Review: Logistic regression, Gaussian naive
Bayes, linear regression, and their connections

New: Bias-variance decomposition, bias-
variance tradeoff, overfitting, regularization,
and feature selection
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Parts of the slides are from previous 10-701 lectures



Outline

 Logistic regression

* Decision surface (boundary) of classifiers
» Generative vs. discriminative classifiers

* Linear regression

e Bias-variance decomposition and tradeoff
» Overfitting and regularization

* Feature selection



Outline

 Logistic regression
> Model assumptions: P(Y|X)
> Decision making
> Estimating the model parameters
° Multiclass logistic regression



Logistic regression: assumptions

 Binary classification
ot X=X, X, ... X)) 2Y e {0, I}

* Logistic regression: assumptions on P(Y|X):
1

1 4 exp(wg + >; w; X;)

P(Y =0|X,w) =

> And thus:

P(Y = 1|X,w) = exp(wo + >; w; X;)

1 + exp(wo + >-; w; X;)

- 1
(_ l+exp(—wo—)_; ’wiXi)>



Logistic regression: assumptions

* Model assumptions: the form of P(Y|X)

1

P(Y =0[X,w) = 1 + exp(wg + >°; w; X;)

» “Logistic” regression
> P(Y|X) is the logistic function applied to a

linear function of X _
1 y /

1 + exp(—=z)




Decision making

* Given a logistic regression w and an X:
1
1 + exp(wo + X wiX;)
exp(wo + >; w X;)
1+ exp(wo + X wiX;)
wo + Y wiX; =0
* Decision making onY: B

0

P(Y =0|X,w) =

Py =11 X,w) =

P(Y =0|X) = P(Y = 1|X)

Linear decision
boundary ! 0

RAVO = A/

wo + Z w; X;
i

[Aarti, [0-701]



Estimating the parameters w

o Given {(XW, vy . (x©) y(L))y

c where x0) = (xV x% ... x{)
* How to estimate w = (wy, W, ..., w,)?

wo + sz‘Xz' =0

I

°
e o
L]
(]
°
(e}
@ ©
o o
* o
(&}
.
]

[Aarti, 10-701]




Estimating the parameters w

* Assumptions: P(Y|X, w)

o Maximum conditional likelihood on data!

L
WyCoLE = argmax 1] P(vyW | xU) w)
j=1

> Logistic regression only models P(Y|X)
> S0 we only maximize P(Y|X), ignoring P(X)



Estimating the parameters w

e Given {(XV. YU}, | x0 = x? x{,... x{7)

1

o Assumptions: O =0Xw =

exp(wo + >°; wi X;)
1+ exp(wo + X5 w; X;)

o Maximum conditional likelihood on datal
L
wWycore = argmax ] Py | xU) w)

P(Y =1X,w) =

j=1
> Let’s maximize conditional log-likelihood
L S
max I(w) = InHP(y3|x3,w)

J

L n _ n :
= > y(wo+ ) wiz]) — In(1 4+ exp(wo + ) w;z)))
j -i ’i
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Estimating the parameters w

* Max conditional log-likelihood on data
L .
max I(w) = In][PQE %), w)

L nJ ) n .
= > ¥ (wo+ > wirl) — In(1 + exp(wg + Y wiz)))
j i ‘

> A concave function (beyond the scope of class)

> No local optimum: gradient ascent (descent) ©

e (t41) (1) ol(w)
S R O

\«_f;d-:_‘}:g._‘."‘;?ﬁ? = ___,_,:_,'-:’j_//
e SR —— ™
N < -2
S ;
N "
e 0
S 1
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w0 w



Estimating the parameters w

* Max conditional log-likelihood on data
L L
max I(w) = In]]PE|x!,w)

L . TL‘] ) n .
= > ¥ (wo+ > wirl) — In(1 + exp(wg + Y wiz)))
j i i

> A concave function (beyond the scope of class)

> No local optimum: gradient ascent (descent) ©

ol(w)
Huw O

wi(t-l_l) < w,é(t) +n




Multiclass logistic regression

 Binary classification

1
1 + exp(wg + X w; X;)

exp(wg + >; w; X;)
1 + exp(wo + X w;iX;)

