

Memory deterioration follows semantic hierarchy
[McClelland & Rogers, Nature 2003]
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Figure 4 | The process of differentiation of conceptual representations. The representations are those seen in the feedforward
network model shown in FIG. 3. a | Acquired patterns of activation that represent the eight objects in the training set at three pointsin
the leaming process (epochs 250, 750 and 2,500). Early in leaming, the pattems are undifferentiated; the first difference to appear is
between plants and animals. Later, the patterns show clear differentiation at both the superordinate (plant-animal) and intermediate
(bird—fish/tree—flower) levels. Finally, the individual concepts are differentiated, but the overall hierarchical organization of the similarity
structure remains. b | A standard hierarchical clustering analysis program has been used to visualize the similarity structure in the

ANN Also Models Progressive Deterioration
[McClelland & Rogers, Nature 2003]

=~ Canary-CAN-Grow
Canary-CAN-Move o
=== Canary-CAN-Fly
0.4 Canary-CAN-Sing O
Pine-HAS-Leaves

Activation

0.2 —

0.0 H

T T T T T T T
0 1 2 3 4 5 6

Noise

average effect of noise in inputs to hidden layers




Training Networks on Time Series

» Suppose we want to predict next state of world
— and it depends on history of unknown length

— e.g., robot with forward-facing sensors trying to predict next
sensor reading as it moves and turns

Training Networks on Time Series

» Suppose we want to predict next state of world
— and it depends on history of unknown length (non-Markovian)

— e.g., robot with forward-facing sensors trying to predict next
sensor reading as it moves and turns

 |dea: use hidden layer in network to capture state history

*w +1 * ¥t + 1)

x(1)

(«) Feedforward network (b) Recurrent network




Training Networks on Time Series

* ¥ +1)

How can we train recurrent net??

+ yr+1)

Hr=1) clr=1)

(c) Recurrent network
unfolded in time

Summary: Neural Networks

» Represent highly non-linear decision surfaces
+ Learnf: X =2 Y, where Y is vector (e.g., image)

» Hidden layer represents re-representation of input
— to optimize prediction accuracy (minimize sum sq error)

* Role in modeling human cognition

* Local minimum problems solving for MLE/MAP
parameters using gradient descent




Learning Lower Dimensional Representations

» Supervised learning of lower dimension representation
— Hidden layers in Neural Networks
— Fisher linear discriminant

* Unsupervised learning of lower dimension representation
— Principle Components Analysis (PCA)
— Independent components analysis (ICA)
— Canonical correlation analysis (CCA)

Principle Components Analysis

* |dea:

— Given data points in d-dimensional space, project into lower
dimensional space while preserving as much information as
possible

« E.g., find best planar approximation to 3D data
 E.g., find best planar approximation to 10* D data

— In particular, choose projection that minimizes the squared error
in reconstructing original data




Principle Components Analysis

+ Like auto-encoding neural networks, learn re-
representation of input data that can best reconstruct it

PCA:

* learned encoding is linear function of inputs (not /ogistic)
. [L No local minimum problems when training!

* Given d-dimensional data X, learns d-dimensional
representation, where P
— the dimensions are orthogonal

— top k dimensions are the k-dimensional linear re-representation
that minimizes reconstruction error (sum of squared errors)

PCA Example

V.
face, = %, c, eigenface,
==

faces

Thanks to Christopher DeCoro
see http://www.cs.princeton.edu/~cdecoro/eigenfaces/




Reconstructing a face from
the first N components
(eigenfaces)

Adding La_@itional
PCA component at
each step

625/
o P
this next image, we show a similar picture, but with each

additional face representing an additional 8 principle components.

You can see that it takes a rather large number of images before
the picture looks totally correct.

