Review: Logistic regression, Gaussian naïve Bayes, linear regression, and their connections

New: Bias-variance decomposition, biasvariance tradeoff, overfitting, regularization, and feature selection

Yi Zhang 10-701, Machine Learning, Spring 2011 February 3rd, 2011

0

Parts of the slides are from previous 10-701 lectures

Outline

- Logistic regression
- Decision surface (boundary) of classifiers
- Generative vs. discriminative classifiers
- Linear regression
- Bias-variance decomposition and tradeoff
- Overfitting and regularization
- Feature selection

Outline

- Logistic regression
 - Model assumptions: P(Y|X)
 - Decision making
 - Estimating the model parameters
 - Multiclass logistic regression
- Decision surface (boundary) of classifiers
- Generative vs. discriminative classifiers
- Linear regression
- Bias-variance decomposition and tradeoff
- Overfitting and regularization
- Feature selection

Logistic regression: assumptions

Binary classification

• **f**:
$$X = (X_1, X_2, \dots, X_n) \rightarrow Y \in \{0, 1\}$$

• Logistic regression: assumptions on P(Y|X): $P(Y = 0 | \mathbf{X}, \mathbf{w}) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$

• And thus:

$$P(Y = 1 | \mathbf{X}, \mathbf{w}) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$
$$\left(= \frac{1}{1 + exp(-w_0 - \sum_i w_i X_i)}\right)$$

Logistic regression: assumptions

Model assumptions: the form of P(Y|X)

$$P(Y = 0 | \mathbf{X}, \mathbf{w}) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

- "Logistic" regression
 - P(Y|X) is the *logistic function* applied to a linear function of X

$$\frac{1}{1 + exp(-z)}$$

Decision making

• Given a logistic regression **w** and an **X**:

$$P(Y = 0 | \mathbf{X}, \mathbf{w}) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$
$$P(Y = 1 | \mathbf{X}, \mathbf{w}) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

• Decision making on Y:

$$P(Y = 0|X) \underset{1}{\stackrel{0}{\underset{1}{\stackrel{} \otimes}}} P(Y = 1|X)$$
Linear decision
boundary ! $0 \underset{1}{\stackrel{0}{\underset{1}{\stackrel{} \otimes}} w_0 + \sum_i w_i X_i$

[Aarti, 10-701]

• Given $\{(X^{(1)}, Y^{(1)}), \dots, (X^{(L)}, Y^{(L)})\}$

• where $X^{(j)} = (X_1^{(j)}, X_2^{(j)}, \dots, X_n^{(j)})$

• How to **estimate** $w = (w_0, w_1, ..., w_n)$?

[Aarti, 10-701]

- Given $\{(X^{(j)}, Y^{(j)})\}_{j=1}^L$, $X^{(j)} = (X_1^{(j)}, X_2^{(j)}, \dots, X_n^{(j)})$
- Assumptions: P(Y|X, w)
- Maximum *conditional* likelihood on data! $\widehat{\mathbf{w}}_{MCLE} = \arg \max_{\mathbf{w}} \prod_{j=1}^{L} P(Y^{(j)} | X^{(j)}, \mathbf{w})$

Logistic regression only models P(Y|X)

• So we only maximize P(Y|X), *ignoring* P(X)

• Given $\{(X^{(j)}, Y^{(j)})\}_{j=1}^L$, $X^{(j)} = (X_1^{(j)}, X_2^{(j)}, \dots, X_n^{(j)})$

- Assumptions: $P(Y = 0 | \mathbf{X}, \mathbf{w}) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$ $P(Y = 1 | \mathbf{X}, \mathbf{w}) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$
- Maximum *conditional* likelihood on data! $\widehat{\mathbf{w}}_{MCLE} = \arg \max_{\mathbf{w}} \prod_{j=1}^{L} P(Y^{(j)} | X^{(j)}, \mathbf{w})$
 - Let's maximize conditional *log*-likelihood $\max_{\mathbf{w}} l(\mathbf{w}) \equiv \ln \prod_{j}^{L} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})$ $= \sum_{j}^{L} y^{j}(w_{0} + \sum_{i}^{n} w_{i}x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i}x_{i}^{j}))$

- Max conditional log-likelihood on data $\max_{\mathbf{w}} l(\mathbf{w}) \equiv \ln \prod_{i=1}^{L} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})$ $= \sum_{j=1}^{L} y^{j}(w_{0} + \sum_{i=1}^{n} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i=1}^{n} w_{i} x_{i}^{j}))$
 - A concave function (beyond the scope of class)

25

20.