P(Y =0|X,w) =

P(Y =1X,w) =

o K-class classification

° For each class k < K
exp(wio + 2L 1 wii X;)
14+ 37 exp(wjo + g wjiX;)

P(Y = yi|X) =

o For class K
1

1+ Z[\ . exD(w]O + Zz 1 Wi X i)

P(Y — 3/[\'|X) —



Outline

* Decision surface (boundary) of classifiers
> Logistic regression
> Gaussian naive Bayes
> Decision trees



Logistic regression

* Model assumptions on P(Y|X):
1
1+ exp(wo + 2 wiX;)
exp(wo + X wiX;)
1 4 exp(wo + X; wiX;)

P(Y =0|X,w) =

P(Yy =1 X,w) =

Wy + Z ’I.UZ‘X1 —

* Deciding Y given X: l

0 .. .. l:
P(Y = 0|X) = P(Y = 1|X) /

Linear decision
boundary ! 0

RAVO A/

wo + Z w; X;
i

[Aarti, [0-701]



Gaussian naive Bayes

e Model assumptions P(X,Y) = P(Y)P(X]Y)
> BernoullionY: P(Y =1)=n
> Conditional independence of X
P(X = (X1, X0, .. X,)|[Y = k) =[], P(X;|Y = k)
° Gaussian for X givenY: P(X;|Y =k) ~ N(uig,0%,)
* Deciding Y given X
P(Y =0|X) % P(Y =1|X)

P(Y =0)P(X|Y =0) > P =1)P(X|Y =1)

~AVo




Gaussian Naive Bayes — Big Picture
Consider boolean Y, continuous X; . Assumé P(Y=1 )=0.5):P6,: o]

Y™ — arg max (P(Y =y) [[ P(X“|Y = y) )

- UKy POOR L 7]
PK?‘,V‘ “':0) (2 Y)
) %/]

.
a2
17

P(X|Y=0)

TE’F(X; IY)
P(X|Y=I)
assvme
==y 6K N

Pu olx) > Pl=1) {&:cs(nou H e‘b\d"l’

P(Y =0)P(X|Y =0) = P =1)P(X|Y =1)

= AV O




Gaussian naive Bayes: nonlinear case

e Again, assume P(Y=1) = P(Y=0) = 0.5

| P(X]Y=0)




Decision trees

* Decision making on Y: follow the tree
structure to a leaf




Outline

* Generative vs. discriminative classifiers
> Definitions
> How to compare them
o GNB-1 vs. logistic regression
o GNB-2 vs. logistic regression



Generative and discriminative

classifiers

* Generative classifiers
> Modeling the joint distribution P(X,Y)
> Usually via P(X,Y) = P(Y) P(X]Y)
> Examples: Gaussian naive Bayes ©
e Discriminative classifiers
> Modeling P(Y|X) or simply f: X->Y
> Do not care about P(X)

> Examples: logistic regression, support vector
machines (later in this course)

20



Generative vs. discriminative

* How can we compare, say, Gaussian naive
Bayes and a logistic regression?

o P(X,Y) = P(Y) P(X]Y) vs. P(Y|X)?

* Hint: decision making is based on P(Y|X)
> Compare the P(Y|X) they can represent !

21



Two versions: GNB-|1 and GNB-2

e Model assumptions on P(X,Y) = P(Y)P(X]Y)
> BernoullionY: P(Y =1) =n
> Conditional independence of X

P(X = (X1, Xa, o X))V = k) = [T/, P(X,JY = &)

GNB-I - Gaussian on X||Y: P(X;|Y =k) ~ N(uir,05)

GNB-2 ° (Additionally,) class-independent variance
P(Xi[Y = k) ~ N, o)

22



Two versions: GNB-|1 and GNB-2

e Model assumptions on P(X,Y) = P(Y)P(X]Y)
> BernoullionY: P(Y =1) =n
> Conditional independence of X

P(X = (X1, Xa, o X))V = k) = [T/, P(X,JY = &)

GNB-I - Gaussian on X||Y: P(X;|Y =k) ~ N(uir,05)

GNB-2 ° (Additionally,) class-independent variance
P(Xi[Y =k) ~ N(u,07)

Impossible for GNB-2 4 | -

23



GNB-2 vs. logistic regression

» GNB-2: P(X,Y) = P(Y)P(X]Y)
> BernoullionY: P(Y =1)=
> Conditional independence of X, and Gaussian on X
> Additionally, class-independent variance
P(XiY =k) ~ N(u,o)

e It turns out, P(Y|X) of GNB-2 has the form:

I

P(Y = 1|X) =
| +exp(Ini=Z +Y, (“’“ HLX; +“" “’“)))

i 0!

