
10-701 Machine Learning, Spring 2011: Homework 2

Due: Friday Feb. 4 at 4pm in Sharon Cavlovich’s office (GHC 8215)

Instructions There are 3 questions on this assignment. The last question involves coding. Please submit
your writeup as 3 separate sets of pages according to TAs, with your name and userid on each set. If
you choose to work with a partner for question 3, you (as a team) should submit one set of pages for that
question, labeled with both names/userids. You should still submit the solutions to questions 1-2 separately.

1 Probability [Xi Chen, 30 points]

1. This problem studies the relationship between entropy, conditional entropy, mutual information, con-
ditional independence, and expected values.

Consider random variables X and Y with joint probability density p(X, Y ). The expected value of any
function f(X, Y ) of these variables is defined as Epf(X, Y ) =

∫
p(X, Y )f(X, Y )dxdy (i.e., it is the value

of f(X, Y ) averaged over the different values X and Y can take on, weighted by their probabilities.)
The expected value of a quantity is also sometimes called its ”expectation”.

The entropy, joint entropy and conditional entropy can be expressed as the following expectations:

• Entropy: H(X) = −Ep ln p(X) = −
∫

p(X) ln p(X)dx = −
∫

p(X, Y ) ln p(X)dxdy

• Joint entropy: H(X, Y ) = −Ep ln p(X, Y ) = −
∫

p(X, Y ) ln p(X, Y )dxdy

• Conditional entropy: H(X|Y ) = −Ep ln p(X|Y ) = −
∫

p(X, Y ) ln p(X|Y )dxdy

(a) In class we defined mutual information as

I(X, Y ) , H(X)−H(X|Y ).

Please use the linearity property of the expectation (i.e. Ep(X +Y ) = Ep(X)+Ep(Y )) to express
I(X, Y ) as the expected value of a specific quantity. [2pt]

(b) Use the linearity property of the expectation to prove the chain rule for entropy1[3pt]:

H(X, Y ) = H(Y ) + H(X|Y ).

Notice that given this chain rule for entropy, we can easily derive that I(X, Y ) = H(X)+H(Y )−
H(X, Y ).

(c) Recall the conditional mutual information between random variables X and Y given Z is defined
by:

I(X, Y |Z) , H(X|Z)−H(X|Y, Z).

Express I(X, Y |Z) as the expected value of a specific quantity. Also, state a conditional indepen-
dence assumption that will guarantee I(X, Y |Z) = 0 [5pt].

1For your own interest, you may compare the chain rule for entropy to the chain rule in probability theory: P (X, Y ) =
P (Y )P (X|Y )
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F SOLUTION:

(a) Using the linearity property of the expectation:

I(X, Y ) = H(X)−H(X|Y )
= −Ep ln p(X) + Ep ln p(X|Y )

= −Ep ln
p(X)

p(X|Y )

= −Ep ln
p(X)p(Y )
p(X, Y )

(b)

H(Y ) + H(X|Y ) = −Ep ln p(Y )− Ep ln p(X|Y )
= −Ep (ln p(Y ) + ln p(X|Y ))
= −Ep ln (p(X|Y )p(Y ))
= −Ep (ln p(X, Y )) = H(X, Y )

(c)

I(X, Y |Z) = H(X|Z)−H(X|Y,Z)
= −Ep ln p(X|Z) + Ep ln p(X|Y, Z)

= −Ep ln
p(X|Z)

p(X|Y,Z)

= −Ep ln
p(X|Z)p(Y |Z)

p(X|Y,Z)p(Y |Z)

= −Ep ln
p(X|Z)p(Y |Z)

p(X, Y |Z)

If X and Y are conditionally independent given Z (i.e. p(X|Z)p(Y |Z) = p(X, Y |Z)), I(X, Y |Z) = 0.

2. Given two random variables X and Y , let EX and EY denote the means (i.e., expected values) of X
and Y and let σX and σY denote the standard deviations of X and Y . Here are three quantities that
are commonly used to characterize the relationship between X and Y :

• Covariance: cov(X, Y ) = E[(X − EX)(Y − EY )] = E(XY )− EXEY

• Correlation: ρXY = cov(X,Y )
σXσY

• Mutual Information: I(X, Y ) = H(X)−H(X|Y ) = KL (p(X, Y )||p(X)p(Y ))
where KL(p||q) ≡ −

∫
p(x) ln q(x)

p(x)dx is the Kullback-Leibler(KL) distance 2.

(a) Recall the Cauchy-Schwarz inequality: for any two non-degenerate 3 random variables X and Y :

{E(XY )}2 ≤ E(X2)E(Y 2),

where the equality holds if and and only if P (X = aY ) = 1 for some non-zero constant a.
Use the Cauchy-Schwarz inequality to prove that for any two non-degenerate random variables
X and Y , the absolute value of the correlation between X and Y is less than or equal to 1, i.e.
|ρXY | ≤ 1. [3pt]

(b) Show conditions under which we have ρXY = 1 and the conditions under which ρXY = −1. [2pt]
2As shown in homework 1, the definitions of mutual information based on KL divergence and entropy are equivalent.
3A random variable that can only take on one value (i.e., a constant) is called a degenerate random variable.
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(c) If I(X, Y ) = 0, can we conclude that ρXY = 0 (or equivalently, cov(X, Y ) = 0) ? If so, please
give the proof; if not, please find the two random variables X and Y such that I(X, Y ) = 0 but
ρXY 6= 0. [5pt]

(d) If ρXY = 0, can we conclude that I(X, Y ) = 0? If so, please give the proof; if not, please find the
two random variables X and Y such that ρXY = 0 but I(X, Y ) 6= 0. [10pt]

F SOLUTION:

(a) We want to show that |ρXY | ≤ 1. Plugging in the definition of ρXY , this is equivalent to showing
that:

(cov(X, Y ))2 ≤ var(X)var(Y ),

which is further equivalent to showing that

{E ((X − EX)(Y − EY ))}2 ≤ E
(
(X − EX)2

)
E

(
(Y − EY )2

)
.

