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1 About this tutorial

This is a printable version of a tutorial in HTML format. The tutorial may be
modified at any time as will this version. The latest version of this tutorial is
available athttp://people.imt.liu.se/˜magnus/cca/ .
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2 Introduction

Canonical correlation analysis (CCA) is a way of measuring the linear relationship
between two multidimensional variables. It finds two bases, one for each variable,
that are optimal with respect to correlations and, at the same time, it finds the
corresponding correlations. In other words, it finds the two bases in which the
correlation matrix between the variables is diagonal and the correlations on the
diagonal are maximized. The dimensionality of these new bases is equal to or less
than the smallest dimensionality of the two variables.

An important property of canonical correlations is that they are invariant with
respect to affine transformations of the variables. This is the most important differ-
ence between CCA and ordinary correlation analysis which highly depend on the
basis in which the variables are described.

CCA was developed by H. Hotelling [10]. Although being a standard tool
in statistical analysis, where canonical correlation has been used for example in
economics, medical studies, meteorology and even in classification of malt whisky,
it is surprisingly unknown in the fields of learning and signal processing. Some
exceptions are [2, 13, 5, 4, 14],

For further details and applications in signal processing, see my PhD thesis [3]
and other publications.

3 Definition

Canonical correlation analysis can be defined as the problem of finding two sets of
basis vectors, one forx and the other fory, such that the correlations between the
projectionsof the variables onto these basis vectors are mutually maximized.

Let us look at the case where only one pair of basis vectors are sought, namely
the ones corresponding to the largest canonical correlation: Consider the linear
combinationsx = xT ŵx andy = yT ŵy of the two variables respectively. This
means that the function to be maximized is

� =
E[xy]p

E[x2]E[y2]
=

E[ŵT
x xy

T ŵy]q
E[ŵT

x xx
T ŵx]E[ŵT

y yy
T ŵy]

=
wT
xCxywyq

wT
xCxxwxwT

yCyywy

:

(1)

The maximum of� with respect towx andwy is the maximum canonical
correlation. The subsequent canonical correlations are uncorrelated for different
solutions, i.e.8><

>:
E[xixj ] = E[wT

xixx
Twxj] = wT

xiCxxwxj = 0

E[yiyj] = E[wT
yiyy

Twyj ] = wT
yiCyywyj = 0

E[xiyj] = E[wT
xixy

Twyj] = wT
xiCxywyj = 0

for i 6= j: (2)
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The projections ontowx andwy, i.e.x andy, are calledcanonical variates.

4 Calculating canonical correlations

Consider two random variablesx andy with zero mean. The total covariance
matrix

C =

�
Cxx Cxy

Cyx Cyy

�
= E

"�
x

y

��
x

y

�T#
(3)

is a block matrix whereCxx andCxx are the within-sets covariance matrices ofx

andy respectively andCxy = CT
yx is the between-sets covariance matrix.

The canonical correlations betweenx andy can be found by solving the eigen-
value equations (

C�1xxCxyC
�1
yyCyxŵx = �2ŵx

C�1yyCyxC
�1
xxCxyŵy = �2ŵy

(4)

where the eigenvalues�2 are the squaredcanonical correlationsand the eigen-
vectorsŵx and ŵy are the normalized canonical correlationbasis vectors. The
number of non-zero solutions to these equations are limited to the smallest dimen-
sionality ofx andy. E.g. if the dimensionality ofx andy is 8 and 5 respectively,
the maximum number of canonical correlations is 5.

Only one of the eigenvalue equations needs to be solved since the solutions are
related by 8<

:
Cxyŵy = ��xCxxŵx

Cyxŵx = ��yCyyŵy;
(5)

where

�x = ��1y =

s
ŵT
yCyyŵy

ŵT
xCxxŵx

: (6)

5 Relating topics

5.1 The difference between CCA and ordinary correlation analysis

Ordinary correlation analysis is dependent on the coordinate system in which the
variables are described. This means that even if there is a very strong linear rela-
tionship between two multidimensional signals, this relationship may not be visible
in a ordinary correlation analysis if one coordinate system is used, while in another
coordinate system this linear relationship would give a very high correlation.