24



GNB-2 vs. logistic regression

e |t turns out, P(Y|X) of GNB-2 has the form:

I
I +exp(ln— +Y; (“!0 Hi0—Hil x4 i Hm)))

o7 207

P(Y =1]X) =

> See [Mitchell: Naive Bayes and Logistic
Regression], section 3.1 (page 8 — 10)

» Recall: P(Y|X) of logistic regression:
l

PlY=1X)=
( X) | +exp(wo + i wiX;)

25



GNB-2 vs. logistic regression

* P(Y|X) of GNB-2 is subset of P(Y|X) of LR

* Given infinite training data
> We claim: LR >= GNB-2

26



GNB-1 vs. logistic regression

e GNB-I:P(X,Y) = P(Y)P(X|Y)
> BernoullionY: P(Y =1)=

> Conditional independence of X, and Gaussian on X

P(X;|Y =Fk) ~ N(Mik,ﬁ

 Logistic regression: P(Y|X)

I

2Ly = 1| X
( X) = | +exp(wo+ X7 wiX;)

27



GNB-1 vs. logistic regression

* None of them encompasses the other

e First, find a P(Y|X) from GNB-| that cannot
be represented by LR

P(X[Y=0)

> LR only represents linear decision surfaces

28



GNB-1 vs. logistic regression

* None of them encompasses the other

* Second, find a P(Y|X) represented by LR that
cannot be derived from GNB-lassumptions

X2

A P(X|Y=0)

> GNB-I cannot represent any correlated Gaussian
° But can still possibly be represented by LR (HW?2)

29



Outline

 Linear regression

> Regression problems
> Model assumptions: P(Y|X)
o Estimate the model parameters

30



Regression problems

* Regression problems: ¥ X)
° PredictY given X —‘/\/\é
> Y is continuous Yos

X
> General assumption:

Y =f"X)4+e¢ € ~ Distribution()

[Aarti, 10-701]
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Linear regression: assumptions

 Linear regression assumptions

> Y is generated from f(X) plus Gaussian noise
Y =f(X)+e €~ N(0,07%)

° f(X) is a linear function

f(X)=wo+ ;g wiX

32



Linear regression: assumptions

 Linear regression assumptions

> Y is generated from f(X) plus Gaussian noise
Y =f(X)+e €~ N(0,07%)

° f(X) is a linear function

f(X)=wo+ ;g wiX

* Therefore, assumptions on P(Y|X, w):
PY|X = (X1, X2,...,X5)) ~ N(f(X)aU2)
~ N(wo+ Y i, wiXi, o)
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Linear regression: assumptions

 Linear regression assumptions

> Y is generated from f(X) plus Gaussian noise
Y =f(X)+e €~ N(0,07%)

° f(X) is a linear function

f(X)=wo+ ;g wiX

* Therefore, assumptions on P(Y|X, w):
PY|X = (X1, X2,...,X5)) ~ N(f(X)aU2)
~ N(wo+ Y i, wiXi, o)

1 —wo—=S"" . w. X.)?
P(Y|X7 W) — /—21“72 eXp—(Y 0 %{;‘2—11 I'Xl)

34



Estimating the parameters w

o Given {(XW, YU | | x0) = (x? x@ .. xP)

e Assumptions:
PY|X, W) = ——— exp —

Qo2

(Y —wo—327 | w,X,)?
202

o Maximum conditional likelihood on data!

L . .
WyCLE = argmax 1] Py | xU) w)
j=1

35



Estimating the parameters w

o Given {(XV, YU)M_| = x0) = (xV xP, ... x9)

e Assumptions:
PY|X, W) = ——— exp —

Qo2

(Y —wo—>7" 1 wiX;)?
202

o Maximum conditional likelihood on data!

