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Parts of the slides are from previous 10-701 lectures
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New: Bias-variance decomposition, bias-
variance tradeoff, overfitting, regularization, 
and feature selection



Outline

 Logistic regression
 Decision surface (boundary) of classifiers
 Generative vs. discriminative classifiers
 Linear regression
 Bias-variance decomposition and tradeoff
 Overfitting and regularization
 Feature selection
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Outline
 Logistic regression
◦ Model assumptions: P(Y|X)
◦ Decision making
◦ Estimating the model parameters
◦ Multiclass logistic regression

 Decision surface (boundary) of classifiers
 Generative vs. discriminative classifiers
 Linear regression
 Bias-variance decomposition and tradeoff
 Overfitting and regularization
 Feature selection
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Logistic regression: assumptions
 Binary classification
◦ f:  X = (X1, X2, … Xn) Y    {0, 1} 

 Logistic regression: assumptions on P(Y|X):

◦ And thus:
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Logistic regression: assumptions

 Model assumptions: the form of P(Y|X)

 “Logistic” regression
◦ P(Y|X) is the logistic function applied to a 

linear function of X
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Decision making

 Given a logistic regression w and an X:

 Decision making on Y:

Linear decision 
boundary !

[Aarti, 10-701]
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Estimating the parameters w
 Given
◦ where

 How to estimate w = (w0, w1, …, wn)?

[Aarti, 10-701]
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Estimating the parameters w
 Given                      ,
 Assumptions: P(Y|X, w)

 Maximum conditional likelihood on data!

◦ Logistic regression only models P(Y|X)
◦ So we only maximize P(Y|X), ignoring P(X)
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Estimating the parameters w
 Given                      ,
 Assumptions:

 Maximum conditional likelihood on data!

◦ Let’s maximize conditional log-likelihood
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Estimating the parameters w
 Max conditional log-likelihood on data

◦ A concave function (beyond the scope of class)
◦ No local optimum:  gradient ascent (descent) 
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Estimating the parameters w
 Max conditional log-likelihood on data

◦ A concave function (beyond the scope of class)
◦ No local optimum:  gradient ascent (descent) 
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Multiclass logistic regression

 Binary classification

 K-class classification
◦ For each class k < K

◦ For class K
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Outline
 Logistic regression
 Decision surface (boundary) of classifiers
◦ Logistic regression
◦ Gaussian naïve Bayes
◦ Decision trees

 Generative vs. discriminative classifiers
 Linear regression
 Bias-variance decomposition and tradeoff
 Overfitting and regularization
 Feature selection
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Logistic regression

 Model assumptions on P(Y|X):

 Deciding Y given X:

Linear decision 
boundary !

[Aarti, 10-701]
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Gaussian naïve Bayes
 Model assumptions P(X,Y) = P(Y)P(X|Y)
◦ Bernoulli on Y:
◦ Conditional independence of X

◦ Gaussian for Xi given Y:

 Deciding Y given X
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P(X|Y=0)

P(X|Y=1)



Gaussian naïve Bayes: nonlinear case

 Again, assume P(Y=1) = P(Y=0) = 0.5
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P(X|Y=0)

P(X|Y=1)



Decision trees
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 Decision making on Y: follow the tree 
structure to a leaf



Outline
 Logistic regression
 Decision surface (boundary) of classifiers
 Generative vs. discriminative classifiers
◦ Definitions
◦ How to compare them
◦ GNB-1 vs. logistic regression
◦ GNB-2 vs. logistic regression

 Linear regression
 Bias-variance decomposition and tradeoff
 Overfitting and regularization
 Feature selection
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Generative and discriminative 
classifiers
 Generative classifiers
◦ Modeling the joint distribution P(X, Y)
◦ Usually via P(X,Y) = P(Y) P(X|Y)
◦ Examples:  Gaussian naïve Bayes 

 Discriminative classifiers
◦ Modeling P(Y|X) or simply f: XY
◦ Do not care about P(X)
◦ Examples: logistic regression, support vector 

machines (later in this course)
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Generative vs. discriminative

 How can we compare, say, Gaussian naïve 
Bayes and a logistic regression?
◦ P(X,Y) = P(Y) P(X|Y)   vs.   P(Y|X) ?