Now note that X−EX and Y −EY are themselves random variables, so the Cauchy-Schwarz inequality
directly applies to them, and proves our statement |ρXY | ≤ 1.

(b) By the Cauchy-Schwarz inequality, we get that (cov(X, Y ))2 ≤ var(X)var(Y ) (i.e. |ρXY | = 1) if and
only if

P (X − EX = a(Y − EY )) = 1,

for some real a. Therefore, if X is linear in Y , i.e. X = aY + b, we have |ρXY | = 1. Plug this
condition into cov(X, Y ):

cov(X, Y ) = E(XY )− EXEY

= E(X(aX + b))− EXE(aX + b)
= aE(X2)− a(EX)2

= avar(X)

Since var(X) > 0, if a > 0, we have cov(X, Y ) > 0 so ρXY > 0. Since |ρXY | = 1, ρXY = 1. In
contrast, if a < 0, we have cov(X, Y ) < 0 so ρXY < 0. Since |ρXY | = 1, ρXY = −1.

In summary, if X = aY + b and a > 0, ρXY = 1; if X = aY + b and a < 0, ρXY = −1.

(c) If I(X, Y ) = 0, X and Y are statistically independent, i.e. p(X, Y ) = p(X)p(Y ). We have

cov(X, Y ) = E(XY )− EXEY

=
∫ ∫

xyp(x, y)dxdy −
∫

xp(x)dx

∫
yp(y)dy

=
∫ ∫

xyp(x)p(y)dxdy −
∫

xp(x)dx

∫
yp(y)dy

=
∫

xp(x)dx

∫
yp(y)dy −

∫
xp(x)dx

∫
yp(y)dy

= 0.

In summary, if I(X, Y ) = 0, we can conclude that ρXY = 0.

(d) The conclusion is that if ρXY = 0, X and Y may not be independent, and hence I(X, Y ) may not
be zero. Now we provide two uncorrelated random variables X and Y which are dependent. You may
come up with your own example and will get full remark if your example is correct.

Let X ∼ N(0, 1) follow a standard normal distribution and Y = X2. From the definition of inde-
pendence, X and Y are not independent. Since x3p(x) is an odd function, E(XY ) = E(X3) =∫

x3p(x) = 0. Since EX = 0, we have

cov(X, Y ) = E(XY )− EXEY

= E(X3)− EXE(X2)
= 0− 0 = 0

Therefore, we have ρXY = 0 but X and Y are dependent.
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2 Generative and Discriminative Classifiers: Gaussian (Naive)
Bayes and Logistic Regression [Yi Zhang, 30 points]

Recall that a generative classifier estimates P (X, Y ) = P (Y )P (X|Y ), while a discriminative classifier directly
estimates P (Y |X)4. For clarity, we highlight X in bold to emphasize that it usually represents a vector of
multiple attributes, i.e., X =< X1, X2, . . . , Xn >. However, this question does not require students to derive
the answer in vector/matrix notation.

In class we have observed an interesting relationship between a discriminative classifier (logistic regression)
and a generative classifier (Gaussian naive Bayes): the form of P (Y |X) derived from the assumptions of
a specific class of Gaussian naive Bayes classifiers is precisely the form used by logistic regression. The
derivation can be found in the required reading, Mitchell: Naive Bayes and Logistic Regression,
Section 3.1 (page 8 - 10). In that reading, we made the following assumptions for Gaussian naive Bayes
classifiers to model P (X, Y ) = P (Y )P (X|Y ) (rephrased from the required reading, with a few comments):

1. Y is a boolean variable following a Bernoulli distribution, with parameter π = P (Y = 1) and thus
P (Y = 0) = 1− π.

2. X =< X1, X2, . . . , Xn >, where each attribute Xi is a continuous random variable. For each Xi,
P (Xi|Y = k) is a Gaussian distribution N(µik, σi). Note that σi is the standard deviation of the
Gaussian distribution (and thus σ2

i is the variance), which does not depend on k.

3. For all i 6= j, Xi and Xj are conditionally independent given Y . This is why this type of classifier is
called “naive”.

We say this is a specific class of Gaussian naive Bayes classifiers because we have made an assumption
that the standard deviation σi of P (Xi|Y = k) does not depend on the value k of Y . This is not a general
assumption for Gaussian naive Bayes classifiers.

2.1 General Gaussian naive Bayes Classifiers and Logistic Regression [15 points]

Let’s make our Gaussian naive Bayes classifiers a little more general by removing the assumption that the
standard deviation σi of P (Xi|Y = k) does not depend on k. As a result, for each Xi, P (Xi|Y = k) is a
Gaussian distribution N(µik, σik), where i = 1, 2, . . . , n and k = 0, 1. Note that now the standard deviation
σik of P (Xi|Y = k) depends on both the attribute index i and the value k of Y .

Question: is the new form of P (Y |X) implied by this more general Gaussian naive Bayes classifier still
the form used by logistic regression? Derive the new form of P (Y |X) to prove your answer.