L . .
WyCoLE = argmax 1] P(vyW | xU) w)
j=1
> Let’s maximize conditional log-likelihood

36



Estimating the parameters w
o Given {(XV, YU | = x0) = (x),
e Assumptions: ‘_ |

P(Y|X, W) _ 1 eXp—(Y_wO_Z';Igl w; X;)

To2 202
o Maximum conditional likelihood on data!
L . .
WyCLE = argmax 1] P(vyW | xU) w)

j=1
> Let’s maximize conditional log-likelihood
L S
— J |~
max I(w) = InHP(y 1x7, w)

J
B ZL (Y@ —pg—37 aw; X7))2
=3 -

7

S0 + const

37



Estimating the parameters w

* Max the conditional log-likelihood over data
(YD) —wo—3"", w; X{7))2
2072

o L
argmaxy ) i
. L _(y() _ o x (942
= argmaxy, ijl ( Wo Zi:1 Wi A )
> OR minimize the sum of “squared errors”
—y [ j n )y2
= argmin,, ijl(Y(J) —wo — ) g wiX;"')

(

> Gradient ascent (descent) is easy

o Actually, a closed form solution exists ©

38



Estimating the parameters w

* Max the conditional log-likelihood over data
argmax,, zj[-’:l —(YUW) — g — S0, w,;X,L-(j))2
> OR
argminy, Zle (YU) —we — S0, w?;Xi(j 2
o Actually, a closed form solution exists ©
cw=(ATA)"1ATY
> A'is an L by n matrix: m examples, n variables

> Yis an L by 1 vector: m examples

39



Outline

* Bias-variance decomposition and tradeoff
° True risk for a (regression) model
> Risk of the perfect model
> Risk of a learning method: bias and variance
> Bias-variance tradeoff

40



(True) risk|

e Consider a regression problem
¢ (True) risk of a prediction model f( )

R(f) = Exy|[(f(X) = Y)?

> Expected squared error when we use f( ) to
make prediction on future examples

4|



Risk of the perfect model

f7(X)
* The “true” model f'() "A/\é

Y=fX)+¢ € ~ N(0,0%)

s —

—
* The risk of f*() [Aarti, 10-701]

R* = Exy[(f*(X) — Y)?] = E[¢?] = o
> The best we can do !

> o2 is the “unavoidable risk”

e |s this achievable ? ... well ...

> Model makes perfect assumptions
» () belongs to the class of functions we consider

° Infinite training data

42



Regression:

A learning method ()

Y= (X)+e  e~N(0,02) ¥ =

o

* A learning method:

> Model assumptions, i.e., the space of models
° e.g., the form of P(Y|X) in linear regression

> An optimization/search algorithm

* e.g., maximum conditional likelihood on data

* Given a set of L training samples

D= {(XO, YU,

A

> A learning method outputs:  fp( )

43



Risk of a learning method .

Regression: Y = f*(X) + ¢ e ~ N(0,0?) Vo

.
o

 Risk of a learning method
Ep[R(fp)] = Exy.p[(fp(X) = Y)?

44



Bias-variance decomposition ..,

Regression: Y = f"(X) 4« e ~ N(0,02) Yo
e
 Risk of a learning method
EplR(fp)] = Exy.pl(fp(X) = Y)?
. bias : E|Z] — Z*
= Exy[(Ep[fp(X)] - f*(X))? variance
Bias? _ 2
+ ,\ ,\ EI(Z - ElZ])
Exy| Ep[(fp(X) — Ep[fp(X)])*] ]
T Variance
0.2

—— Unavoidable error

45



Bias-variance decomposition
Ep[R(fp)] = Exy,p[(fp(X) = Y)?
= Exy[(Ep[fp(X)] - f*(X))?

Bias?
_|_
Exy[ Ep[(fp(X) — Eplfp(X)])?] ] |
N 02 Variance

e Bias: how much is the “mean” estimation different
from the true function f

> Does f* belong to our model space? If not, how far?

e Variance: how much is a single estimation different
from the “mean” estimation

> How sensitive is our method to a “bad” training set D ?