 $(\mathbf{m})_{l^{10}}^{15}$

W0

• No local optimum: **gradient ascent** (descent) 🙂

 $w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \, \frac{\partial l(\mathbf{w})}{\partial w_i^{(t)}}$

- Max conditional log-likelihood on data $\max_{\mathbf{w}} l(\mathbf{w}) \equiv \ln \prod_{i}^{L} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})$ $= \sum_{j}^{L} y^{j}(w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}))$
 - A concave function (beyond the scope of class)
 - No local optimum: **gradient ascent** (descent) 🙂

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial w_i^{(t)}}$$
$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_{j=1}^L x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

31(---)

Multiclass logistic regression

Binary classification

$$P(Y = 0 | \mathbf{X}, \mathbf{w}) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$
$$P(Y = 1 | \mathbf{X}, \mathbf{w}) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

- K-class classification
 - For each class k < K $P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^d w_{ki} X_i)}{1 + \sum_{j=1}^{K-1} \exp(w_{j0} + \sum_{i=1}^d w_{ji} X_i)}$

For class K

$$P(Y = y_K | X) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(w_{j0} + \sum_{i=1}^d w_{ji} X_i)}$$

Outline

- Logistic regression
- Decision surface (boundary) of classifiers
 - Logistic regression
 - Gaussian naïve Bayes
 - Decision trees
- Generative vs. discriminative classifiers
- Linear regression
- Bias-variance decomposition and tradeoff
- Overfitting and regularization
- Feature selection

Logistic regression

Model assumptions on P(Y|X):

$$P(Y = 0 | \mathbf{X}, \mathbf{w}) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$
$$P(Y = 1 | \mathbf{X}, \mathbf{w}) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

• Deciding Y given X:

$$P(Y = 0|X) \underset{1}{\stackrel{0}{\underset{1}{\stackrel{} \otimes}}} P(Y = 1|X)$$
Linear decision
boundary ! $0 \underset{1}{\stackrel{0}{\underset{1}{\stackrel{} \otimes}} w_0 + \sum_i w_i X_i$

[Aarti, 10-701]

Gaussian naïve Bayes

- Model assumptions P(X,Y) = P(Y)P(X|Y)
 - Bernoulli on Y: $P(Y = 1) = \pi$
 - Conditional independence of X

 $P(X = (X_1, X_2, ..., X_n) | Y = k) = \prod_{i=1}^n P(X_i | Y = k)$

- Gaussian for X_i given Y: $P(X_i|Y=k) \sim N(\mu_{ik}, \sigma_{ik}^2)$
- Deciding Y given X $P(Y = 0|X) \stackrel{0}{\underset{1}{\gtrsim}} P(Y = 1|X)$

Gaussian naïve Bayes: nonlinear case

• Again, assume P(Y=I) = P(Y=0) = 0.5

Decision trees

• Decision making on Y: follow the tree structure to a leaf

Outline

- Logistic regression
- Decision surface (boundary) of classifiers
- Generative vs. discriminative classifiers
 - Definitions
 - How to compare them
 - GNB-1 vs. logistic regression
 - GNB-2 vs. logistic regression
- Linear regression
- Bias-variance decomposition and tradeoff
- Overfitting and regularization
- Feature selection

Generative and discriminative classifiers

- Generative classifiers
 - Modeling the joint distribution P(X,Y)
 - Usually via P(X,Y) = P(Y) P(X|Y)
 - Examples: Gaussian naïve Bayes 😳
- Discriminative classifiers
 - Modeling P(Y|X) or simply $f: X \rightarrow Y$
 - Do not care about P(X)
 - Examples: logistic regression, support vector machines (later in this course)

Generative vs. discriminative

How can we compare, say, Gaussian naïve Bayes and a logistic regression?
P(X,Y) = P(Y) P(X|Y) vs. P(Y|X) ?

Hint: decision making is based on P(Y|X)
 Compare the P(Y|X) they can represent !

