Active Learning

0

Yi Zhang 10-701, Machine Learning, Spring 2011 April 20th, 2011

Some pictures are from Burr and Aarti's lectures

Outline

- Basic idea of active learning
- Supervised, semi-supervised, and active learning
- Uncertainty sampling
- Version space reduction and query by committee
- Expected error reduction
- Other active learning methods

Why active learning?

- Learning classifiers using labeled examples $(X_1, Y_1), (X_2, Y_2), (X_3, Y_3), \dots$
- But obtaining labels is
 - Time consuming, e.g., document classification
 - Expensive, e.g., medical decision (need doctors)
 - Sometimes dangerous, e.g., landmine detection

Active learning

- The learner actively chooses which examples to label !
- Goal: reduce the number of labeled examples needed for learning

automatic classifier

Can active learning work?

• Are all labeled examples equally important?

Outline

- Basic idea of active learning
- Supervised, semi-supervised, and active learning
- Uncertainty sampling
- Version space reduction and query by committee
- Expected error reduction
- Other active learning methods

(Passive) supervised learning

Raw unlabeled data

to determine labels

Labeled data

 $(X_1, Y_1), (X_2, Y_2), (X_3, Y_3), \ldots$

automatic classifier

passive learner

expert/oracle analyzes/experiments to determine labels

Active learning vs. semi-supervised learning

- The same goal:
 - Attain good learning performance (e.g., classification accuracy) without demanding too many labeled examples
- Different approaches
 - Semi-supervised learning: use unlabeled data
 - Active learning: choose labeled examples

Outline

- Basic idea of active learning
- Supervised, semi-supervised, and active learning
- Uncertainty sampling
- Version space reduction and query by committee
- Expected error reduction
- Other active learning methods

Three active learning scenarios

- Query synthesis
 - learner constructs examples for labeling
- Selective sampling
 - Unlabeled data come as a stream
 - For each arrived point, learner decides to query or discard
- Pool-based active learning (*)
 - Given a pool of unlabeled data
 - Learner chooses from the pool for labeling

- A pool of unlabeled samples
- A learned model (or a set of models)
- Choose: which sample to label next?

Model(s) $P_{ heta}(y|x)$

- Uncertainty sampling
 - Query the sample x that the learner is most uncertain about
 - How to measure "uncertainty"?

Model(s) $P_{ heta}(y|x)$

Uncertainty sampling

Maximum entropy [Dagan & Engelson, ICML'95]

$$\phi_{ENT}(x) = -\sum_{y} P_{\theta}(y|x) \log_2 P_{\theta}(y|x)$$

Model(s) $P_{ heta}(y|x)$

Uncertainty sampling

 Smallest margin (between most likely and second most likely labels) [Scheffer et al., CAIDA'01]

$$\phi_M(x) = P_\theta(y_1^*|x) - P_\theta(y_2^*|x)$$

Model(s) $P_{ heta}(y|x)$

- Uncertainty sampling
 - Least confidence [Culotta & McCallum, AAAI'05]

$$\phi_{LC}(x) = 1 - P_{\theta}(y^*|x)$$

least confident [Culotta & McCallum, AAAI'05]

$$\phi_{LC}(x) = 1 - P_{\theta}(y^*|x)$$

smallest-margin [Scheffer et al., CAIDA'01] $\phi_M(x) = P_ heta(y_1^*|x) - P_ heta(y_2^*|x)$

entropy [Dagan & Engelson, ICML'95]

$$\phi_{ENT}(x) = -\sum_{y} P_{\theta}(y|x) \log_2 P_{\theta}(y|x)$$

note: for binary tasks, these are equivalent

illustration of preferred (dark red) posterior distributions in a 3-label classification task

note: for multi-class tasks, these are not equivalent!

Outline

- Basic idea of active learning
- Supervised, semi-supervised, and active learning
- Uncertainty sampling
- Version space reduction and query by committee
- Expected error reduction
- Other active learning methods

Version space

• The set of classifiers that are consistent with labeled examples

Figure 6: Version space examples for (a) linear and (b) axis-parallel box classifiers.

Recall: uncertainty sampling

Model(s) $P_{ heta}(y|x)$

Uncertainty sampling

Samples

$$X_1$$
 X_i
 X_j
 X_n

 Label
 ?
 ?
 ?
 ?
 ?
 ?
 ?

Model(s) $\{\theta_1, \theta_2, ..., \theta_C\}$

- Version space reduction
 - Query the sample x that reduces the version most
 - "Expected" reduction of version space
 - "Worst case" reduction of version space
 - "Best-case" reduction of version space

you need to learn how to recognize fruits as poisonous or safe

• How to query? Binary search !

A simplifying example

• Why binary search ?

• Recall: version space

you need to learn how to recognize fruits as poisonous or safe

• Maximize the "worst-case" reduction of version space

Version space reduction for SVMs

- Query by committee
 - Keep a committee of classifiers $\{\theta_1, \theta_2, ..., \theta_C\}$
 - Query the instance that the committee members disagree

Query by committee

- how to build a committee:
 - "sample" models from $P(\theta|\mathcal{L})$
 - [Dagan & Engelson, ICML'95; McCallum & Nigam, ICML'98]
 - standard ensembles (e.g., bagging, boosting)
 - [Abe & Mamitsuka, ICML'98]
- how to measure disagreement (many):
 - "XOR" committee classifications
 - view vote distribution as probabilities, use uncertainty measures (e.g., entropy)

Query by committee

- Query by committee
 - Keep a committee of classifiers
 - Query the instance that the committee members disagree
- QBC as version space reduction
 - Committee is an approximation to the version space
- QBC as uncertainty sampling

• Use committee members to measure the uncertainty

Outline

- Basic idea of active learning
- Supervised, semi-supervised, and active learning
- Uncertainty sampling
- Version space reduction and query by committee
- Expected error reduction
- Other active learning methods

Expected error (uncertainty) reduction

- minimize the risk R(x) of a query candidate
 - expected uncertainty over $\mathcal U\,\mathrm{if}\,x$ is added to $\mathcal L$

Outline

- Basic idea of active learning
- Supervised, semi-supervised, and active learning
- Uncertainty sampling
- Version space reduction and query by committee
- Expected error reduction
- Other active learning methods

Other active learning methods

- Active learning is an active research area ⁽²⁾
- Cost sensitive active learning
 - Labeling costs of examples differ
- Batch mode active learning
 - Query multiple instances at once
- Multi-task active learning
 - Query labels for multiple learning tasks
- See survey of Burr Settles ! [Settles, 2008]