46



Bias-variance tradeoff

e Minimize both bias and variance ? No free lunch

e Simple models: low variance but high bias

16 T T

+%

c L L L L L L L L C L L L L L L L L A
0 01 02 03 04 0S 06 Q7 08 09 1 0 0t 02 03 04 QS 06 07 08 09 1

[Aarti]

> Results from 3 random training sets D
o Estimation is very stable over 3 runs (low variance)

> But estimated models are too simple (high bias)

47



Bias-variance tradeoff

e Minimize both bias and variance ? No free lunch

e Complex models: low bias but high variance

=, ] L L L L L L L L A - L L L L L L L L ' - L L L L L L L L A
0 61 02 03 04 0SS 06 07 08 09 1 20 1 02 03 04 0SS 06 07 08 09 1 20 0.1 02 03 04 0S 06 07 08 09 1

> Results from 3 random training sets D

0]

Estimated models complex enough (low bias)
But estimation is unstable over 3 runs (high variance)

(©)

48



Bias-variance tradeoff

* We need a good tradeoff between bias
and variance

> Class of models are not too simple (so that
we can approximate the true function well)

> But not too complex to overfit the training
samples (so that the estimation is stable)

49



Outline

* Overfitting and regularization
> Empirical risk minimization
> Overfitting
> Regularization

50



Empirical risk minimization

* Many learning methods essentially minimize a
loss (risk) function over training data

argming, Zle R(YU, XU) w)

> Both linear regression and logistic regression
argmaxy, In Hle P(YU| XU w)
= argmin,, — In Hle P(YU| XU w)
= argmin,, ZJL:1 —In P(YW|X0) w)

° (linear regression: squared errors)

= argminy, Zle(YU) —Wo — > ;g wiXZ-(j))Q

51



Overfitting

e Minimize the loss over finite samples is not
always a good thing ... overfitting!

f(x)

)
\|

| B RF
[Aarti]

> The blue function has zero error on training
samples, but is too complicated (and “crazy”)



Overfitting

* How to avoid overfitting?

] ] T

[Aarti]

o Hint: complicated and “crazy” models like the
blue one usually have large model coefficients w

53



Regularization: L-2 regularization

e Minimize the loss + a regularization penalty
argming, — In Hjl-’zl P(YW|xG)) 4+ A ZL | W

* Intuition: prefer small coefficients

* Prob. interpretation: a Gaussian prior on w
> Minimize the penalty A1, w? is:

minw —In[T;y p(wi), p(w;) ~ N(0,1/X)
> So minimize loss+penalty is max (log-)posterior

a—u"gn'linw—11'11_[;;:1 PYW| XU — I~ p(w;)
argmax., lnHLzlP(Y(j)|X(j)) + InJ[, p(w;)
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Regularization: L-| regularization

e Minimize a loss + a regularization penalty
argmin,, — In HJL:1 PYW|XW) + A |w)

* Intuition: prefer small and sparse coefficients

* Prob. interpretation: a Laplacian prior on w

55



L

Outline

e Logistic regression

e Decision surface (boundary) of classifiers
e Generative vs. discriminative classifiers

e Linear regression

e Bias-variance decomposition and tradeoff
e Overfitting and regularization

* Feature selection
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Feature selection

e Feature selection: select a subset of
“useful” features

o Less features = less complex models

> Lower “variance” in the risk of the learning
method ©

> But might lead to higher “bias” ®

57



Feature selection

» Score each feature and select a subset

> The mutual information between X. andY

o o P(X; =k Y =y)
[(X;,Y) = P(X;=kY =y)log —— 2 *
(X;,Y) Z]‘:Zu: (X; . y) log P(X; = k)P(Y = 1)

> Accuracy of single-feature classifier f: X. 2Y

° etc.

58



Feature selection

* Score each feature and select a subset
> One-step method: select k highest score features

° |terative method:
- Select a highest score feature from the pool

* Re-score the rest, e.g., mutual information conditioned
on already-selected features

* lterate

59



Outline

 Logistic regression

* Decision surface (boundary) of classifiers
» Generative vs. discriminative classifiers

* Linear regression

e Bias-variance decomposition and tradeoff
» Overfitting and regularization

* Feature selection
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Homework 2 due tomorrow

* Feb. 4™ (Friday), 4pm
» Sharon Cavlovich's office (GHC 8215).
* 3 separate sets (each question for a TA)

6l



The last slide

*Go Steelers!

e Question ?

62