Two versions: GNB-1 and GNB-2

- Model assumptions on P(X,Y) = P(Y)P(X|Y)
 - Bernoulli on Y: $P(Y = 1) = \pi$
 - Conditional independence of X $P(X = (X_1, X_2, ..., X_n) | Y = k) = \prod_{i=1}^n P(X_i | Y = k)$

GNB-I • Gaussian on X_i|Y: $P(X_i|Y = k) \sim N(\mu_{ik}, \sigma_{ik}^2)$ GNB-2 • (Additionally,) class-independent variance $P(X_i|Y = k) \sim N(\mu_{ik}, \sigma_i^2)$

Two versions: GNB-1 and GNB-2

- Model assumptions on P(X,Y) = P(Y)P(X|Y)
 - Bernoulli on Y: $P(Y = 1) = \pi$
 - Conditional independence of X $P(X = (X_1, X_2, ..., X_n) | Y = k) = \prod_{i=1}^n P(X_i | Y = k)$

GNB-I • Gaussian on X_i|Y: $P(X_i|Y = k) \sim N(\mu_{ik}, \sigma_{ik}^2)$ GNB-2 • (Additionally,) class-independent variance $P(X_i|Y = k) \sim N(\mu_{ik}, \sigma_i^2)$

GNB-2 vs. logistic regression

- GNB-2: P(X,Y) = P(Y)P(X|Y)
 - Bernoulli on Y: $P(Y = 1) = \pi$
 - Conditional independence of X, and Gaussian on X_i
 - Additionally, class-independent variance

$$P(X_i|Y=k) \sim N(\mu_{ik}, \sigma_i^2)$$

• It turns out, P(Y|X) of GNB-2 has the form:

$$P(Y = 1|X) = \frac{1}{1 + \exp(\ln\frac{1-\pi}{\pi} + \sum_{i}\left(\frac{\mu_{i0} - \mu_{i1}}{\sigma_{i}^{2}}X_{i} + \frac{\mu_{i1}^{2} - \mu_{i0}^{2}}{2\sigma_{i}^{2}}\right))}$$

GNB-2 vs. logistic regression

• It turns out, P(Y|X) of GNB-2 has the form:

$$P(Y = 1|X) = \frac{1}{1 + \exp(\ln\frac{1-\pi}{\pi} + \sum_{i}\left(\frac{\mu_{i0} - \mu_{i1}}{\sigma_{i}^{2}}X_{i} + \frac{\mu_{i1}^{2} - \mu_{i0}^{2}}{2\sigma_{i}^{2}}\right))}$$

- See [Mitchell: Naïve Bayes and Logistic Regression], section 3.1 (page 8 – 10)
- Recall: P(Y|X) of logistic regression: $P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}$

GNB-2 vs. logistic regression

- P(Y|X) of GNB-2 is **subset** of P(Y|X) of LR
- Given infinite training data
 - We claim: LR >= GNB-2

GNB-1 vs. logistic regression

- GNB-I: P(X,Y) = P(Y)P(X|Y)
 - Bernoulli on Y: $P(Y = 1) = \pi$
 - Conditional independence of X, and Gaussian on X_i $P(X_i|Y=k) ~\sim~ N(\mu_{ik}, \underline{\sigma_{ik}^2})$
- Logistic regression: P(Y|X)

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}$$

GNB-1 vs. logistic regression

- None of them encompasses the other
- First, find a P(Y|X) from GNB-1 that cannot be represented by LR

GNB-1 vs. logistic regression

- None of them encompasses the other
- Second, find a P(Y|X) represented by LR that cannot be derived from GNB-lassumptions

Outline

- Logistic regression
- Decision surface (boundary) of classifiers
- Generative vs. discriminative classifiers
- Linear regression
 - Regression problems
 - Model assumptions: P(Y|X)
 - Estimate the model parameters
- Bias-variance decomposition and tradeoff
- Overfitting and regularization
- Feature selection

Regression problems

- Regression problems:
 - Predict Y given X
 - Y is continuous

$$Y = f^*(X) + \epsilon, \quad \epsilon \sim Distribution()$$

 $\mathcal{A}f^*(X)$

Linear regression: assumptions

- Linear regression assumptions
 - $^\circ$ Y is generated from f(X) plus Gaussian noise $Y=f(X)+\epsilon, \qquad \epsilon \ \sim \ N(0,\sigma^2)$

• f(X) is a linear function $f(X) = w_0 + \sum_{i=1}^n w_i X_i$

Linear regression: assumptions

• Linear regression assumptions

 $^{\rm o}$ Y is generated from f(X) plus Gaussian noise $Y=f(X)+\epsilon, \qquad \epsilon \ \sim \ N(0,\sigma^2)$