CCA finds the coordinate system that is optimal for correlation analysis, and
the eigenvectors of equation 4 defines this coordinate system.
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Example: Consider two normally distributed two-dimensional variablesx andy
with unit variance. Lety1+ y2 = x1+x2. It is easy to confirm that the correlation
matrix betweenx andy is

Rxy =

�
0:5 0:5
0:5 0:5

�
: (7)

This indicates a relatively weak correlation of 0.5 despite the fact that there is a
perfect linear relationship (in one dimension) betweenx andy.

A CCA on this data shows that the largest (and only) canonical correlation is
one and it also gives the direction[11]T in which this perfect linear relationship
lies. If the variables are described in the bases given by the canonical correlation
basis vectors (i.e. the eigenvectors of equation 4), the correlation matrix between
the variables is

Rxy =

�
1 0
0 1

�
: (8)

5.2 Relation to mutual information

There is a relation between correlation and mutual information. Since informa-
tion is additive for statistically independent variables and the canonical variates
are uncorrelated, the mutual information betweenx andy is the sum of mutual
information between the variatesxi andyi if there are no higher order statistic de-
pendencies than correlation (second-order statistics). For Gaussian variables this
means

I(x;y) =
1

2
log

�
1Q

i(1� �2i )

�
=

1

2

X
i

log

�
1

(1� �2i )

�
: (9)

Kay [13] has shown that this relation plus a constant holds for all elliptically sym-
metrical distributions of the form

cf((z� �z)TC�1(z� �z)): (10)

5.3 Relation to other linear subspace methods

Instead of the two eigenvalue equations in 4 we can formulate the problem in one
single eigenvalue equation:

B�1Aŵ = �ŵ (11)

where

A =

�
0 Cxy

Cyx 0

�
; B =

�
Cxx 0

0 Cyy

�
and ŵ =

�
�xŵx

�yŵy

�
: (12)

Solving the eigenproblem in equation 11 with slightly different matrices will
give solutions toprincipal component analysis(PCA),partial least squares (PLS)
andmultivariate linear regression (MLR). The matrices are listed in table 1.

4



A B

PCA Cxx I

PLS

�
0 Cxy

Cyx 0

� �
I 0

0 I

�

CCA

�
0 Cxy

Cyx 0

� �
Cxx 0

0 Cyy

�

MLR

�
0 Cxy

Cyx 0

� �
Cxx 0

0 I

�

Table 1: The matricesA andB for PCA, PLS, CCA and MLR.

5.4 Relation to SNR

Correlation is strongly related to signal to noise ratio (SNR), which is a more com-
monly used measure in signal processing. Consider a signalx and two noise signals
�1 and�2 all having zero mean1 and all being uncorrelated with each other. Let
S = E[x2] andNi = E[�2i ] be the energy of the signal and the noise signals
respectively. Then the correlation betweena(x+ �1) andb(x+ �2) is

� =
E [a(x+ �1)b(x+ �2)]p

E [a2(x+ �1)2]E [b2(x+ �2)2]

=
E
�
x2
�

q�
E [x2] +E

�
�2
1

�� �
E [x2] +E

�
�2
2

��
=

Sp
(S +N1)(S +N2)

:

(13)

Note that the amplification factorsa andb do not affect the correlation or the SNR.

5.4.1 Equal noise energies

In the special case where the noise energies are equal, i.e.
N1 = N2 = N , equation 13 can be written as

� =
S

S +N
: (14)

This means that the SNR can be written as

S

N
=

�

1� �
: (15)

1The assumption of zero mean is for convenience. A non-zero mean does not affect the SNR or
the correlation.
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Here, it should be noted that the noise affects the signaltwice, so this relation
between SNR and correlation is perhaps not so intuitive. This relation is illustrated
in figure 1 (top).

5.4.2 Correlation between a signal and the corrupted signal

Another special case is whenN1 = 0 andN2 = N . Then, the correlation between
a signal and a noise-corrupted version of that signal is

� =
Sp

S(S +N)
: (16)

In this case, the relation between SNR and correlation is

S

N
=

�2

1� �2
: (17)

This relation between correlation and SNR is illustrated in figure 1 (bottom).