F SOLUTION: No, the new P (Y |X) implied by this more general Gaussian naive classifier is no longer the
form used by logistic regression. Here is the derivation.

As shown in page 8 of [Mitchell: Naive Bayes and Logistic Regression], we have:

P (Y = 1|X) =
P (Y = 1)P (X|Y = 1)

P (Y = 1)P (X|Y = 1) + P (Y = 0)P (X|Y = 0)

=
1

1 + P (Y =0)P (X|Y =0)
P (Y =1)P (X|Y =1)

=
1

1 + exp(ln P (Y =0)P (X|Y =0)
P (Y =1)P (X|Y =1) )

=
1

1 + exp(ln 1−π
π + ln P (X|Y =0)

P (X|Y =1) )

=
1

1 + exp(ln 1−π
π +

∑
i ln P (Xi|Y =0)

P (Xi|Y =1) )

4Note that certain discriminative classifiers are non-probabilistic: they directly estimate a function f : X → Y instead of
P (Y |X). We will see such classifiers later this semester, but it is beyond the scope of this question.
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Now the standard deviation σik of P (Xi|Y = k) depends on both the attribute index i and the value k of Y ,
so we have:

∑
i

ln
P (Xi|Y = 0)
P (Xi|Y = 1)

=
∑

i

ln

1√
2πσ2

i0

exp(−(Xi−µi0)
2

2σ2
i0

)

1√
2πσ2

i1

exp(−(Xi−µi1)2

2σ2
i1

)

=
∑

i

ln
σi1

σi0
+

∑
i

(
(Xi − µi1)2

2σ2
i1

− (Xi − µi0)2

2σ2
i0

)

=
∑

i

ln
σi1

σi0
+

∑
i

(σ2
i0 − σ2

i1)X
2
i + 2(µi0σ

2
i1 − µi1σ

2
i0)Xi + µ2

i1σ
2
i0 − µ2

i0σ
2
i1

2σ2
i0σ

2
i1

=
∑

i

(ln
σi1

σi0
+

µ2
i1σ

2
i0 − µ2

i0σ
2
i1

2σ2
i0σ

2
i1

) +
∑

i

(µi0σ
2
i1 − µi1σ

2
i0)

σ2
i0σ

2
i1

Xi +
∑

i

(σ2
i0 − σ2

i1)
2σ2

i0σ
2
i1

X2
i

As a result, we have P (Y = 1|X) as follows:

P (Y = 1|X) =
1

1 + exp(ln 1−π
π +

∑
i ln P (Xi|Y =0)

P (Xi|Y =1) )

=
1

1 + exp(w0 +
∑

i wiXi +
∑

i viX2
i )

where

w0 = ln
1− π

π
+

∑
i

(ln
σi1

σi0
+

µ2
i1σ

2
i0 − µ2

i0σ
2
i1

2σ2
i0σ

2
i1

)

wi =
(µi0σ

2
i1 − µi1σ

2
i0)

σ2
i0σ

2
i1

vi =
(σ2

i0 − σ2
i1)

2σ2
i0σ

2
i1

In general we do not have σi1 = σi0 so the quadratic term viX
2
i in P (Y = 1|X) will not disappear. Therefore

the form of P (Y = 1|X) is no longer the form of logistic regression.

2.2 Gaussian Bayes Classifiers and Logistic Regression [15 points]

Students in 10-701 are all smart, so clearly we will not be satisfied by only studying a “naive” classifier. In
this part, we will turn our attention to a specific class of Gaussian Bayes classifiers (without “naive”, yeah!).
We consider the following assumptions for our Gaussian Bayes classifiers:

1. Y is a boolean variable following a Bernoulli distribution, with parameter π = P (Y = 1) and thus
P (Y = 0) = 1− π.

2. X =< X1, X2 >, i.e., we only consider two attributes, where each attribute Xi is a continuous random
variable. X1 and X2 are not conditionally independent given Y . We assume P (X1, X2|Y = k) is a
bivariate Gaussian distribution N(µ1k, µ2k, σ1, σ2, ρ), where µ1k and µ2k are means of X1 and X2,
σ1 and σ2 are standard deviations of X1 and X2, and ρ is the correlation between X1 and X2. Note
that µ1k and µ2k depend on the value k of Y , but σ1, σ2, and ρ do not depend on Y . Also recall that
the density of a bivariate Gaussian distribution, given (µ1k, µ2k, σ1, σ2, ρ), is:

P (X1, X2|Y = k) =
1

2πσ1σ2

√
1− ρ2

exp[−σ2
2(X1 − µ1k)2 + σ2

1(X2 − µ2k)2 − 2ρσ1σ2(X1 − µ1k)(X2 − µ2k)
2(1− ρ2)σ2

1σ2
2

]

Question: is the form of P (Y |X) implied by such not-so-naive Gaussian Bayes classifiers still the form
used by logistic regression? Derive the form of P (Y |X) to prove your answer.
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F SOLUTION: Yes, the new P (Y |X) implied by this not-so-naive Gaussian Bayes classifier is still the form
used by logistic regression.