 Hint: decision making is based on P(Y|X)
◦ Compare the P(Y|X) they can represent !
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Two versions: GNB-1 and GNB-2
 Model assumptions on P(X,Y) = P(Y)P(X|Y)
◦ Bernoulli on Y:
◦ Conditional independence of X

◦ Gaussian on Xi|Y:

◦ (Additionally,) class-independent variance

22

GNB-1

GNB-2



Two versions: GNB-1 and GNB-2
 Model assumptions on P(X,Y) = P(Y)P(X|Y)
◦ Bernoulli on Y:
◦ Conditional independence of X

◦ Gaussian on Xi|Y:

◦ (Additionally,) class-independent variance
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GNB-1

GNB-2

Impossible for GNB-2
P(X|Y=0)

P(X|Y=1)



GNB-2 vs. logistic regression
 GNB-2:  P(X,Y) = P(Y)P(X|Y)
◦ Bernoulli on Y:
◦ Conditional independence of X, and Gaussian on Xi

◦ Additionally, class-independent variance

 It turns out, P(Y|X) of GNB-2 has the form:
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GNB-2 vs. logistic regression
 It turns out, P(Y|X) of GNB-2 has the form:

◦ See [Mitchell: Naïve Bayes and Logistic 
Regression], section 3.1 (page 8 – 10)

 Recall: P(Y|X) of logistic regression:
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GNB-2 vs. logistic regression
 P(Y|X) of GNB-2 is subset of P(Y|X) of LR
 Given infinite training data
◦ We claim: LR >= GNB-2 
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GNB-1 vs. logistic regression
 GNB-1: P(X,Y) = P(Y)P(X|Y)
◦ Bernoulli on Y:
◦ Conditional independence of X, and Gaussian on Xi

 Logistic regression: P(Y|X)
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GNB-1 vs. logistic regression
 None of them encompasses the other
 First, find a P(Y|X) from GNB-1 that cannot

be represented by LR

◦ LR only represents linear decision surfaces
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P(X|Y=0)

P(X|Y=1)



GNB-1 vs. logistic regression
 None of them encompasses the other
 Second, find a P(Y|X) represented by LR that 

cannot be derived from GNB-1assumptions

◦ GNB-1 cannot represent any correlated Gaussian
◦ But can still possibly be represented by LR (HW2)
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P(X|Y=0)

P(X|Y=1)



Outline
 Logistic regression
 Decision surface (boundary) of classifiers
 Generative vs. discriminative classifiers
 Linear regression
◦ Regression problems
◦ Model assumptions: P(Y|X)
◦ Estimate the model parameters

 Bias-variance decomposition and tradeoff
 Overfitting and regularization
 Feature selection
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Regression problems
 Regression problems: 
◦ Predict Y given X
◦ Y is continuous

◦ General assumption:
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[Aarti, 10-701]



Linear regression: assumptions
 Linear regression assumptions
◦ Y is generated from f(X) plus Gaussian noise

◦ f(X) is a linear function
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Linear regression: assumptions
 Linear regression assumptions
◦ Y is generated from f(X) plus Gaussian noise

◦ f(X) is a linear function

 Therefore, assumptions on P(Y|X, w):
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Linear regression: assumptions
 Linear regression assumptions
◦ Y is generated from f(X) plus Gaussian noise

◦ f(X) is a linear function

 Therefore, assumptions on P(Y|X, w):
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Estimating the parameters w
 Given                      ,
 Assumptions:

 Maximum conditional likelihood on data!
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Estimating the parameters w
 Given                      ,
 Assumptions:

 Maximum conditional likelihood on data!

◦ Let’s maximize conditional log-likelihood

36



Estimating the parameters w
 Given                      ,
 Assumptions:

 Maximum conditional likelihood on data!

◦ Let’s maximize conditional log-likelihood
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Estimating the parameters w
 Max the conditional log-likelihood over data

◦ OR minimize the sum of “squared errors”

◦ Gradient ascent (descent) is easy
◦ Actually, a closed form solution exists 
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Estimating the parameters w
 Max the conditional log-likelihood over data

◦ OR

 Actually, a closed form solution exists 
◦ w =
◦ A is an L by n matrix: m examples, n variables
◦ Y is an L by 1 vector: m examples

39



Outline
 Logistic regression
 Decision surface (boundary) of classifiers
 Generative vs. discriminative classifiers
 Linear regression
 Bias-variance decomposition and tradeoff
◦ True risk for a (regression) model
◦ Risk of the perfect model
◦ Risk of a learning method: bias and variance
◦ Bias-variance tradeoff