A Explanations

A.1 A note on correlation and covariance matrices

In neural network literature, the matrixCxx in equation 3 is often called a corre-
lation matrix. This can be a bit confusing, sinceCxx does not contain the correla-
tions between the variables in a statistical sense, but rather the expected values of
the products between them. The correlation betweenxi andxj is defined as

�ij =
E[(xi � �xi)(xj � �xj)]p

E[(xi � �xi)2]E[(xj � �xj)2]
; (18)

see for example[1], i.e. the covariance betweenxi andxj normalized by the geo-
metric mean of the variances ofxi andxj (�x = E[x]). Hence, the correlation is
bounded,�1 � �ij � 1. In this tutorial, correlation matrices are denotedR.

The diagonal terms ofCxx are the second orderorigin moments,E[x2i ], of xi.
The diagonal terms in acovariance matrixare the variances or the second order
centralmoments,E[(xi � �xi)

2], of xi.
The maximum likelihood estimator of� is obtained by replacing the expecta-

tion operator in equation 18 by a sum over the samples. This estimator is sometimes
called thePearson correlation coefficientafter K. Pearson[16].

A.2 Affine transformations

An affine transformation is simply a translation of the origin followed by a linear
transformation. In mathematical terms an affine transformation ofR

n is a map
F : Rn ! R

n of the form

F (p) = Ap+ q 8p 2 R
n

whereA is a linear transformation ofRn andq is a translation vector inRn .
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A.3 A piece of information theory

Consider a discrete random variablex:

x 2 fxig; i 2 f1; 2; : : : ; Ng: (19)

(There is, in practice, no limitation inx being discrete since all measurements have
finite precision.) LetP (xk) be the probability ofx = xk for a randomly chosenx.
The informationcontent in the vector (or symbol)xk is defined as

I(xk) = log

�
1

P (xk)

�
= � logP (xk): (20)

If the basis 2 is used for the logarithm, the information is measured inbits. The def-
inition of information has some appealing properties. First, the information is 0 if
P (xk) = 1; if the receiver of a message knows that the message will bexk, he does
not get any information when he receives the message. Secondly, the information
is always positive. It is not possible to lose information by receiving a message. Fi-
nally, the information is additive, i.e. the information in two independent symbols
is the sum of the information in each symbol:

I(xi;xj) = � log (P (xi;xj)) = � log (P (xi)P (xj))

= � logP (xi)� logP (xj) = I(xi) + I(xj)
(21)

if xi andxj are statistically independent.
The information measure considers eachinstanceof the stochastic variable

x but it does not say anything about the stochastic variable itself. This can be
accomplished by calculating the average information of the stochastic variable:

H(x) =

NX
i=1

P (xi)I(xi) = �

NX
i=1

P (xi) log(P (xi)): (22)

H(x) is called theentropyof x and is a measure ofuncertaintyaboutx.
Now, we introduce a second discrete random variabley, which, for example,

can be an output signal from a system withx as input. Theconditional entropy
[18] of x giveny is

H(xjy) = H(x;y) �H(y): (23)

The conditional entropy is a measure of the average information inx given that
y is known. In other words, it is the remaining uncertainty ofx after observing
y. The average mutual information2 I(x;y) betweenx andy is defined as the
average information aboutx gained when observingy:

I(x;y) = H(x)�H(xjy): (24)
2Shannon48 originally used the termrate of transmission. The termmutual informationwas

introduced later.
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The mutual information can be interpreted as the difference between the uncer-
tainty ofx and the remaining uncertainty ofx after observingy. In other words, it
is the reduction in uncertainty ofx gained by observingy. Inserting equation 23
into equation 24 gives