P (Y = 1|X) =
P (Y = 1)P (X|Y = 1)

P (Y = 1)P (X|Y = 1) + P (Y = 0)P (X|Y = 0)

=
1

1 + P (Y =0)P (X|Y =0)
P (Y =1)P (X|Y =1)

=
1

1 + exp(ln P (Y =0)P (X|Y =0)
P (Y =1)P (X|Y =1) )

=
1

1 + exp(ln 1−π
π + ln P (X|Y =0)

P (X|Y =1) )

=
1

1 + exp(ln 1−π
π + ln P (X1,X2|Y =0)

P (X1,X2|Y =1) )

Note that we must work on the joint distribution P (X1, X2|Y = 0) and P (X1, X2|Y = 1) because X1 and

X2 are no longer conditionally independent given Y. We proceed by focusing on the term ln P (X1,X2|Y =0)
P (X1,X2|Y =1) :

ln
P (X1, X2|Y = 0)
P (X1, X2|Y = 1)

= ln

1

2πσ1σ2

√
1−ρ2

1

2πσ1σ2

√
1−ρ2

+ ln exp[(∗)]

= ln exp[(∗)]
= (∗)

where (*) is the following formulation, obtained as the difference between the exponential parts of the bivariate
Gaussian densities P (X1, X2|Y = 0) and P (X1, X2|Y = 1):

(∗) =
σ2

2(X1 − µ11)2 + σ2
1(X2 − µ21)2 − 2ρσ1σ2(X1 − µ11)(X2 − µ21)

2(1− ρ2)σ2
1σ2

2

− σ2
2(X1 − µ10)2 + σ2

1(X2 − µ20)2 − 2ρσ1σ2(X1 − µ10)(X2 − µ20)
2(1− ρ2)σ2

1σ2
2

It turns out, by a few steps of derivations, that all quadratic terms X2
1 , X2

2 and X1X2 are canceled in the
above (*) and therefore we end up with the following:

(∗) =
2σ2

2(µ10 − µ11) + 2ρσ1σ2(µ21 − µ20)
2(1− ρ2)σ2

1σ2
2

X1

+
2σ2

1(µ20 − µ21) + 2ρσ1σ2(µ11 − µ10)
2(1− ρ2)σ2

1σ2
2

X2

+
σ2

2(µ2
11 − µ2

10) + σ2
1(µ2

21 − µ2
20) + 2ρσ1σ2(µ10µ20 − µ11µ21)

2(1− ρ2)σ2
1σ2

2

As a result, we have:

P (Y = 1|X) =
1

1 + exp(ln 1−π
π + ln P (X1,X2|Y =0)

P (X1,X2|Y =1) )

=
1

1 + exp(ln 1−π
π + (∗))

=
1

1 + exp(w0 + w1X1 + w2X2)
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where

w0 = ln
1− π

π
+

σ2
2(µ2

11 − µ2
10) + σ2

1(µ2
21 − µ2

20) + 2ρσ1σ2(µ10µ20 − µ11µ21)
2(1− ρ2)σ2

1σ2
2

w1 =
2σ2

2(µ10 − µ11) + 2ρσ1σ2(µ21 − µ20)
2(1− ρ2)σ2

1σ2
2

w2 =
2σ2

1(µ20 − µ21) + 2ρσ1σ2(µ11 − µ10)
2(1− ρ2)σ2

1σ2
2

This form of P (Y = 1|X) is still the form represented by logistic regression.

SPECIAL NOTES: we intentionally choose only two attributes X =< X1, X2 > because the density
of bivariate Gaussian distribution can be expressed using scalars instead of vectors and matrices. This way,
students do not need to derive the answer using vector/matrix algebra. However, if you are comfortable
with vector and matrix algebra, please feel free to use following alternative assumptions and derive your
answer in vector/matrix notation (which may turn out to be less time-consuming):

1. Y is a boolean variable following a Bernoulli distribution, with parameter π = P (Y = 1) and thus
P (Y = 0) = 1− π.

2. X =< X1, X2, . . . , Xn > are not conditionally independent given Y , and P (X|Y = k) follows a
multivariate normal distribution N(µk,Σ). Note that µk is the n× 1 mean vector depending on
the value of Y , and Σ is the n×n covariance matrix, which does not depend on Y . Also, you should
be familiar with the density of multivariate normal distribution in vector/matrix notation.

You may choose to derive your answer for either the bivariate normal version using scalars or the multivariate
normal version using vector/matrix notation. Derive both versions will not gain extra credits.

F SOLUTION: In fact, deriving the answer in matrix and vector notation is much simpler and elegant. Now
X, µ1 and µ2 are n× 1 vectors, and Σ is the n× n matrix. Similarly, we start with:

P (Y = 1|X) =
P (Y = 1)P (X|Y = 1)

P (Y = 1)P (X|Y = 1) + P (Y = 0)P (X|Y = 0)

=
1

1 + P (Y =0)P (X|Y =0)
P (Y =1)P (X|Y =1)

=
1

1 + exp(ln P (Y =0)P (X|Y =0)
P (Y =1)P (X|Y =1) )

=
1

1 + exp(ln 1−π
π + ln P (X|Y =0)

P (X|Y =1) )

Then we focus on the term ln P (X|Y =0)
P (X|Y =1) :

ln
P (X|Y = 0)
P (X|Y = 1)

= ln
1

(2π)n/2|Σ|1/2

1
(2π)n/2|Σ|1/2

+ ln exp[(∗)]

= ln exp[(∗)]
= (∗)

where, again, (*) is the formulation obtained as the difference between the exponential parts of two multivariate
Gaussian densities P (X|Y = 0) and P (X|Y = 1):

(∗) =
1
2
[(X − µ1)T Σ−1(X − µ1)− (X − µ0)T Σ−1(X − µ0)]

= (µT
0 − µT

1 )Σ−1X +
1
2
µT

1 Σ−1µ1 −
1
2
µT

0 Σ−1µ0
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As a result, we have:

P (Y = 1|X) =
1

1 + exp(ln 1−π
π + 1

2µT
1 Σ−1µ1 − 1

2µT
0 Σ−1µ0 + (µT

0 − µT
1 )Σ−1X)

=
1

1 + exp(w0 + wT X)

where w0 = ln 1−π
π + 1

2µT
1 Σ−1µ1 − 1

2µT
0 Σ−1µ0 is a scalar and w = Σ−1(µ0 − µ1) is an n× 1 parameter vector.