• f(X) is a linear function $f(X) = w_0 + \sum_{i=1}^n w_i X_i$

• Therefore, assumptions on P(Y|X, w): $P(Y|X = (X_1, X_2, ..., X_n)) \sim N(f(X), \sigma^2)$ $\sim N(w_0 + \sum_{i=1}^n w_i X_i, \sigma^2)$

Linear regression: assumptions

• Linear regression assumptions

 $^{\rm o}$ Y is generated from f(X) plus Gaussian noise $Y=f(X)+\epsilon, \qquad \epsilon \ \sim \ N(0,\sigma^2)$

• f(X) is a linear function $f(X) = w_0 + \sum_{i=1}^n w_i X_i$

• Therefore, assumptions on P(Y|X, w): $P(Y|X = (X_1, X_2, \dots, X_n)) \sim N(f(X), \sigma^2)$ $\sim N(w_0 + \sum_{i=1}^n w_i X_i, \sigma^2)$ $P(Y|X, \mathbf{w}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp -\frac{(Y - w_0 - \sum_{i=1}^n w_i X_i)^2}{2\sigma^2}$

• Given $\{(X^{(j)}, Y^{(j)})\}_{j=1}^L$, $X^{(j)} = (X_1^{(j)}, X_2^{(j)}, \dots, X_n^{(j)})$

• Assumptions:

$$P(Y|X, \mathbf{w}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(Y - w_0 - \sum_{i=1}^n w_i X_i)^2}{2\sigma^2}}$$

• Maximum conditional likelihood on data! $\widehat{\mathbf{w}}_{MCLE} = \arg \max_{\mathbf{w}} \prod_{j=1}^{L} P(Y^{(j)} | X^{(j)}, \mathbf{w})$

• Given $\{(X^{(j)}, Y^{(j)})\}_{j=1}^L$, $X^{(j)} = (X_1^{(j)}, X_2^{(j)}, \dots, X_n^{(j)})$

• Assumptions:

$$P(Y|X, \mathbf{w}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(Y - w_0 - \sum_{i=1}^n w_i X_i)^2}{2\sigma^2}}$$

- Maximum *conditional* likelihood on data! $\widehat{\mathbf{w}}_{MCLE} = \arg \max_{\mathbf{w}} \prod_{j=1}^{L} P(Y^{(j)} | X^{(j)}, \mathbf{w})$
 - Let's maximize conditional *log*-likelihood

• Given $\{(X^{(j)}, Y^{(j)})\}_{j=1}^L$, $X^{(j)} = (X_1^{(j)}, X_2^{(j)}, \dots, X_n^{(j)})$

• Assumptions:

$$P(Y|X, \mathbf{w}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(Y - w_0 - \sum_{i=1}^n w_i X_i)^2}{2\sigma^2}}$$

- Maximum *conditional* likelihood on data! $\widehat{\mathbf{w}}_{MCLE} = \arg \max_{\mathbf{w}} \prod_{j=1}^{L} P(Y^{(j)} | X^{(j)}, \mathbf{w})$
 - Let's maximize conditional *log*-likelihood $\max_{\mathbf{w}} l(\mathbf{w}) \equiv \ln \prod_{j}^{L} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})$ $= \sum_{j=1}^{L} - \frac{(Y^{(j)} - w_{0} - \sum_{i=1}^{n} w_{i} X_{i}^{(j)})^{2}}{2\sigma^{2}} + const$

• Max the conditional log-likelihood over data

 $\operatorname{argmax}_{\mathbf{w}} \sum_{j=1}^{L} -\frac{(Y^{(j)} - w_0 - \sum_{i=1}^{n} w_i X_i^{(j)})^2}{2\sigma^2}$ $= \operatorname{argmax}_{\mathbf{w}} \sum_{j=1}^{L} -(Y^{(j)} - w_0 - \sum_{i=1}^{n} w_i X_i^{(j)})^2$

• OR minimize the sum of "squared errors" = $\operatorname{argmin}_{\mathbf{w}} \sum_{j=1}^{L} (Y^{(j)} - w_0 - \sum_{i=1}^{n} w_i X_i^{(j)})^2$

• Gradient ascent (descent) is easy

 $^{\circ}$ Actually, a closed form solution exists $\ensuremath{\mathfrak{S}}$

Max the conditional log-likelihood over data argmax_w ∑^L_{j=1} −(Y^(j) − w₀ − ∑ⁿ_{i=1} w_iX^(j)_i)²
 OR