 Overfitting and regularization
 Feature selection
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Risk of the perfect model 
 The “true” model f*( )

 The risk of f*( )

◦ The best we can do !
◦ is the “unavoidable risk”

 Is this achievable ? … well …
◦ Model makes perfect assumptions
 f*() belongs to the class of functions we consider

◦ Infinite training data
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[Aarti, 10-701]



A learning method

 A learning method:
◦ Model assumptions, i.e., the space of models
 e.g., the form of P(Y|X) in linear regression

◦ An optimization/search algorithm
 e.g., maximum conditional likelihood on data

 Given a set of L training samples
◦ D = 
◦ A learning method outputs: 
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Risk of a learning method

 Risk of a learning method

44



Bias-variance decomposition

 Risk of a learning method
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Bias2

Variance

Unavoidable error



Bias-variance decomposition

 Bias: how much is the “mean” estimation different 
from the true function f*

◦ Does f* belong to our model space? If not, how far?
 Variance: how much is a single estimation different 

from the “mean” estimation
◦ How sensitive is our method to a “bad” training set D ?
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Bias2

Variance



Bias-variance tradeoff
 Minimize both bias and variance ? No free lunch
 Simple models: low variance but high bias

◦ Results from 3 random training sets D
◦ Estimation is very stable over 3 runs (low variance)
◦ But estimated models are too simple (high bias)
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[Aarti]



Bias-variance tradeoff
 Minimize both bias and variance ? No free lunch
 Complex models: low bias but high variance

◦ Results from 3 random training sets D
◦ Estimated models complex enough (low bias)
◦ But estimation is unstable over 3 runs (high variance)
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Bias-variance tradeoff

 We need a good tradeoff between bias 
and variance
◦ Class of models are not too simple (so that 

we can approximate the true function well)
◦ But not too complex to overfit the training 

samples (so that the estimation is stable)
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Outline
 Logistic regression
 Decision surface (boundary) of classifiers
 Generative vs. discriminative classifiers
 Linear regression
 Bias-variance decomposition and tradeoff
 Overfitting and regularization
◦ Empirical risk minimization
◦ Overfitting
◦ Regularization

 Feature selection
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Empirical risk minimization
 Many learning methods essentially minimize a 

loss (risk) function over training data

◦ Both linear regression and logistic regression

◦ (linear regression: squared errors)
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Overfitting
 Minimize the loss over finite samples is not 

always a good thing … overfitting!

◦ The blue function has zero error on training 
samples, but is too complicated (and “crazy”)
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[Aarti]



Overfitting
 How to avoid overfitting?

◦ Hint:  complicated and “crazy” models like the 
blue one usually have large model coefficients w
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[Aarti]



Regularization: L-2 regularization
 Minimize the loss + a regularization penalty

 Intuition:  prefer small coefficients
 Prob. interpretation:  a Gaussian prior on w
◦ Minimize the penalty                 is:

◦ So minimize loss+penalty is max (log-)posterior
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Regularization: L-1 regularization
 Minimize a loss + a regularization penalty

 Intuition:  prefer small and sparse coefficients
 Prob. interpretation:  a Laplacian prior on w
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Outline

 Logistic regression
 Decision surface (boundary) of classifiers
 Generative vs. discriminative classifiers
 Linear regression
 Bias-variance decomposition and tradeoff
 Overfitting and regularization
 Feature selection
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Feature selection

 Feature selection: select a subset of 
“useful” features
◦ Less features  less complex models
◦ Lower “variance” in the risk of the learning 

method 
◦ But might lead to higher “bias” 
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Feature selection
 Score each feature and select a subset
◦ The mutual information between Xi and Y

◦ Accuracy of single-feature classifier f: Xi Y
◦ etc.

58



Feature selection
 Score each feature and select a subset
◦ One-step method: select k highest score features
◦ Iterative method:
 Select a highest score feature from the pool
 Re-score the rest, e.g., mutual information conditioned

on already-selected features
 Iterate
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Outline

 Logistic regression
 Decision surface (boundary) of classifiers
 Generative vs. discriminative classifiers
 Linear regression
 Bias-variance decomposition and tradeoff
 Overfitting and regularization
 Feature selection
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Homework 2 due tomorrow

 Feb. 4th (Friday), 4pm
 Sharon Cavlovich's office (GHC 8215). 
 3 separate sets (each question for a TA)
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The last slide

Go Steelers !

 Question ?
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