This is still the form of logistic regression (in vector and matrix notation).

3 Naive Bayes Document Classifier [Carl Doersch, 40 points]

In this question, you will implement the Naive Bayes document classifier and apply it to the classic 20
newsgroups dataset5. In this dataset, each document is a posting that was made to one of 20 different usenet
newsgroups. Our goal is to write a program which can predict which newsgroup a given document was
posted to.

For this question, you may write your code and solution in teams of at most 2. If you decide
to do this, you should submit one copy of your solutions to question 3 (both code and answers to questions)
per team. This copy should be clearly marked with the names of both team members.

3.1 Model

Say we have a document D containing n words; call the words {X1, ..., Xn}. The value of random variable
Xi is the word found in position i in the document. We wish to predict the label Y of the document, which
can be one of m categories, We could use the model:

P (Y |X1...Xn) ∝ P (X1...Xn|Y )P (Y ) = P (Y )
∏

i

P (Xi|Y )

That is, each Xi is sampled from some distribution that depends on its position Xi and the document
category Y . As usual with discrete data, we assume that P (Xi|Y ) is a multinomial distribution over some
vocabulary V ; that is, each Xi can take one of |V | possible values corresponding to the words in the
vocabulary. Therefore, in this model, we are assuming (roughly) that for any pair of document positions i
and j, P (Xi|Y ) may be completely different from P (Xj |Y ).

Question 3.1: In your answer sheet, explain in a sentence or two why it would be difficult to accurately
estimate the parameters of this model on a reasonable set of documents (e.g. 1000 documents, each 1000
words long, where each word comes from a 50,000 word vocabulary). [3 points]

F SOLUTION: In this model, each position in a given document is assumed to have its own probability
distribution. Each document gives has only one word at each position, so if there are M documents then we must
estimate the parameters a roughly 50,000-dimensional distribution using only M samples from that distribution.
In only a thousand documents, there will not be enough samples.

To see it another way, the fact that a word w appeared at the i’th position of the document gives us information
about the distribution at another position j. Namely, in English, it is possible to rearrange the words in a document
without significantly altering the document’s meaning, and therefore the fact that w appeared at i means that
it is more likely to appear at position j. Thus, it would be statistically inefficient to not to make use of the
information in estimating the parameters of the distribution of Xj .

To improve the model, we will make the additional assumption that:

∀i, j P (Xi|Y ) = p(Xj |Y )

Thus, in addition to estimating P (Y ), you must estimate the parameters for the single distribution
P (X|Y ), which we define to be equal to P (Xi|Y ) for all Xi. Each word in a document is assumed to be an
iid draw from this distribution.

5http://people.csail.mit.edu/jrennie/20Newsgroups/
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3.2 Data

The data file (available on the website) contains six files:

1. vocabulary.txt is a list of the words that may appear in documents. The line number is word’s id in
other files. That is, the first word (’archive’) has wordId 1, the second (’name’) has wordId 2, etc.

2. newsgrouplabels.txt is a list of newsgroups from which a docment may have come. Again, the line
number corresponds to the label’s id, which is used in the .label files. The first line (’alt.atheism’) has
id 1, etc.

3. train.label Each line corresponds to the label for one document from the training set. Again, the
document’s id (docId) is the line number.

4. test.label The same as train.label, except that the labels are for the test documents.

5. train.data Specifies the counts for each of the words used in each of the documents. Each line is of
the form “docId wordId count”, where count specifies the number of times the word with id wordId
in the training document with id docId. All word/document pairs that do not appear in the file have
count 0.

6. test.data Same as train.data, except that it specified counts for test documents.

If you are using matlab, the functions textread and sparse will be useful in reading these files.

3.3 Implementation

Your first task is to implement the Naive Bayes classifier specified above. You should estimate P (Y ) using
the MLE, and estimate P (X|Y ) using a MAP estimate with the prior distribution Dirichlet(1+α, ..., 1+α),
where α = 1/|V | and V is vocabulary.

Question 3.2: In your answer sheet, report your overall testing accuracy (Nubmer of correctly classified
documents in the test set over the total number of test documents), and print out the confusion matrix
(the matrix C, where cij is the number of times a document with ground truth category j was classified as
category i). [7 points]