I(x;y) = H(x) +H(y)�H(x;y) = I(y;x) (25)

which shows that the mutual information is symmetric.
Now letx be a continuous random variable. Then thedifferential entropyh(x)

is defined as [18]

h(x) = �

Z
RN

p(x) log p(x) dx; (26)

wherep(x) is the probability density function ofx. The integral is over all dimen-
sions inx. The average information in a continuous variable would of course be
infinite since there are an infinite number of possible outcomes. This can be seen
if the discrete entropy definition (eq. 22) is calculated in limes whenx approaches
a continuous variable:

H(x) = � lim
Æx!0

1X
i=�1

p(xi)Æx log (p(xi)Æx) = h(x) � lim
Æx!0

log Æx; (27)

where the last term approaches infinity whenÆx approaches zero [8]. But since
mutual information considers the difference in entropy, the infinite term will vanish
and continuous variables can be used to simplify the calculations. The mutual
information between the continuous random variablesx andy is then

I(x;y) = h(x) + h(y) � h(x;y) =

Z
RN

Z
RM

p(x;y) log

�
p(x;y)

p(x)p(y)

�
dxdy;

(28)
whereN andM are the dimensionalities ofx andy respectively.

Consider the special case of Gaussian distributed variables. The differential
entropy of anN -dimensional Gaussian variablez is

h(z) =
1

2
log
�
(2�e)N jCj

�
(29)

whereC is the covariance matrix ofz [3]. This means that the mutual information
between twoN -dimensional Gaussian variables is

I(x;y) =
1

2
log

�
jCxxj jCyyj

jCj

�
; (30)

where

C =

�
Cxx Cxy

Cyx Cyy

�
:

Cxx andCyy are the within-set covariance matrices andCxy = CT
yx is the between-

sets covariance matrix. For more details on information theory, see for example [7].
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A.4 Principal component analysis

Principal component analysis (PCA) is an old tool in multivariate data analysis.
It was used already in 1901 [17]. The principal components are the eigenvectors
of the covariance matrix. The projection of data onto the principal components is
sometimes called the Hotelling transform after H. Hotelling[9] or Karhunen-Lo´eve
transform (KLT) after K. Karhunen and [12] and M. Lo´eve [15]. This transforma-
tion is as an orthogonal transformation that diagonalizes the covariance matrix.

A.5 Partial least squares

partial least squares (PLS) was developed in econometrics in the 1960s by Her-
man Wold. It is most commonly used for regression in the field of chemometrics
[19]. PLS i basically the singular-value decomposition (SVD) of a between-sets
covariance matrix.

For an overview, see for example [6] and [11]. In PLS regression, the principal
vectors corresponding to the largest principal values are used as a new, lower di-
mensional, basis for the signal. A regression ofy ontox is then performed in this
new basis. As in the case of PCA, the scaling of the variables affects the solutions
of the PLS.

A.6 Multivariate linear regression

Multivariate linear regression (MLR) is the problem of finding a set of basis vectors
ŵxi and corresponding regressors�i in order to minimize the mean square error of
the vectory:

�2 = E

"
kyi �

MX
i=1

�iŵ
T
xixk

2

#
(31)

whereM = dim(y). The basis vectors are described by the matrixCxx�1Cxy

which is also known as theWiener filter. A low-rank approximation to this problem
can be defined by minimizing

�2 = E

"
ky �

NX
i=1

�iŵ
T
xixŵyik

2

#
(32)

whereN < M and the orthogonal basiŝwyis span the subspace ofy which gives
the smallest mean square error given the rankN . The basesfŵwig andfŵyig are
given by the solutions to 8<

:
Cxyŵy = �Cxxŵx

Cyxŵx = �2

�
ŵy;

(33)

which can be recognized from equation 11 withA andB from the lower row in
table 1.
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A.7 Signal to noise ratio

The signal to noise ratio (SNR) is the quotient between the signal energy and the
noise energy. It is usually expressed as dB (decibel) which is a logarithmic scale:

SNR= 10 log
S

N

whereS is the signal energy andN is the noise energy.
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Figure 1: Top: The relation between correlation and SNR for two signals each
corrupted by uncorrelated noise. Both noise signals have the same energy.Bottom:
The relation between correlation and SNR. The correlation is measured between a
signal and a noise-corrupted version of that signal.
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