 $\operatorname{argmin}_{\mathbf{w}} \sum_{j=1}^{L} (Y^{(j)} - w_0 - \sum_{i=1}^{n} w_i X_i^{(j)})^2$

- Actually, a closed form solution exists \odot • w = $(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y}$
 - A is an L by n matrix: m examples, n variables
 - Y is an L by 1 vector: m examples

Outline

- Logistic regression
- Decision surface (boundary) of classifiers
- Generative vs. discriminative classifiers
- Linear regression
- Bias-variance decomposition and tradeoff
 - True risk for a (regression) model
 - Risk of the perfect model
 - Risk of a learning method: bias and variance
 - Bias-variance tradeoff
- Overfitting and regularization
- Feature selection

(True) risk

- Consider a regression problem
- (True) risk of a prediction model f() $R(f) = E_{X,Y}[(f(X) Y)^2]$
 - Expected squared error when we use f() to make prediction on future examples

Risk of the perfect model

- The "true" model f*()
- $Y = f^*(X) + \epsilon, \qquad \epsilon ~\sim~ N(0, \sigma^2)$

- The risk of $f^*()$ $R^* = \mathbb{E}_{XY}[(f^*(X) - Y)^2] = \mathbb{E}[\epsilon^2] = \sigma^2$
 - The best we can do !
 - $\circ~\sigma^2$ is the "unavoidable risk"
- Is this achievable ? ... well ...
 - Model makes perfect assumptions
 - f*() belongs to the class of functions we consider
 - Infinite training data

(X)

A learning method

- Regression: $Y = f^*(X) + \epsilon \qquad \epsilon \sim \mathcal{N}(0, \sigma^2) \qquad Y$
 - A learning method:
 - Model assumptions, i.e., the space of models
 - e.g., the form of P(Y|X) in linear regression
 - An optimization/search algorithm
 - e.g., maximum conditional likelihood on data
 - Given a set of L training samples
 - **D** = $\{(X^{(j)}, Y^{(j)})\}_{j=1}^{L}$
 - $\hat{f}_D()$ • A learning method outputs:

 $^{\epsilon}(X)$

Regression: $Y = f^*(X) + \epsilon$ $\epsilon \sim \mathcal{N}(0, \sigma^2)$ X

• Risk of a learning method $E_D[R(\hat{f}_D)] = E_{X,Y,D}[(\hat{f}_D(X) - Y)^2]$

Regression:
$$Y = f^*(X) + \epsilon$$
 $\epsilon \sim \mathcal{N}(0, \sigma^2)$
• Risk of a learning method
 $E_D[R(\hat{f}_D)] = E_{X,Y,D}[(\hat{f}_D(X) - Y)^2]$
 $= E_{X,Y}[(E_D[\hat{f}_D(X)] - f^*(X))^2]$
 $+ Bias^2$
 $E_{X,Y}[E_D[(\hat{f}_D(X) - E_D[\hat{f}_D(X)])^2]]$
 $+ Variance$
 $= \frac{\sigma^2}{Unavoidable error}$

Bias-variance decomposition $E_D[R(\hat{f}_D)] = E_{X,Y,D}[(\hat{f}_D(X) - Y)^2]$ $= E_{X,Y}[(E_D[\hat{f}_D(X)] - f^*(X))^2]$ $+ Bias^2$ $E_{X,Y}[E_D[(\hat{f}_D(X) - E_D[\hat{f}_D(X)])^2]]$ $+ \sigma^2$ Variance

- Bias: how much is the "mean" estimation different from the true function f^{*}
 - Does f* belong to our model space? If not, how far?
- Variance: how much is a single estimation different from the "mean" estimation
 - How sensitive is our method to a "bad" training set **D** ?

- Estimation is very stable over 3 runs (low variance)
- But estimated models are **too simple** (high bias)

- Results from 3 random training sets **D**
- Estimated models complex enough (low bias)
- But estimation is **unstable** over 3 runs (high variance)

Bias-variance tradeoff

- We need a good tradeoff between bias and variance
 - Class of models are not too simple (so that we can *approximate* the true function well)
 - But not too complex to overfit the training samples (so that the **estimation** is **stable**)

Outline

- Logistic regression
- Decision surface (boundary) of classifiers
- Generative vs. discriminative classifiers
- Linear regression
- Bias-variance decomposition and tradeoff
- Overfitting and regularization
 - Empirical risk minimization
 - Overfitting
 - Regularization
- Feature selection