F SOLUTION: The final accuracy of this classifier is 78.52%, with the following confusion matrix:
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alt.atheism 249 0 0 0 0 1 0 0 1 0 0 2 0 3 3 24 2 3 4 26
comp.graphics 0 286 13 14 9 22 4 1 1 0 1 11 8 6 10 1 2 0 0 0

comp.os.ms-windows.misc 1 33 204 57 19 21 4 2 3 0 0 12 5 10 8 3 1 0 5 3
comp.sys.ibm.pc.hardware 0 11 30 277 20 1 10 2 1 0 1 4 32 1 2 0 0 0 0 0

comp.sys.mac.hardware 0 17 13 30 269 0 12 2 2 0 0 3 21 8 4 0 1 0 1 0
comp.windows.x 0 54 16 6 3 285 1 1 3 0 0 5 3 6 4 0 1 1 1 0

misc.forsale 0 7 5 32 16 1 270 17 8 1 2 0 7 4 6 0 2 1 2 1
rec.autos 0 3 1 2 0 0 14 331 17 0 0 1 13 0 4 2 0 0 6 1

rec.motorcycles 0 1 0 1 0 0 2 27 360 0 0 0 3 1 0 0 1 1 0 0
rec.sport.baseball 0 0 0 1 1 0 2 1 2 352 17 0 1 3 3 5 2 1 5 1
rec.sport.hockey 2 0 1 0 0 0 2 1 2 4 383 0 0 0 0 1 2 0 1 0

sci.crypt 0 3 0 3 4 1 0 0 0 1 1 362 2 2 2 0 9 0 5 0
sci.electronics 3 20 4 25 7 4 8 11 6 0 0 21 264 9 7 1 3 0 0 0

sci.med 5 7 0 3 0 0 3 5 4 1 0 1 8 320 8 7 6 5 8 2
sci.space 0 8 0 1 0 3 1 0 1 0 1 4 6 5 343 3 2 1 12 1

soc.religion.christian 11 2 0 0 0 2 1 0 0 0 0 0 0 2 0 362 0 1 2 15
talk.politics.guns 1 1 0 0 0 1 1 2 1 1 0 4 0 5 2 1 303 5 23 13

talk.politics.mideast 12 1 0 1 0 0 1 2 0 2 0 2 1 0 0 6 3 326 18 1
talk.politics.misc 6 1 0 0 1 1 0 0 0 0 0 5 0 10 6 2 63 6 196 13
talk.religion.misc 39 3 0 0 0 0 0 0 1 1 0 1 0 2 6 27 10 3 7 151
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Question 3.3: Are there any newsgroups that the algorithm confuses more often than others? Why do
you think this is? [2 points]

F SOLUTION: From the confusion matrix, it is clear that newsgroups with a similar topics are confused
frequently. Notably, those related to computers (eg comp.os.ms-windows.misc and comp.sys.ibm.pc.hardware),
those related to politics (e.g. talk.politics.guns and talk.politics.misc), and those related to religion (alt.atheism
and talk.religon.misc). Newsgroups with similar topics have similar words that identify them. For example, we
would expect the computer-related groups to all use computer terms frequently.

3.4 Priors and Overfitting

In your initial implementation, you used a prior Dirichlet(1 + α, ..., 1 + α) to estimate P (X|Y ), and I told
you set α = 1/|V |. Hopefully you wondered where this value came from. In practice, the choice of prior
is a difficult question in Bayesian learning: either we must use domain knowledge, or we must look at the
performance of different values on some validation set. Here we will use the performance on the testing set
to gauge the effect of α 6.

Question 3.4: Re-train your Naive Bayes classifier for values of α between .00001 and 1 and report the
accuracy over the test set for each value of α. Create a plot with values of α on the x-axis and accuracy
on the y-axis. Use a logarithmic scale for the x-axis (in Matlab, the semilogx command). Explain in a few
sentences why accuracy drops for both small and large values of α [5 points]

F SOLUTION: For very small values of α, we have that the probability of rare words not seen during training
for a given class tends to zero. There are many testing documents that contain words seen only in one or two
training documents, and often these training documents are of a different class than the test document. As α
tends to zero, the probabilities of these rare words tends to dominate.

A number of students attributed the poor performance at small values of α to ‘overfitting’. While this is
strictly speaking correct (the classifier estimates P (X|Y ) to be smaller than is realistic simply because that was
the case in the data), simply attributing this to overfitting is not a sophisticated answer. Different classifiers
overfit for different reasons, and understanding the differences is an important goal for you as students.

For large values of α, we see a classic underfitting behavior: the final parameter estimates are closer tend
toward the prior as α increases, and the prior is just something we made up. In particular, the classifier tends
to underestimate the importance of rare words: for example, if α is 1 and we see only one occurrence of the
word w in the category C (and we see the same number of words in each category), then the final param-
eter estimates are 2/21 for category C and 19/21 that it would be something else. Furthermore, the most
informative words tend to be relatively uncommon, and so we would like to rely on these rare words more.

6It is tempting to choose α to be the one with the best performance on the testing set. However, if we do this, then we
can no longer assume that the classifier’s performance on the test set is an unbiased estimate of the classifier’s performance in
general. The act of choosing α based on the test set is equivalent to training on the test set; like any training procedure, this
choice is subject to overfitting.
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3.5 Identifying Important Features

One useful property of Naive Bayes is that its simplicity makes it easy to understand why the classifier
behaves the way it does. This can be useful both while debugging your algorithm and for understanding
your dataset in general. For example, it is possible to identify which words are strong indicators of the
category labels we’re interested in.