Adding 8 additional
PCA components \
at each step
104

Learned Hidden Unit Weights
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PCA: Find Projections to Minimize Reconstruction Error

Assume data is set of d-dimensional vectors, where nth vector is

X" = (z7...2])
— .
We can represent these in terms of any d orthogonal vectors u; ... uy

d
x" =Y 2l uZTuj = 6;;
i=1

PCA: given M<d. Find (uj...u) B\ @)
N
that minimizes Ep = > |[x" — &2 Jhg x wg"'
M n=1 \ L(o“'\fr( s

where " = x + Z ziuy oy *

| i=1

Mean

1 N Xy

X=— x"
Nn:l

PCA
,
“
PCA: given M<d. Find (ui...up)
N
that minimizes By = Y [Ix" — %"||? wﬂﬁ =
n=1 4
M Yol
here <" — = ny o5 &/~
where g x+i; 2 ia'ﬁ"ms(A‘moﬁ'M v

4
Note we get zero error if M=d,%all error is due to missing components.

Therefore, d N _
Ey=_Y Y [fE"-%)?
— n=1

d //" L
is eigenvector of X, the

= E uZTZ u; . .
. covariance matrix of X.
i=M+41 . o ;

i.e., minimized when:

Zui = )\Z-uz-

~This minimized when u,

Covariance matrix: = = » (x" — X)(x" — )T

N
Ty =Y (@} — &) (] — ;)
n=1
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PCA

d
Minimize Eyy = > uls u;
i=M-+1

— Zui = Aiui
% “Eigenvector of =

Eigenvalue (scalar) [N ot
9 o
d PCA algorithm 1: w7
— By = . Z Aj 1. X € Create N x d data matrix, with
i=M+1 one row vector x" per data point

2. X € subtract mean x from each row
vector x” in X

3. X € covariance matrix of X

4. Find eigenvectors and eigenvalues
of X

5. PC’s €& the M eigenvectors with
largest eigenvalues

PCA Example

M
SN - o n
=X+ E zZ;u;
i=1

=lolx| =8|
Fle Edt View Insert Tools Desktop Window Help £ File Edit View Insert Tools Desktop Window Help >
peEsk *ays € 08O DeEak*aas (0880

9 l

8 o 8 o]

7 ] 7 o]

- o] B mean o] .

\ <_F_|rst

5 5 eigenvector

4 o] o] 4 o o

=l o 3 o]

Second

2t o % - eigenvector

1 1

0 0

0 1 B 3 4 5 3 7 8 9 1) 1 2 3 4 5 6 7 8 9

11



PCA Example
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Very Nice When Initial Dimension Not Too Big

What if very large dimensional data?

*e.g., Images (d , 104)

Problem:

+ Covariance matrix X is size (d x d)

—

. d=10% > |z|=@

Singular Value Decomposition (SVD) to the rescue!

» pretty efficient algs available, including Matlab SVD

« some implementations find just top N eigenvectors
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SVD

X=USV"
FEigenassay
A
n u \ I[ n
— ‘-\'[( |
— >%
g
m
mxn mxn nxn
Data X, one US gives S is diagonal,
row per data coordinates S, > S,
point of rows of X 5.2 is kth
in the space largest
of principle eigenvalue
components

’

[from Wall et al., 2003]

Ei Igt ngt ne
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Rows of ¥'7 are unit
length eigenvectors of
XX

If cols of X have zero
mean, then X’X =c¢ ¥
and eigenvects are the
Principle Components

Singular Value Decomposition

To generate principle components:

« Subtract mean X= Z x"
create zero- centered data

from each data point, to

» Create matrix X with one row vector per (zero centered)

data point
» Solve SVD: X = USV"

» Output Principle components: columns of V' (= rows of }7)
— Eigenvectors in V are sorted from largest to smallest eigenvalues
— Sis diagonal, with s,? giving eigenvalue for kth eigenvector
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Singular Value Decomposition

To project a point (column vector x) into PC coordinates:
VT x
N X =0 S VT
If x; is i'" row of data matrix X, then
* (" row of US) = V' xT
« (US)T=VTXT

To project a column vector x to M dim Principle Components
subspace, take just the first M coordinates of V7 x

Independent Components Analysis (ICA)

+ PCA seeks orthogonal directions <Y, ... ¥,,> in feature
space X that minimize reconstruction error

+ ICA seeks directions <Y, ... Y, > that are most statistically
independent. |.e., that minimize /(Y), the mutual
information between the Y :

J
I(Y) = LZ H(Yj)

)

—H(Y)
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