Empirical risk minimization

- Many learning methods essentially minimize a loss (risk) function over training data $\operatorname{argmin}_{\mathbf{w}} \sum_{j=1}^{L} R(Y^{(j)}, X^{(j)}, \mathbf{w})$
 - Both linear regression and logistic regression $\operatorname{argmax}_{\mathbf{w}} \ln \prod_{j=1}^{L} P(Y^{(j)} | X^{(j)}, \mathbf{w})$ $= \operatorname{argmin}_{\mathbf{w}} - \ln \prod_{j=1}^{L} P(Y^{(j)} | X^{(j)}, \mathbf{w})$ $= \operatorname{argmin}_{\mathbf{w}} \sum_{j=1}^{L} - \ln P(Y^{(j)} | X^{(j)}, \mathbf{w})$
 - (linear regression: squared errors) = $\operatorname{argmin}_{\mathbf{w}} \sum_{j=1}^{L} (Y^{(j)} - w_0 - \sum_{i=1}^{n} w_i X_i^{(j)})^2$

Overfitting

 Minimize the loss over *finite* samples is not always a good thing ... overfitting!

 The blue function has zero error on training samples, but is too complicated (and "crazy")

Overfitting

• How to avoid overfitting?

 Hint: complicated and "crazy" models like the blue one usually have *large* model coefficients w

Regularization: L-2 regularization

- Minimize the loss + a regularization penalty $\operatorname{argmin}_{\mathbf{w}} - \ln \prod_{j=1}^{L} P(Y^{(j)}|X^{(j)}) + \lambda \sum_{i=1}^{n} w_i^2$
- Intuition: prefer *small* coefficients
- Prob. interpretation: a Gaussian prior on w
 - \circ Minimize the penalty $\lambda \sum_{i=1}^n w_i^2$ is:

 $min_{\mathbf{w}} - \ln \prod_{i=1}^{n} p(w_i), \quad p(w_i) \sim N(0, 1/\lambda)$

• So minimize loss+penalty is max (log-)posterior $\operatorname{argmin}_{\mathbf{w}} - \ln \prod_{j=1}^{L} P(Y^{(j)}|X^{(j)}) - \ln \prod_{i=1}^{n} p(w_i)$ $\operatorname{argmax}_{\mathbf{w}} \ln \prod_{j=1}^{L} P(Y^{(j)}|X^{(j)}) + \ln \prod_{i=1}^{n} p(w_i)$

Regularization: L-I regularization

- Minimize a loss + a regularization penalty $\operatorname{argmin}_{\mathbf{w}} - \ln \prod_{j=1}^{L} P(Y^{(j)} | X^{(j)}) + \lambda \sum_{i=1}^{n} |w_i|$
- Intuition: prefer **small** and **sparse** coefficients
- Prob. interpretation: a Laplacian prior on **w**

Outline

- Logistic regression
- Decision surface (boundary) of classifiers
- Generative vs. discriminative classifiers
- Linear regression
- Bias-variance decomposition and tradeoff
- Overfitting and regularization
- Feature selection

Feature selection

- Feature selection: select a subset of
 - "useful" features
 - \circ Less features \rightarrow less complex models
 - Lower "variance" in the risk of the learning method ^(C)
 - But might lead to higher "bias" 🛞

Feature selection

- Score each feature and select a subset
 - \circ The mutual information between X_i and Y

$$\widehat{I}(X_i, Y) = \sum_k \sum_y \widehat{P}(X_i = k, Y = y) \log \frac{\widehat{P}(X_i = k, Y = y)}{\widehat{P}(X_i = k)\widehat{P}(Y = y)}$$

Accuracy of single-feature classifier f: X_i → Y
 etc.

Feature selection

- Score each feature and select a subset
 - One-step method: select k highest score features
 - Iterative method:
 - Select a highest score feature from the pool
 - Re-score the rest, e.g., mutual information conditioned on already-selected features
 - Iterate

Outline

- Logistic regression
- Decision surface (boundary) of classifiers
- Generative vs. discriminative classifiers
- Linear regression
- Bias-variance decomposition and tradeoff
- Overfitting and regularization
- Feature selection

Homework 2 due tomorrow

- Feb. 4th (Friday), 4pm
- Sharon Cavlovich's office (GHC 8215).
- 3 separate sets (each question for a TA)

The last slide

•Go Steelers !

• Question ?