Question 3.5: Propose a method for ranking the words in the dataset based on how much the classifier
‘relies on’ them when performing its classification (hint: information theory will help). Your metric should
use only the classifier’s estimates of P (Y ) and P (X|Y ). It should give high scores to those words that appear
frequently in one or a few of the newsgroups but not in other ones. Words that are used frequently in general
English (‘the’, ‘of’, etc.) should have lower scores, as well as words that only appear appear extremely rarely
throughout the whole dataset. Finally, your method this should be an overall ranking for the words, not a
per-category ranking.[3 points]

F SOLUTION: First of all, a handful of people whined about not liking the open-endedness of this problem.
I hate to say it, but nebulous problems like this are common in machine learning–this problem was actually inspired
by something I worked on last summer in industry. The goal was to design a metric for finding documents similar
to some query document, and part of the procedure involved classifying words in the query document into one of
100 categories, based on the word itself and the word’s context. The algorithm initially didn’t work as well as I
thought it should have, and the only path to improving its performance was to understand what these classifiers
were ‘relying on’ in order to do their classification–some way of understanding the classifiers’ internal workings,
and even I wasn’t sure what I was looking for. In the end I designed a metric based on information theory and,
after looking at hundreds of word lists printed from these classifiers, I eventually found a way to fix the problem.
I felt this experience was valuable enough that I should pass it on to all of you.

There were many acceptable solutions to this question, but probably the most successful ones studied the
distribution of indicator variables Xi = (X == the i′th word in V ). A common error was the use of imprecise
notation: note that H(X|Y ) and I(X, Y ) are just single numbers; these expressions have different meanings than
the expressions H(Xi|Y ) and I(Xi, Y ).
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The first measure is H(Y |Xi = True), the entropy of the label given a document with a single word wi.
Intuitively, this value will be low if a word appears most of the time in a single class, because the distribution
P (Y |Xi = True) will be highly peaked. More concretely (and abbreviating True as T ),

H(Y |Xi = T ) = −
∑

k P (Y = yk|Xi = T )log(P (Y = yk|Xi = T )
= −EP (Y |Xi=T )log(P (Y = yk|Xi = T )
= −EP (Y |Xi=T )log

P (Xi=T |Y =yk)P (Y =yk)
P (Xi=T )

= −EP (Y |Xi=T )log
P (Xi=T |Y =yk)

P (Xi=T ) − EP (Y |Xi=T )log(P (Y = yk))

Note that

log
P (Xi = T |Y = yk)

P (Xi = T )

is exactly what gets added to Naive Bayes’ internal estimate of the posterior probability log(P (Y )) at each step
of the algorithm (although in implementations we usually ignore the constant P (Xi = T )). Furthermore, the
expectation is over the posterior distribution of the class labels given the appearance of word wi. Thus, the first
term of this measure can be interpreted as the expected change in the classifier’s estimate of the log-probability
of the ‘correct’ class given the appearance of word wi. The second term tends to be very small relative to the
first term since P(Y) is close to uniform; I found that the word list is the same with or without it.

Another popular measure was I(Xi, Y ), which Prof. Mitchell said was quite useful in fMRI data. Intuiively,
this measures the amount of information we learn by observing Xi. An issue with this measure is that Naive Bayes
only really learns from Xi in the event that Xi = True, and essentially ignores this variable when Xi = False
(thus, the issue was introduced because we’re computing our measure on Xi rather than on X). Note that
this is not the case in fMRI data (i.e. you compute the mutual information directly on the features used for
classification), which explains why mutual information works better in that domain. Note that Xi = False most
of the time for informative words, so in the formula:

I(Xi, Y ) = H(Xi)−H(Xi|Y ) =

−
∑

xi∈{T,F}

P (Xi = xi)

[
log(Xi = xi)−

∑
k

P (Y = yk|Xi = xi)log(P (Y = yk|Xi = xi))

]
We see that the term for xi = F tends to dominate even though it is essentially meaningless.
Another disadvantage of this metric is that it’s more difficult to implement; the majority of people who tried

made some mistake. Most notably, quite a few people forgot to sum over the possible values of xi.

Question 3.6: Implement your method, set α back to 1/|V |, and print out the 100 words with the
highest measure. [2 points]

F SOLUTION: For the metric H(Y |Xi = True):

‘‘nhl’’, ‘‘stephanopoulos’’, ‘‘leafs’’, ‘‘alomar’’, ‘‘wolverine’’, ‘‘crypto’’, ‘‘lemieux’’,
‘‘oname’’, ‘‘rsa’’, ‘‘athos’’, ‘‘ripem’’, ‘‘rbi’’, ‘‘firearm’’, ‘‘powerbook’’, ‘‘pitcher’’,
‘‘bruins’’, ‘‘dyer’’, ‘‘lindros’’, ‘‘lciii’’, ‘‘ahl’’, ‘‘fprintf’’, ‘‘candida’’, ‘‘azerbaijan’’,
‘‘baerga’’, ‘‘args’’, ‘‘iisi’’, ‘‘gilmour’’, ‘‘clh’’, ‘‘gfci’’, ‘‘pitchers’’, ‘‘gainey’’, ‘‘clemens’’,
‘‘dodgers’’, ‘‘jagr’’, ‘‘sabretooth’’, ‘‘liefeld’’, ‘‘hawks’’, ‘‘hobgoblin’’, ‘‘rlk’’, ‘‘adb’’,
‘‘crypt’’, ‘‘anonymity’’, ‘‘aspi’’, ‘‘countersteering’’, ‘‘xfree’’, ‘‘punisher’’, ‘‘recchi’’,
‘‘cipher’’, ‘‘oilers’’, ‘‘soderstrom’’, ‘‘azerbaijani’’, ‘‘obp’’, ‘‘goalie’’, ‘‘libxmu’’, ‘‘inning’’,
‘‘xmu’’, ‘‘sdpa’’, ‘‘argic’’, ‘‘serdar’’, ‘‘sumgait’’, ‘‘denning’’, ‘‘ioccc’’, ‘‘obfuscated’’,
‘‘umu’’, ‘‘nsmca’’, ‘‘dineen’’, ‘‘ranck’’, ‘‘xdm’’, ‘‘rayshade’’, ‘‘gaza’’, ‘‘stderr’’, ‘‘dpy’’,
‘‘cardinals’’, ‘‘potvin’’, ‘‘orbiter’’, ‘‘sandberg’’, ‘‘imake’’, ‘‘plaintext’’, ‘‘whalers’’,
‘‘moncton’’, ‘‘jaeger’’, ‘‘uccxkvb’’, ‘‘mydisplay’’, ‘‘wip’’, ‘‘hicnet’’, ‘‘homicides’’, ‘‘bontchev’’,
‘‘canadiens’’, ‘‘messier’’, ‘‘bure’’, ‘‘bikers’’, ‘‘cryptographic’’, ‘‘ssto’’, ‘‘motorcycling’’,
‘‘infante’’, ‘‘karabakh’’, ‘‘baku’’, ‘‘mutants’’, ‘‘keown’’, ‘‘cousineau’’
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For the metric I(Xi, Y ):

‘‘windows’’, ‘‘god’’, ‘‘he’’, ‘‘scsi’’, ‘‘car’’, ‘‘drive’’, ‘‘space’’, ‘‘team’’, ‘‘dos’’, ‘‘bike’’,
‘‘file’’, ‘‘of’’, ‘‘that’’, ‘‘mb’’, ‘‘game’’, ‘‘key’’, ‘‘mac’’, ‘‘jesus’’, ‘‘window’’, ‘‘dod’’,
‘‘hockey’’, ‘‘the’’, ‘‘graphics’’, ‘‘card’’, ‘‘image’’, ‘‘his’’, ‘‘gun’’, ‘‘encryption’’, ‘‘sale’’,
‘‘apple’’, ‘‘government’’, ‘‘season’’, ‘‘we’’, ‘‘games’’, ‘‘israel’’, ‘‘disk’’, ‘‘files’’,
‘‘ide’’, ‘‘controller’’, ‘‘players’’, ‘‘shipping’’, ‘‘chip’’, ‘‘program’’, ‘‘was’’, ‘‘cars’’,
‘‘nasa’’, ‘‘win’’, ‘‘year’’, ‘‘were’’, ‘‘they’’, ‘‘turkish’’, ‘‘motif’’, ‘‘people’’, ‘‘armenian’’,
‘‘play’’, ‘‘drives’’, ‘‘bible’’, ‘‘use’’, ‘‘widget’’, ‘‘pc’’, ‘‘clipper’’, ‘‘offer’’, ‘‘jpeg’’,
‘‘baseball’’, ‘‘bus’’, ‘‘my’’, ‘‘nhl’’, ‘‘software’’, ‘‘is’’, ‘‘db’’, ‘‘server’’, ‘‘jews’’,
‘‘os’’, ‘‘israeli’’, ‘‘output’’, ‘‘data’’, ‘‘system’’, ‘‘who’’, ‘‘league’’, ‘‘armenians’’,
‘‘for’’, ‘‘christian’’, ‘‘christians’’, ‘‘entry’’, ‘‘mhz’’, ‘‘ftp’’, ‘‘price’’, ‘‘christ’’,
‘‘guns’’, ‘‘thanks’’, ‘‘church’’, ‘‘color’’, ‘‘teams’’, ‘‘privacy’’, ‘‘condition’’, ‘‘launch’’,
‘‘him’’, ‘‘com’’, ‘‘monitor’’, ‘‘ram’’

(Note the presence of the words ‘car’, ‘of’, ‘that’, etc.

Question 3.7: If the points in the training dataset were not sampled independently at random from the
same distribution of data we plan to classify in the future, we might call that training set biased. Dataset
bias is a problem because the performance of a classifier on a biased dataset will not accurately reflect its
future performance in the real world. Look again at the words your classifier is ‘relying on’. Do you see any
signs of dataset bias? [3 points]

F SOLUTION: While I don’t know exactly how this dataset was collected, it is certain that the dataset was
collected over some finite time period in the past. That means our classifier will tend to rely on some words
that are specific to this time period. For the first word list, ‘stephanopolous’ refers to a politician who may not
be around in the future, and ‘whalers’ refers to the Connecticut hockey team that was actually being desolved
at the same time as this dataset was being collected. For the second list, ’ghz’ has almost certainly replaced
’mhz’ in modern computer discussions, and the controversy regarding Turkey and Armenia is far less newsworthy
today. As a result, you should expect the classification accuracy on the 20-newsgroups testing set to significantly
overestimate the classification accuracy your algorithm would have on a testing sample from the same newsgroups
taken today.

Sadly, there is a lot of bad machine learning research that has resulted from biased datasets. Researchers will
train an algorithm on some dataset and find that the performance is excellent, but then apply it in the real world
and find that the performance is terrible. This is especially common in vision datasets, where there is a tendency
to always photograph a given object in the same environment or in the same pose. In your own research, make
sure your datasets are realistic!

3.6 Hand-in for Question 3

Print out the code that you used to solve problem 3. This should include the code for the Naive Bayes
classifier, the code for modifying α, and the code for identifying important features. Submit this code in
class on the due date, along with your answers to questions 3.1-3.7. [15 points]

F SOLUTION: The code for this question is provided in the solution code file on the webpage.
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